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Abstract: Smart city-aspiring urban areas should have a number of neces-
sary elements in place to achieve the intended objective. Precise controlling
and management of traffic conditions, increased safety and surveillance, and
enhanced incident avoidance and management should be top priorities in
smart city management. At the same time, Vehicle License Plate Number
Recognition (VLPNR) has become a hot research topic, owing to several
real-time applications like automated toll fee processing, traffic law enforce-
ment, private space access control, and road traffic surveillance. Automated
VLPNR is a computer vision-based technique which is employed in the recog-
nition of automobiles based on vehicle number plates. The current research
paper presents an effective Deep Learning (DL)-based VLPNR called DL-
VLPNRmodel to identify and recognize the alphanumeric characters present
in license plate. The proposed model involves two main stages namely, license
plate detection and Tesseract-based character recognition. The detection of
alphanumeric characters present in license plate takes place with the help of
fast RCNN with Inception V2 model. Then, the characters in the detected
number plate are extracted using Tesseract Optical Character Recognition
(OCR) model. The performance of DL-VLPNR model was tested in this
paper using two benchmark databases, and the experimental outcome estab-
lished the superior performance of the model compared to other methods.
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1 Introduction

There is a tremendous increase in the usage of vehicles in recent years, thanks to rapid
economic growth of the country. In smart cities, road safety can be achieved for people through
automated VLPNR process. VLNPR makes a significant gain in real-time under several aspects.
It is useful in several applications like automated toll fee collection systems [1], car parking
access controls [2] and road traffic control [3]. VLPNR is an active research domain that received
more attention in the recent years. Various applications have been developed recently deploying
intelligent transportation and surveillance systems along with the enhancement of digital camera
and increased computation complexity. These systems are intended to recognize vehicles using
their number plates. Such systems offer automated identification and recognition of vehicle license
plates from real-time images. After a vehicle’s front view is captured using a camera, the captured
image is fed into computer vision-based algorithms as input to examine, identify, and filter the
plate areas from backdrop. The identification process performs the character segmentation in
detected area followed by its recognition. Identification and recognition of number plates are two
different tasks. Various models exist for a particular kind of number plate style (font size, text,
font type, backdrop color, and shape) or for particular conditions like motion of camera, angle,
lighting, occlusion, and so on.

Classical VLPNR models utilize Machine Learning (ML) models especially its hand-crafted
features to represent the essential features that exist in vehicle license plate image. These models
gather some morphological variables and are susceptible to the presence of noise in image and
complicated backdrop. DL models offer an option i.e., automated feature selection from images
with the help of learned representations of underlying data using altered filters. Convolutional
Neural Networks (CNNs) is one of the advanced and effective DL models which gained significant
attention in the recent years in various fields of computer vision like handwriting recognition [4],
text recognition [5], visual object recognition, etc. Since identifying the location of a vehicle license
plate is treated as a detection problem, diverse region-based CNN models can be employed to
detect the objects in a rapid and precise manner. For VLPNR, the available DL-based models are
segregated into two types namely, segmentation-based and segmentation-free models. The former
model carries out the segmentation task for character separation and recognition of individual
characters. The latter model, on the other hand, recognizes the characters without separation using
particular architectural models like Recurrent Neural N(RNN).

In detection process, one of the processes is the localization of bounding boxes of vehi-
cle license plate from the complete actual input image. The outcome of the process affects
the accuracy of the detection process significantly. Several VLPNR models have been proposed
and implemented in the literature. The classical ML models, with handcrafted features, depend
on a particular set of descriptors like edges, color, and texture descriptors [6]. Vehicle license
plate recognition is a process of detecting a homogeneous text region through the detection of
characters straightaway from the image [7].

Though it is simple and rapid, the existing models produced minimum detection rate, since
the features learned from the characters are not sufficient to identify every character present in the
image. Besides, the other characters present in the image create confusion in detecting the vehicle
license plate. The existing models assume the license plate as an area with high contrast and edge
density or otherwise as a portion that is comprised of high intensity key points identified with
Scale-Invariant Feature Transform (SIFT) descriptor [8].
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Currently, DL-based models are in use to localize the vehicle license plates. Especially, A4-
layer CNN-based models are in use to detect the text regions present in input image. Afterward,
a second 4-layer plate/non-plate CNN classification model is applied to differentiate the vehicle
license plates from typical textual characters. The authors, in the literature [9], utilized a classifi-
cation model using FAST-YOLO network in the detection of front view of cars from the applied
image. From this, the vehicle license plate details are extracted from the identified front view
image. The literature [10] employed a pipeline architecture using a series of deep CNNs to detect
vehicle license plate under diverse scenarios. The architecture operates around a set of different
number plate designs. However, it is designed mainly for Arabian text due to which it cannot be
applied for other languages.

The current research paper presents an effective DL-based VLPNR method to identify and
recognize the alphanumeric characters, present in the license plate. The proposed model involves
two main stages namely, license plate detection and Tesseract-based character recognition. License
plate detection occurs with the help of Faster RCNN and Inception V2 model. Then, the charac-
ters in the detected number plate are extracted by Tesseract OCR model. The study validated the
performance of DL-VLPNR model utilizing a set of two benchmark databases. The experimental
outcomes established the optimal performance of the proposed method over compared techniques.

The upcoming sections of the paper are as follows. Section 2 briefs the works related to
VLPNR model. Section 3 discusses the presented DL-VLPNR model. The validation of the
proposed DL-VLPNR model is presented in Section 4, and the paper is concluded in Section 5.

2 Literature Survey

Segmentation-dependent models extract every individual character from vehicle license plate
in its earlier stage. Afterwards, the OCR algorithm recognizes every character from the extracted
image. The existing models on vehicle license plate image segmentation are of two different types
such as projection-based and connected component-based. Between these methods, the former one
makes use of the characters and backdrops that are different in color in number plate and the
method offers contrary values in binary image. The histograms of vertical and horizontal pixel
projections could be utilized in the segmentation of characters [11]. These models can be easily
influenced by rotating the vehicle license plate. The connected component-based model segments
the characters by labeling every linked pixel in binary image to components. Though it is robust to
rotate, it fails in proper segmentation of characters, once they are combined or divided. After the
segmentation of characters, recognition process occurs as classification, with an individual class
for every alphanumeric character.

The existing techniques perform partition in two ways namely, template matching and
learning-based techniques. The former one comprises of similarity comparison of a provided
character against the template. In this method, the high resemblance character is chosen. Various
similarity metrics are presented for instance, Mahalanobis and Hamming distances [12]. These are
employed in binary images and are restricted since it operate only for original character size and
font. It does not support rotating or broken letters. The latter model is highly robust and operates
with characters of different sizes, fonts, and rotation. It makes use of ML models in differentiating
the characters with the help of one or many features like edges, gradient, and SIFT. In the
study conducted earlier [13], a 5-layer CNN was used to recognize the Malaysian vehicle license
plate where every character undergoes manual extraction and segmentation. VLPNR process is
treated as a classification process, including 33 classes. It has the capability to achieve a maximum
accuracy of 98.79% on a limited sample count. A CNN-based model was introduced in the study
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conducted earlier [14] for VLPNR which used several preprocesses like filtering, thresholding, and
segmentation.

In segmentation-free models, VLPNR is carried out on global vehicle license plate images with
no character segmentation. Generally, a sliding window is utilized over an input image for the
generation of several tentative characters in few steps. Then, every tentative character is, utilized
by a recognition model. Once the input image is completely swiped by the sliding window, the
predicted output is investigated, and the end sequence is decided. The successive identical charac-
ters are treated as a single character whereas the character space is applied for separation. Under
VLPNR, some of the models use segmentation-free approaches via DL approaches. A CNN
model was proposed in the literature [15] to obtain the features on vehicle license plate and RNN
so as to find the series of characters. In the study conducted earlier [16], a VLPNR was proposed
in the recognition of license characters as sequence labeling problem by RNN with Long Short-
Term Memory (LSTM). A deep (16-layers) CNN was used in the study [17] depending on Spatial
Transformer Networks to carry out a lesser sensitive character identification in spatial conversions
on entire license plate image. This model is also used to avoid the crucial process of segmenting
the image into characters. A YOLO-based network was proposed for VLPNR using an integrated
classification-detection model. In the literature [18], a CNN model was utilized to identify the
characters in vehicle license plate and localize the character bounding box corners. It dealt with
classification process of a set of 33 classes for Italian VLPNR. Generally, it is observed that the
DL models for VLPNR are still under progress and are limited to particular scenarios. Few of
the models discussed above have performed VLPNR in a dedicated way while many models were
based on hand-crafted features.

3 The Proposed DL-VLPNR Model

The working process involved in the proposed DL-VLPNR method is depicted in Fig. 1.
The proposed DL-VLPNR model has two main stages. Number plate detection occurs with the
help of Faster RCNN and Inception V2 model. Then, the characters in the detected number
plate are extracted by Tesseract OCR model. At this point, the Tesseract OCR engine is used
to realize the alphanumeric features present in the detected plate. The applied Tesseract engine
is trained to improve the accuracy of analysis. Training process involves the development of
characters in the images which need to be predicted using the desired fonts. Further, a dictionary
of viable characters should be identified in number plate which has other information such as
regional codes, suffixes as well as registration numbers. The result of this phase arrive at the text
representation of vehicle number.

3.1 Faster R-CNN with Inception V2 Model for Number Plate Detection
Faster R-CNN method has two major stages such as Region-Based Proposals (RPN) and Fast

R-CNN technique. When RPN is constrained with reliable feature rules, then the Fast R-CNN
model explores the objects. The identification outcome is provided to RPN to generate the region
proposals. Faster R-CNN approach obtains the whole image and the value of object proposals in
the form of input in order to forecast the abnormalities that exist in the input image as shown
in Fig. 2 [19].
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Figure 1: The workflow of DL-VLPNR model

Faster R-CNN characteristics are determined to filter the association, whereas, in second
phase, the class labeling function is carried out. As a result, the class labels are declared for
all the observed regions in a video frame. Later, the anomaly is predicted. A group of frames
obtained from a video sequence of the tracked objects acts as the input for anomaly detection.
A characteristic of Faster R-CNN performs this operation and maps the observed regions. When
identifying the observed regions of a frame, the corresponding labels are assigned with respective
prediction values.

RPN receives images of diverse sizes and offers the results as a group of rectangular object
proposals along with specific objectless value. It is named after CNN and the main theme of
this model is to allocate the processing with Fast R-CNN. To produce the region proposals, a
tiny network is slid across a convolutional (Conv) feature map. It consumes the input as n× n
spatial window. Each sliding window undergoes mapping with minimum dimensional feature and
provides two fully connected layers.
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Figure 2: The faster RCNN model

RPN involves in a ranking process that ranks the anchors. The anchors are highly significant
in the implementation of Faster R-CNN. An anchor is defined as a box whereas the anchors are
provided at the image position.

Here, the RPN is trained by assigning a binary class for all the anchors. A positive label is
allocated for two anchors such as anchors with high Intersection-over-Union (IoU) that overlaps
a ground-truth box and anchor with 0.7 IoU. A ground-truth box is shared for positive labels. In
most of the cases, an alternate procedure is sufficient to find the positive samples, and primary
criteria are applicable in rare scenarios.

Faster R-CNN focuses on reducing the objective function by applying multi-task loss in Fast
R-CNN. Hence, it can be formulated as in Eq. (1):

L({pu}, {zu})= 1
Ncls

∑

u

Lcls(pu, p
∗
u)+λ

1
Nreg

∑

u

p∗uLreg(zu, z
∗
u) (1)

where u denotes the index and pu implies a predictive probability of anchor u, being an object.
The ground-truth label p∗u is one if the anchor is positive and 0 for negative anchor. zu represents
a vector of four parameterized coordinate points and z∗u signifies a ground-truth box. The classi-
fication loss Lcls is log over two class labels. In case of regression loss, Lreg(zu, z∗u) = R(zu − z∗u),
where R refers to robust loss function (smooth L1). In term p∗uLreg is a regression loss that is
inactive state for p∗u = 1 and in an inactive state for p∗u = 0. The outcomes of cls and reg layers
contain {pu} and {zu}. The bounding box regression parameters are shown in Eq. (2):

za= (a− bx)/wx, zb = (b− bx)/hx

zw = log(w)/wx, zh = log(h)/hx
(2)
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z∗a = (a∗ − ax)/wx, z∗a = (b− bx)/hx

z∗w = log(w∗)/wx, z∗h = log(h)/hx

where a, b, w, and h are center coordinates of the box and its corresponding width and height
values. The variables a, ax, and a∗ imply the detected box, anchor box, and ground truth box.

The outcomes attained from the simulated RPN gives the presented regions of diverse sizes.
A different-sized region represents a different-sized CNN feature map. It is highly complex to
develop an efficient method that can perform the features of different sizes. The Region of Interest
(ROI) pooling undergoes simplification by reducing the feature maps to a similar size. Unlike
Max-Pooling, the ROI pooling divides the input feature map to a predefined number into identical
regions, and Max-Pooling is employed for all the regions. Thus, the result attained from ROI
Pooling is assigned as k.

In order to detect the abnormalities in pedestrian walkways, Fast R-CNN method is applied.
The strategy of the working process learns the conv layers that have been distributed from RPN
and Fast R-CNN. RPN as well as Fast R-CNN are trained autonomously. Hence, Conv. layers can
be changed in diverse modules. So, there is a requirement for development which allows the Conv.
layers to be shared between two networks. This is executed by replacing the learning model that
has been carried out in two distinct networks. It is very complex to describe the individual network
of RPN and Fast R-CNN that undergoes optimization with the help of Back Propagation (BP)
technique. The training process for Fast R-CNN depends on the predetermined object proposals.

A 4-step training model is applied in training the distributed features by other optimization
models. Then, a predictive network undergoes training using the Fast R-CNN model, a derivative
of RPN. Here, RPN and Fast R-CNN models are not capable of sharing the Conv. layers. The
detection of networks are utilized in the third phase to initiate RPN training. Therefore, the
distributed Conv. layers are permanent, and exclusive layers of RPN are fine-tuned. Consequently,
the shared Conv. layers are provisioned from a constant full Conv. layer of Fast R-CNN that
underwent fine-tuning. Therefore, RPN and Fast R-CNN share a similar Conv. layer and creates
a unique system.

3.2 Inception V2 Model
Many developers from Google established an Inception network developed for ImageNet com-

petition to classify and predict the challenges. The method consists of a fundamental component
called ‘Inception cell’ to process a sequence of Conv. layers at diverse scales and consecutively
assemble the simulation outcome. To save the process, 1 × 1 Conv. has been applied to decrease
the input channel depth. For every cell, a collection of 1 × 1, 3 × 3, and 5 × 5 filters are appli-
cable to extract the features from input at various scales. Also, Max pooling is employed, albeit
with ‘same’ padding to save the dimensions. So, both of these could be combined appropriately.
Inception network plays a significant role in the development of CNN classification models. Before
inception network, well-known CNNs are stacked with Conv. layers at a high depth to attain a
better function.

3.3 OCR Engine: Tesseract
The pipeline of the Tesseract OCR engine is shown in Fig. 3. Initially, Adaptive Thresholding

is applied to change the image into binary version using Otsu’s method. Page layout analysis is
the next step and is applied in extracting the text blocks within the region. Then, the baselines of
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every line are detected and the texts are divided into words with the application of finite spaces
as well as fuzzy spaces.

Figure 3: Processes involved in tesseract-based character recognition

In the next step, the character outlines are extracted from the words. Text recognition is
initiated as a 2-pass method. In the first pass, word recognition is carried out with the application
of static classification. Every word is passed satisfactorily to adaptive classifier in the form of
training data. A second pass is run over the page by employing a novel adaptive classification
model, in which the words are not examined thoroughly to re-examine the module.

A series of processes involved in the implementation of the presented method is summarized
herewith.

• Initially, a collection of training images is provided.
• In the next stage, a set of data points is obtained from the available annotated image. Next,

the conversion of data points to .csv file takes place.
• Then, the records are generated in TensorFlow. In the next stage, a training model is created

using Faster R-CNN with Inception V2 method.
• Upon the completion of training model, new input images are provided to the system as

shown in the figure.
• When new input images are provided, the Faster RCNN model detects the number plate at

first instance correctly.
• Then, the text is recognized with the help of PyTesseract.
• Finally, the text in the vehicle number plate is identified correctly.

4 Performance Validation

4.1 Implementation Details

The proposed DL-VLPNR model was simulated using a PC i5, 8th generation, 16 GB
RAM. The DL-VLPNR model was programmed using Python language with TensorFlow, Pillow,
OpenCV, and Py Tesseract.

4.2 Results Analysis
Fig. 4 shows the visualization outcomes of the proposed DL-VLPNR model. It is inferred

that the DL-VLPNR model can clearly recognize the license plate number on all the images.
Fig. 4 shows that the presented model accurately recognized the number plate, even it is
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inappropriately captured. This illustrates the reliable function of the developed system under
different circumstances.

Figure 4: Sample recognition output

Table 1: Performance analysis of proposed model on FZU cars dataset

No. of Runs Precision Recall F1-score mAP

Run-1 0.9756 0.985 0.9754 0.9849
Run-2 0.9754 0.9742 0.9775 0.9655
Run-3 0.9673 0.9868 0.9554 0.9622
Run-4 0.9787 0.9751 0.9708 0.9749
Run-5 0.9741 0.9754 0.9839 0.9673
Run-6 0.9658 0.9776 0.9736 0.9636
Run-7 0.9876 0.9849 0.9838 0.9735
Run-8 0.9903 0.9771 0.9766 0.967
Run-9 0.9875 0.9965 0.9771 0.9641
Run-10 0.9783 0.9875 0.9859 0.9672
Average 0.9780 0.9820 0.9760 0.9690

Tab. 1 and Fig. 5 shows the results of the analysis of the proposed model on FZU Cars
dataset under different runs [20,21]. From the obtained results, it is apparent that the proposed
model can demonstrate the maximum recognition in terms of precision, recall, F1-score, and mAP.
The proposed model attained a high average precision of 0.9780, recall of 0.9820, F1-score of
0.9760, and mAP of 0.9690.

Tab. 2 and Fig. 6 show the results offered by different VLPNR models on the applied FZU
Cars dataset. The table values indicate that the ZF model produced ineffective detection outcomes
with minimum precision, recall, F1-score, and mAP values i.e., 0.916, 0.948, 0.932, and 0.908
respectively. At the same time, it is pointed that the VGG16 model performed well than the
previous model and attained slightly higher precision, recall, F1-score, and mAP values such as
0.925, 0.955, 0.940, and 0.912 respectively.
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Figure 5: Performance analysis of DL-VLPNR model on FZU cars dataset
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Table 2: Comparative study of existing with presented DL-VLPNR for FZU cars dataset

Model Precision Recall F1-score mAP

ZF 0.916 0.948 0.932 0.908
VGG16 0.925 0.955 0.940 0.912
ResNet50 0.938 0.951 0.944 0.916
ResNet101 0.945 0.958 0.951 0.922
DA-Net136 0.961 0.964 0.962 0.942
DA-Net160 0.965 0.966 0.965 0.952
DA-Net168 0.966 0.968 0.967 0.955
DA-Net200 0.969 0.971 0.970 0.958
DL-VLPNR 0.978 0.982 0.976 0.969

Figure 6: Comparative detection result analysis of DL-VLPNR model on FZU cars dataset

Along with that, the ResNet 50 model achieved even higher detection outcomes with pre-
cision, recall, F1-score, and mAP values such as 0.916, 0.948, 0.932, and 0.908 respectively. In
line with this, it is observed that the ResNet 101 model produced an acceptable recognition with
precision, recall, F1-score, and mAP values such as 0.945, 0.958, 0.951, and 0.922 respectively.
Besides, the DA_Net136, DA_Net160, DA_Net168, and DA_Net200 approaches produced com-
petitive and near similar recognition rates over the compared methods. The DA-Net136 model
showed a slightly manageable outcome with precision, recall, F1-score, and mAP values such as
0.961, 0.964, 0.962, and 0.942 respectively. Next, the DA-Net160 offered slightly higher precision,
recall, F1-score, and mAP values such as 0.965, 0.966, 0.965, and 0.952 respectively. Afterward,
even higher performance was achieved by DA-Net168 with precision, recall, F1-score, and mAP
values such as 0.966, 0.968, 0.967, and 0.955 respectively.

In line with this, the DA-Net200 model produced near-optimal results with precision, recall,
F1-score, and mAP values such as 0.978, 0.982, 0.976, and 0.969 respectively. However, the pro-
posed DL-VLPNR model accomplished the optimal performance with precision, recall, F1-score,
and mAP values beings 0.978, 0.982, 0.976, and 0.969 respectively.
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Tab. 3 and Fig. 7 show the results for detection analysis of the proposed model on
HumAIn2019 dataset under different runs. From the resultant values, it is obvious that the
proposed model exhibited an improved outcome in terms of precision, recall, F1-score, and mAP.
The proposed model accomplished higher average precision of 0.9780, recall of 0.9820, F1-score
of 0.9760, and mAP of 0.9740.

Table 3: Performance analysis of the proposed model on HumAIn2019 dataset

No. of Runs Precision Recall F1-score mAP

Run-1 0.9658 0.9851 0.9812 0.9666
Run-2 0.9885 0.9654 0.9688 0.9785
Run-3 0.9672 0.9886 0.9831 0.9732
Run-4 0.9647 0.9775 0.9751 0.9741
Run-5 0.9883 0.986 0.9635 0.9634
Run-6 0.9792 0.9896 0.9746 0.967
Run-7 0.9865 0.9753 0.9817 0.9854
Run-8 0.9763 0.988 0.978 0.9717
Run-9 0.9861 0.9763 0.9729 0.9858
Run-10 0.9774 0.9882 0.9811 0.9743
Average 0.9780 0.9820 0.9760 0.9740

Tab. 4 and Fig. 8 show the recognition performance achieved by diverse VLPNR models on
the applied HumAIn2019 dataset. The table values denote that the ZF model produced the worst
detection outcomes with minimum precision, recall, F1-score, and mAP values such as 0.863,
0.873, 0.864, and 0.869 respectively. At the same time, it is revealed that the VGG16 model is
superior to ZF model as it achieved slightly higher precision, recall, F1-score, and mAP values
such as 0.869, 0.889, 0.874, and 0.876 respectively. Concurrently, the ResNet 50 model produced
higher detection performance with precision, recall, F1-score, and mAP values being 0.871, 0.892,
0.887, and 0.892 respectively. Simultaneously, it is noticed that the ResNet 101 model produced
a slightly satisfactory recognition with its precision, recall, F1-score, and mAP values being
0.913, 0.923, 0.913, and 0.925 respectively. Besides, the DA_Net136, DA_Net160, DA_Net168, and
DA_Net200 methodologies accomplished somewhat satisfactory results. The DA-Net136 model
exhibited slightly convenient outcomes with the precision, recall, F1-score, and mAP values such
as 0.923, 0.931, 0.926, and 0.935 respectively. After that, the DA-Net160 offered slightly higher
precision, recall, F1-score, and mAP values such as 0.936, 0.942, 0.937, and 0.938 respectively.
An even more high performance was produced by DA-Net168 with precision, recall, F1-score,
and mAP values such as 0.932, 0.948, 0.941, and 0.942 respectively. Concurrently, the DA-Net200
model produced near-optimal results with precision, recall, F1-score, and mAP values being0.945,
0.957, 0.949, and 0.953 respectively. However, the proposed DL-VLPNR model accomplished
superior results over the earlier models in terms of precision, recall, F1-score, and mAP values
being 0.978, 0.982, 0.976, and 0.974 respectively.
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Figure 7: Performance analysis of DL-VLPNR model on HumAIn2019 dataset
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Table 4: Comparative analysis of existing and the presented DL-VLPNR for HumAIn2019 dataset

Model Precision Recall F1-score mAP

ZF 0.863 0.873 0.864 0.869
VGG16 0.869 0.889 0.874 0.876
ResNet50 0.871 0.892 0.887 0.892
ResNet101 0.913 0.923 0.913 0.925
DA-Net136 0.923 0.931 0.926 0.935
DA-Net160 0.936 0.942 0.937 0.938
DA-Net168 0.932 0.948 0.941 0.942
DA-Net200 0.945 0.957 0.949 0.953
DL-VLPNR 0.978 0.982 0.976 0.974

Figure 8: Comparative detection result analysis of DL-VLPNR model on HumAIn2019 dataset

Tab. 5 examines the overall accuracy analysis results offered by DL-VLPNR model with
existing techniques on the applied dataset. It can be inferred that the presented DL-VLPNR
technique leads in optimal recognition performance as it produced the highest accuracy of 0.986.
At the same time, the VGG16 and ResNet 50 models produced near-identical and competitive
outcomes with its accuracy values being 0.971 and 0.976 respectively. Along with that, the
VGG_ CNN_M_1024 approach offered a somewhat low accuracy of 0.967, whereas minimum
accuracy was achieved by ZF and ResNet 101 methods i.e., 0.942 and 0.943 respectively. Overall,
the proposed DL-VLPNR methodology effectively recognized all the applied images compared to
other methods.
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Table 5: Accuracy analysis of diverse models

Methods Overall accuracy

ZF 0.942
VGG16 0.971
VGG_CNN_M_1024 0.967
ResNet50 0.976
ResNet101 0.943
DL-VLPNR 0.986

5 Conclusion

The current research article proposed a productive DL-VLPNR model to identify and ana-
lyze the license plate characters of a vehicle. The proposed method utilizes Faster RCNN with
Inception V2 model to detect the alphanumerical characters in license plate of a vehicle image.
Afterward, the characters in the detected number plate are extracted by Tesseract OCR model.
The performance of the DL-VLPNR model was validated using a set of two benchmark databases
namely, FZU Cars and HumAIn2019 dataset. The results were analyzed in terms of different
measures such as precision, recall, F1-measure, accuracy, and mAP. The experimental results
evidently indicate that the DL-VLPNR model has the ability to achieve optimal detection and
recognition performance as it attained the highest accuracy of 0.986. The proposed DL-VLPNR
model can be employed as an appropriate tool for VLPNR. In future, the proposed model can be
implemented in real-time traffic surveillance cameras in smart cities to identify the vehicles that
cross the traffic signal at a faster rate.
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