Computers, Materials & Continua K Tech Science Press

DOI:10.32604/cmc.2022.015987
Article

Graphical Transformation of OWL Ontologies to Event-B Formal Models

Eman H. Alkhammash”

Department of Computer Science, College of Computers and Information Technology, Taif University,
Taif, 21944, Saudi Arabia
"Corresponding Author: Eman H. Alkhammash. Email: eman.kms@tu.edu.sa
Received: 17 December 2020; Accepted: 18 February 2021

Abstract: Formal methods use mathematical models to develop systems.
Ontologies are formal specifications that provide reusable domain knowledge
representations. Ontologies have been successfully used in several data-driven
applications, including data analysis. However, the creation of formal models
from informal requirements demands skill and effort. Ambiguity, incon-
sistency, imprecision, and incompleteness are major problems in informal
requirements. To solve these problems, it is necessary to have methods and
approaches for supporting the mapping of requirements to formal specifica-
tions. The purpose of this paper is to present an approach that addresses this
challenge by using the Web Ontology Language (OWL) to construct Event-B
formal models and support data analysis. Our approach reduces the burden of
working with the formal notations of OWL ontologies and Event-B models
and aims to analyze domain knowledge and construct Event-B models from
OWL ontologies using visual diagrams. The idea is based on the transforma-
tion of OntoGraf diagrams of OWL ontologies to UML-B diagrams for the
purpose of bridging the gap between OWL ontologies and Event-B models.
Visual data exploration assists with both data analysis and the development
of Event-B formal models. To manage complexity, Event-B supports stepwise
refinement to allow each requirement to be introduced at the most appropriate
stage in the development process. UML-B supports refinement, so we also
introduce an approach that allows us to divide and layer OntoGraf diagrams.

Keywords: Data analysis; OWL ontologies; event-B formal method;
refinement; requirements; OntoGraf

1 Introduction

Event-B is a refinement-based formal method with tool support for developing various kinds
of systems. Despite the several benefits of using Event-B to build large and critical systems, it
is difficult to build Event-B formal models and organize their refinement levels from informal
requirements. Efficient mechanisms are needed to bridge the gap between informal requirements
and formal models and to support data analysis. Our approach aims to address this challenge by
constructing Event-B models incrementally from OWL ontologies using graphical diagrams.

This work 1is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.015987

3734 CMC, 2022, vol.70, no.2

Ontologies provide conceptual representations of the domain of interest in a formal language.
There are a wide range of ontologies in different domains. OWL ontologies are rich in knowledge,
and a large number of OWL ontologies are available in several repositories. Moreover, OWL
ontologies are supported by different tools, such as Protégé [1], and such tools are used by a
large number of people from different disciplines. Many published studies describe the roles of
ontologies in requirements engineering and data analysis [2,3]. Dermeval et al. [4] conducted a
literature survey that summarized approximately sixty-seven studies that used ontologies in several
phases of requirements engineering, and they concluded that ontologies show great advantages in
requirements engineering phases in academic and industrial settings. These studies clearly indicate
that ontologies can benefit requirements engineering.

Our approach aims to utilize and transform OWL ontologies into Event-B formal models,
and it supports refinement to reduce complexity and identify abstraction levels. We transform
OntoGraf diagrams into UML-B diagrams. OntoGraf is a tool that allows for a visual, interactive
navigation of the relationships in OWL ontologies. OntoGraf captures large elements of OWL
structures. UML-B provides graphical modeling based on UML, thereby supporting the develop-
ment of an Event-B formal model. We transform the diagrammatic notation of OntoGraf into the
corresponding diagrammatic notation in UML-B. Nodes are transformed into classes. The object
properties displayed in arches are transformed into axioms and invariants in UML-B diagrams.
Data properties are transformed into axioms and invariants. Class expressions are transformed
into invariants. This paper is structured as follows: Section 2 presents an overview and a literature
review of OWL ontologies, Event-B, and UML-B. Section 3 introduces the methodology employed
in this paper. Section 4 describes the application of the proposed approach to case studies.
Section 5 outlines the lessons learned from the application of the proposed approach to case
studies. Finally, Section 6 presents conclusions and future work.

2 Preliminaries and Related Work

2.1 OWL Ontologies

Most ontologies provide formal descriptions for representing domains to enable knowledge
representation and sharing. Currently, OWL is a widely used ontology language. It [5] is a
semantic web language based on description logic; it represents knowledge and shares it on
the Worldwide Web. OWL is highly expressive and provides reasoning power to the semantic
web. OWL defines a hierarchy of concepts, including classes (collections of individuals), prop-
erties (collections of the relationships between individuals or data), and individuals (objects
belonging to classes). Several elements are used by OWL to represent ontology components,
such as the following: owl:Class represents a concept or a group. Owl:ObjectProperty relates
an individual to another individual. Owl:DatatypeProperty relates an individual to a data value.
Rdf:Property represents the relationships between the domain and a range of instances or classes
(e.g., “rdfs:domain” and “rdfs:range”). owl:Individual represents the domain of objects. In Fig. 1,
Person and Organization are classes, and members are object properties that relate individuals from
the domain Person to individuals from the range Organization.

OntoGraf (http://protegewiki.stanford.edu/wiki/OntoGraf’) is a graph visualization plug-in in
the Protégé editor. It allows us to view classes, individuals, domain/range object properties, and
equivalences. Classes and individuals are represented as nodes of a graph, and the relationships
between them are represented as edges. OntoGraf allows us to navigate the relationships between
OWL ontologies. It provides several layouts to organize the structure of an ontology, and the user
is also able to move every node. Moreover, OntoGraf allows us to focus the view on the desired

http://protegewiki.stanford.edu/wiki/OntoGraf

CMC, 2022, vol.70, no.2 3735

part of an OWL ontology. OntoGraf enables quick visualizations of all important details present
in OWL ontologies. In this paper, we make use of OntoGraf for demonstrating the details of
OWL ontologies to transform them to the corresponding notations of UML-B and then to Event-
B formal models. In this way, the user does not need to interact directly with the formal notations
of OWL ontologies and Event-B. Fig. 2 graphically describes the object property member that
relates the domain Person and range Organization in OntoGraf.

< owl : Class rdf : 1D = “Person”/ >

< owl : Class rdf : 1D = “Organization”/ >

< owl : ObjectProperty rdf : ID = “member” >

< vdfs :domain rdf : resource = "Person” [>

< rdfs:range rdf : resource = “Organization™/ >
< fowl : ObjectProperty >

Figure 1: Representation of the object properties in an OWL ontology

@ Person [* Organization

Figure 2: Representation of the object property member and the relation between the person
domain and the range organization

2.2 Event-B Formal Method

Event-B [6] is a formal method that provides a rich modeling language based on set theory
and predicate logic for specifying, modeling, and reasoning with regard to systems. Constructing
an Event-B model starts from an abstract model, and we continue to add details and model the
system at several levels using the refinement technique. Event-B provides a mechanism for verifying
the consistency of the constructed model using a mathematical proof. An Event-B model consists
of a context and a machine. The context contains the static part of the model (i.e., sets, constants,
and axioms). The machine contains the dynamic functional behavior of the model (i.e., variables,
invariants, and events). Axioms specify the assumptions about the constants. Invariants specify
the properties of model variables that should always remain true. An event consists of two parts.
The first part contains guards, which define the necessary conditions for the event to occur. Each
guard is a predicate over the state variables and constants. The second part contains the actions,
which describe how the state variables are modified as a result of the event being executed.

A concrete machine refines the abstract machine. The refinement must preserve the abstract
invariants. The states of the abstract machine are connected to the states of the concrete machine
by gluing invariants. Each event of the abstract machine is refined by one or more concrete events.
A refinement may also introduce new concrete events, variables, and invariants.

2.3 UML-B

UML-B [7] is a formal graphical modeling notation based on UML. It provides a UML-like
graphical notation that allows for the development of an Event-B formal model. UML-B provides
four types of diagrams: package diagrams, context diagrams, class diagrams, and state machine
diagrams. The package diagrams represent Event-B contexts and machines and the relationships
between them. The sets and constants of an Event-B model are represented by context diagrams
that describe the abstract view of the system architecture.

3736 CMC, 2022, vol.70, no.2

The class diagrams represent the entities of the system whose properties are specified as
class attributes. The state machine diagrams define the behavior of classes. The class diagrams
in UML-B may contain attributes, associations, events, and state machines (transitions between
states) that correspond to variables, invariants, and events in Event-B models. The notion of
refinement is realized in UML-B [7]. A class in a concrete machine refines a class of abstract
machines. The refined class holds the attribute of its abstract machine. The refined class may
contain other new attributes and events. It is also possible that a refined class deletes some
of the attributes of the abstract class. Fig. 3 represents members that link the Person and
Organization classes.

o Person
o Organization
Attributes
¢ member: Organization 0..n o member ©..n

Figure 3: UML-B for two classes, person and organization, and the member relation

2.4 Related Work

Several works have aimed to bridge the gap between informal requirements and Event-B
formal models. A work by [&] presented an approach based on that of UML-B and atomicity
decomposition (AD) to construct Event-B models. It classifies informal requirements into five
types: data-oriented, constraint-oriented, event-oriented, flow-oriented, and others. It uses the
AD approach, which provides a graphical notation to structure refinement levels and manage
flows in an Event-B model. Although our approach uses UML-B, we use it in the proposed
approach to generate Event-B models from OWL ontologies, whereas in [§], UML-B was used
to map data-oriented requirements to an Event-B model. Another work by [9,10] aimed to build
Event-B models from OWL ontologies. It used an OWL-verbalizer to generate controlled English
requirements called Attempto Controlled English (ACE) from OWL ontologies, and these could
then be used to construct Event-B models. Our approach uses OntoGraf and UML-B diagrams
to generate Event-B models from OWL ontologies, thereby reducing the burden of constructing
Event-B models manually.

Another work proposed by the authors of [11,12] transformed ontologies to Event-B contexts.
It was supported by tool called OntoEvent-B. The approach consists of three stages: (1) it takes
ontologies as input, (2) it translates the inputs into generic concepts using the Pivot model, and
(3) it translates generic concepts into Event-B contexts. Input ontologies can be described in the
OWL and OntoML/Plip languages.

Properties are not identified in this approach. Moreover, the authors of [13] extracted require-
ments of concurrent systems from documentation to verify the designs of the systems and ensure
their correctness. They adopted ontologies to extract requirements and used ontology instances
to represent system modules for supporting formal verification. In comparison with the above-
mentioned approaches, the approach proposed in this paper uses a diagrammatic view of an
ontology using OntoGraf and transforms it into UML-B notation without the need for directly
handling the mathematical notation. Moreover, our approach supports the organization of the
refinement structure.

CMC, 2022, vol.70, no.2 3737

3 Methodology

Ontologies have been successfully used in various phases of requirements engineering. Ontolo-
gies can be used to capture knowledge about a domain. This paper focuses on capturing the
knowledge represented in OWL ontologies and transforming it into Event-B models. In this way,
we identify the precise knowledge contained in an OWL ontology and use it for formal modeling.
This enables precise requirements for Event-B formal modeling. There are various OWL ontologies
that exist in several repositories, such as the Aber OWL repository [14] and OntoKhoj Portal [15].
These ontologies could contribute to introducing precise definitions of the system being modeled
in Event-B. We introduce an approach that allows users to focus on the transformation of
OntoGraf and UML-B graphical notations to reduce the burden of transforming formal notations
from OWL ontologies into Event-B formal models. The transformation of ontologies into Event-B
models is performed by the translation of OntoGraf diagrams that visualize OWL ontologies into
UML-B diagrams that visualize Event-B models. UML-B diagrams can be automatically trans-
lated into Event-B models. The following steps show how to transform OntoGraf diagrams that
capture ontologies into UML-B diagrams. We show the corresponding Event-B model (variables
and invariants only) generated from UML-B. The initialization event sets the default values for
the defined variables.

e A node or a class in OntoGraf is represented as a class in UML-B. Fig. 4 represents a
node in OntoGraf and the corresponding class in UML-B.

o Class

variables
invariants

Class € Class_SET
A B

Figure 4: Representations of a class in UML-B (A) and OntoGraf (B)

The set Class_SET is defined in the context c.

e Arrows in OntoGraf are represented as associations in the UML-B class diagram. Object
properties in the arch of OntoGraf represent invariants (properties of the model variables) or
axioms (predicates that specify assumptions about the constants) in the UML-B class diagram.
Fig. 5 represents a class that has a subclass in OntoGraf, which is transformed into two classes
with a supertype connection between them in the UML-B class diagram.

@ Class | @ Subclass
Class - has subclass > Subclass

A B

o Subclass o Class

Figure 5: Representations of properties in UML-B (A) and OntoGraf (B)

The Event-B model corresponding to UML-B in Fig. 5, which extends the previous Event-B
model, is shown in Fig. 6.

OWL distinguishes between the two main categories of properties that an ontology contains:
object properties that link individuals to individuals and datatype properties that link individuals

3738 CMC, 2022, vol.70, no.2

to data values. OWL properties are converted as invariants or axioms in the UML-B class
diagram. There are various types of object properties in OWL ontologies. Although OntoGraf
does not distinguish the particular type of an object property, it identifies the name of the
property, the domain, and the range. The Protégé platform [1] can provide more details about the
exact types of properties. Therefore, we make use of the properties tab in Protégé to determine
the exact types of object properties in the UML-B class diagram for overcoming this weakness in
OntoGraf. Here, we describe several types of object properties and offer some examples to show
how to transform them into invariants or axioms in Event-B.

variables

Subclass
invariants

Subclass € P(Class)

Figure 6: Event-B model corresponding to UML-B

3.1 Transitive Property

If a property links class A to class B and class B to class C, then it can be inferred that
it links class A to class C. Fig. 7 shows an example of a transitive property. The subRegionOf
property between two regions is transitive. In the UML-B class diagram, Region is converted into
the Region class, and the object property subRegionOf is converted as an invariant to indicate
that subRegionOf is a transitive property (i.e., subRegionOf; subRegionOf C subRegionOf).

© Region < Machine Invariant

*® Region (:'
Altribustes subRegion0f; subRegionOfgsubRegionOf
© subRegion0f: Region

Region - subReglonOf (Domain=Range) --> Reglon

8..n o subRegionOf
A B

Figure 7: Representations of a transitive property in UML-B (A) and OntoGraf (B)

The Event-B model corresponding to the UML-B class diagram in Fig. 7 is shown in Fig. 8.

variables
Region subRegionOf
invariants
Region € Region_SET
subRegionOf € Region ++ Region

Figure 8: Event-B model corresponding to UML-B

The set Region_SET is defined in context c.

CMC, 2022, vol.70, no.2 3739

3.2 Symmetric Property

If a property links A to B, then it can be inferred that it links B to A. A popular exam-
ple of a symmetric property is the friendOf relation. Fig. 9 describes the symmetric property
friendOf. We add the invariant friendOf = friendOf ~! in the UML-B class diagram to describe
the symmetric property.

© Human <~ Machine Invariant
Attributes :t. Person JC,‘J-
o friendOf. Hu... friendOf=_friendOf
D..n Person - friendOf (Domain=Range) --» Person

0.n o friendOf

A B

Figure 9: Representations of a symmetric property in UML-B (A) and OntoGraf (B)

The Event-B model corresponding to the UML-B class diagram in Fig. 9 is shown in Fig. 10.

variables
Human friendOf
invariants
Human € Human_SET
friendOf € Region «+ Region
friendOf = friendOf -1

Figure 10: Event-B model corresponding to UML-B

A property can be asymmetric. For example, if x is a parent of y, then y is not a parent of Xx.
Fig. 11 describes the translation of the parent of property.

o Person z
<~ Machine Invariant
-
Artr butes parentOf= parentOf- L . Person
o parentOf: Person
Pearson — parentdf (Domain=Range) > Person
0..n
0.n © parentOf

Figure 11: Representations of an asymmetric property in UML-B (A) and OntoGraf (B)

The Event-B model corresponding to the UML-B class diagram in Fig. 11 is shown
in Fig. 12.

3.3 Functional Property

In a functional property, a given individual takes only one value. Fig. 13 describes a
functional property.

3740 CMC, 2022, vol.70, no.2

variables
Person parentOf
invariants
Person € Person_SET
parentOf € Region ++ Region
parentOf # parentOf ~!

Figure 12: Event-B model corresponding to UML-B

© Person

Attributes

L ~
© hasHusba... © Person Jk:‘.

Person - hasHusband (Domain=Range) --= Person

0.1 © hasHusband

A B

Figure 13: Representations of a functional property in UML-B (A) and OntoGraf (B)

A property can be of the inverse type. This means that if property p has an inverse property
q and p links A to B, then it can be inferred that q links B to A. The inverse can be functional or
not. An inverse property is represented as an invariant or an axiom in the UML-B class diagram.

The Event-B model corresponding to the UML-B class diagram in Fig. 13 is shown
in Fig. 14.

variables
hasHusband
invariants
hasHusband € Person -+ Person

Figure 14: Event-B model corresponding to UML-B

3.4 Reflexive Property

A reflexive property relates an individual to itself. For instance, every human knows
him/herself. This is formalized in OntoGraf as a node Human, and the reflexive property Knows
has a domain Human and a range Human. In the UML-B class diagram, the node Human is
converted into a class and an association, and Knows is added to link the domain Human to
the range Human, as shown in Fig. 15. Moreover, we add the invariant id(Human) C knows to
indicate that the property Knows is of the reflexive type.

Unlike a reflexive property, the irreflexive property represented in Fig. 16 (yellow relationship)
explicitly states that an individual is not related to itself. Example, nobody can be married to
him/herself. The invariant that must be added to specify this type of property in the UML-B class
diagram is the following: id (Human) N\married = ¢.

The Event-B model that shows examples of reflexive/irreflexive properties is shown in Fig. 17.

e Class axioms are represented in OntoGraf as tooltips, which are converted into invariants
or axioms in Event-B.

CMC, 2022, vol.70, no.2 3741

o Human <~ Machine Invariant
id (Human)gknows
Attributes
o know...
0..n
Ao 7y
&
| ® Human |I\-
8.0 o knows
A B

Figure 15: Representations of a reflexive property in UML-B (A) and OntoGraf (B)

o Human i~ Machine Invariant t"@ 17 5
Attributes id(Human)n married = Human .
< marr...
0..n
@..n

o married
—~
A B

Figure 16: Representations of an irreflexive property in UML-B (A) and OntoGraf (B)

variables
knows married
invariants
id(Human) C knows
id(Human) M married = @

Figure 17: Representations of equivalent classes in UML-B (A) and OntoGraf (B)

There are three main types of axioms that allow relationships to be established between class
expressions, and they are as follows:

1) Hierarchies Classes can be subclasses or superclasses, as illustrated in Fig. 5.
2) Equivalent classes.

Equivalent classes mean that class expressions are semantically equivalent to each other.
Example: The class Spiciness is equivalent to the union of the classes Hot, Medium, and Mild.
This can be converted to an invariant in the UML-B class diagram: Spiciness = Hot U Medium U
Mild. Fig. 18 displays Spiciness as an equivalent class. We omit the classes Hot, Medium, and Mild
in Fig. 18 to save space. These classes are represented in a similar way to a class in Fig. 5.

The Event-B model corresponding to the UML-B class diagram in Fig. 18 is shown
in Fig. 19.

(1) Disjoint classes mean that the class expressions are pairwise disjoint; that is, no individual
can be instances of multiple classes at the same time. Example: Hot cannot be Medium or
Mild, as shown in Fig. 20.

3742 CMC, 2022, vol.70, no.2

=~ Machine Invariant | E’G Sp' . | Spiciness

iciness | ... _
Lpiciness-Hot.;MediumuMild Eq"”:aenmm“‘
' - Spicness EquivaentTo Hot o Medium or Mid
A B

© Spiciness

Figure 18: Representations of equivalent classes in UML-B (A) and OntoGraf (B)

variables

Spiciness Hot Medium Mild
invariants

Spiciness € Spiciness_SET

Hot € Hot_SET

Medium € Medium_SET

Mild € Mild_SET

Spiciness = Hot U Medium U Mild

Figure 19: Event-B model corresponding to UML-B

© Hot

<~ Machine Invariant +
@ Hot Hot

Hot~Medium=2 Disjoint classes:

Hol DisjointWith Medium

<~ Machine Invariant Hot DisjointWith Mikd

Hot~Mild=2

A B

Figure 20: Representations of disjoint classes

The Event-B model corresponding to Fig. 20 is shown in Fig. 21.

Hot N Medium = @
Hot N Mild = @

Figure 21: Event-B model corresponding to UML-B

Axiomatic definitions that appear in the tooltips of OntoGraf can be translated into Event-B
models manually or by using the approach mentioned in [9].

3.5 Refinement

Both refinement and abstraction are used to structure the formal models and manage com-
plexity [16,17]. Refinement means that models represent several abstraction levels of a system.
Formal verification is used to ensure consistency between abstraction levels. UML-B already
supports refinement. Therefore, we must find a way to introduce the notion of refinement while
converting OntoGraf into UML-B diagrams. In fact, OntoGraf has numerous good features that
could support refinement. It can provide several views of an OWL ontology and enables the OWL
ontology to be captured fully or partially. It is easy to move nodes in OntoGraf and layer them.
Therefore, we find it possible to layer the OntoGraf diagrams and then convert them into UML-B
diagrams. After that, we translate OntoGraf to UML-B and then to Event-B models.

CMC, 2022, vol.70, no.2 3743

4 Application of the Proposed Approach to Case Studies
4.1 Case Study 1: Lehigh University Benchmark (LUBM) Ontology

In this section, we describe the application of the proposed approach to a case study that
describes university concepts. The LUBM ontology [18] contains various relations between various
concepts used in a university environment (people, organizations, and other classes). To apply
the proposed approach, we capture the ontology using OntoGraf and organize the refinement
levels, as shown in Fig. 22. We decide to organize the refinement steps of the OWL ontology into
three levels: m0-m2. OntoGraf provides the modeler with a good view of how to organize the
refinement levels.

Abstract model m0 15t refinement m1 2nd refinement m2

T
:
i

S (S]
['. ResearchGroup]
\
- * @ Assistant
* @ Organization *® Student

tafl

*® AdministrativeS |

[*® Graduatestusent |

@ UndergraduateSt
udent

Figure 22: The overall representation of the LUBM OWL ontology in OntoGraf

The second step is to represent the UML-B class diagrams that correspond to abstract models
m0-m2, as shown in Figs. 23-25, respectively, using the steps mentioned in Section 3.

The Event-B models that are generated automatically from the UML-B class diagrams in
Figs. 23-25 are shown in Figs. 26-28, respectively. For m0, seven variables and seven invariants
are generated from the class diagram shown in Fig. 23. The variables member and alumnus are
represented as relations, whereas affiilatedOf, head, and affilatedOrganization are represented as
partial functions.

In the first refinement (ml) nine variables and nine invariants are generated, as shown in
Fig. 27. Three relations correspond to Fig. 24 : mastersDegreeFrom, undergraduate DegreeFrom,
and doctoralDegreeFrom.

In the second refinement (m2) five variables and invariants are generated. Five sets are
generated from the class diagram of Fig. 25. A total of 24 POs are generated from the m0O-m2

3744 CMC, 2022, vol.70, no.2

Event-B models and automatically discharged. The proof statistics of the LUBM models are
presented in Tab. 1.

°
P © Organization
Attributes 0..n © alumnus 0..n
© member: Organiz... ' e Ty
o affiliatedOf: Orga... 0..n © member 0..n o affilatedOrganiz...
© alumnus: Organiz... |
© head: Organization 0..n o affiliatedOf 0.1 0.n
0.n © head 0.1
0..1
© affilatedOrganization
Figure 23: The UML-B class diagrams of m0
< Organization
© School © ResearchGroup © EducationOrganizati...| |© Program
< Person
© University 0..n 0..n

© undrgraduateDegreefram

0..n © mastersDegreefrom 0.n g
9 © undrgraduateDegreefro...
© mastersDegreeFrom: Uni...
0.n © doctoralDegreeFrom 0.n

© doctoralDegreeFrom: Uni...

© Worker © Student

Figure 24: The UML-B class diagrams of ml

CMC, 2022, vol.70, no.2

4 Worker . <4 Student

L -

(

© Facu.. [© Assistant| (o Admi... © Undergra... | |© GraduateStud...

Figure 25: The UML-B class diagrams of m2

3745

machine m@ sees m@_implicitContext

variables Person Organization member affiliatedOf alumnus head affilatedOrganization

invariants
#Person.type Person € P (Person_SET)
@0rganization.type Organization € P (Organization_SET)
@member. type member « Person - Organization
#affiliotedDf.type affiliaotedOf ¢ Person == Organization
#alumnus . type alumnus « Person + Organization
#head. type head &« Person -—= Organization

BaffilatedOrganization.type affilatedOrganization e Organization -+ Organization

events
event INITIALISATION
then

#Person.init Person = @
®0rganization.init Organization = @
sy ber.init b -
@affiliatedOf.init affiliatedOf = o
®alumnus.init alumnus = @
®head.init head = @
S@affilatedOrganization.init affilatedOrganization = o

end

! end)|

Figure 26: The event-B models generated from the class diagrams of m0

machine ml1 refines m@ sees ml_implicitContext

variables Orgaonization School ResearchGroup Educationlrganization Student Worker
University Person mastersDegreefrom wndergraduateDegreefrom doctoralDegreefrom

invariants
#5chool . type School « P (Orgonization)
#RescarchGroup. type ResearchGroup « P (Organization)
#Educationlrganization. type EducotionDrganization « P (Orgaonization)
#Student . type Student « P (Person)
®Worker . type Worker « P (Person)
BUniversity.type University « P (Organization)
@#mastersDegreefrom. type mastersDegreeFrom « Person « University
#Pundergroduatelegreefrom. type undergraduateDegreefFrom « Person -« University
#@doctoralDegreefFrom. type doctoralDegreefFrom « Person - University
events
event INITIALISATION
then
®0rgonization.init Orgonizotion = @
#School.init School = @
#ResearchGroup.init ReseorchGroup = @
#Educationlrganization.init EducationOrganization = &
@Student.init Student = @
#Worker.init Worker = @
BUniversity.init University = @
#Person.init Person = &
@mcstersDegreefrom.init mostersDegreefFrom = &
®undergraoduatelegreefrom.init undergraduatelDegreefrom = 2
#doctoralbDegreefFrom.init doctoralDegreefrom = &

Figure 27: The event-B models generated from the class diagrams

of ml

3746 CMC, 2022, vol.70, no.2

machine m2 refines ml sees m2_implicitContext

variables Worker Student GraduateStudent UndergroducteStudent Faculty Assistont AdministrativeStaff

invariants

¢ GraduateStudent ¢ P (Student)
tudent.type UndergraduateStudent ¢ P (Student)
aculty € P (Worker)
pe Assistont ¢ P (Worker)

Staff.type AdministrativeStaff ¢ P (Worker)

events
event INITIALISATION
then
Morker.init Worker = @
Student.init Student = @
i t GraduateStudent = 2
t UndergraduateStudent = @

t Faculty = @
nit Assistant = @
Staff t AdeinistrotiveStaoff = 2
end
_end

Figure 28: The event-B models generated from the class diagrams of m2

Table 1: Proof statistics of the LUBM Event-B models

University models

Machines Total POs Automatic Interactive
MO 5 5 0
M1 12 12 0
M2 7 7 0
Overall 24 24 0

4.2 Case Study 2: Smart Home Weather Ontology

The Smart Home Weather ontology [19] handles data regarding weather phenomena that
occur at a certain location on Earth between the present time and 24 h in the future. It enables a
smart home system that uses SmartHomeWeather to make decisions based on current and future
weather conditions for efficient energy use in buildings. The Smart Home Weather ontology covers
a wide range of weather and climate data, such as atmospheric pressure, humidity, temperature,
precipitation, and wind. The Smart Home Weather ontology covers a set of concepts, such as
weather phenomena (i.e., temperature, humidity, speed, and so on) and weather conditions (fog,
rain, snow, thunder, and so on). Weather is a state that summarizes all weather phenomena over
a certain time frame. We decide to organize the refinement steps of the OWL ontology into four
levels: m0-m3, as shown in Fig. 29. OntoGraf provides the modeler with a good view of how to
organize the refinement levels.

We transfer the diagram to UML-B diagrams using the steps mentioned in Section 3, and
Event-B models with a total of 119 POs are generated from the m0O-m3 Event-B models and
automatically discharged. The proof statistics of the Smart Home Weather ontology models are
given in Tab. 2.

CMC, 2022, vol.70, no.2 3747

Abstract model

Figure 29: The overall representation of the smart home weather OWL ontology in OntoGraf

Table 2: Proof statistics of the Smart Home Weather Event-B models

Smart home weather ontology models

Machines Total POs Automatic Interactive
MO 15 15 0
Ml 44 36 8
M2 27 27 0
M3 33 33 0
Overall 119 111 8

3748 CMC, 2022, vol.70, no.2

5 Retrospective

In this section, we outline the lessons learned from the application of the proposed approach
to case studies and discuss the improvements that could address the limitations of the proposed
methodology. Regarding the strengths of the proposed approach, we outline three main benefits
as follows:

1) The proposed approach allows us to capture knowledge in OWL ontologies and convert it
to Event-B models. Moreover, large sets of OWL ontologies for different domains exist in
several repositories. Thus, the Event-B modeler can use OWL ontologies to gather precise,
complete, and consistent requirements for the system to be modeled.

2) OntoGraf is found to be useful in organizing refinement levels. It allows the modeler
to focus on a specific level of the ontology and decide the levels of refinements. The
organization of refinement levels is often considered a source of difficulty, especially for
requirements written in English.

3) We find that most POs are run automatically, which reduces the burden on the modeler to
work on POs. The axioms of OWL ontologies must be translated manually; therefore, the
axioms may be written in an incorrect way, resulting in mistakes in POs. Model correctness
is established by discharging POs.

These are the three important benefits of the proposed approach. However, it has two
limitations, which are as follows:

a) Tooltips introduce details about particular classes, such as disjoint classes, superclasses,
equivalent classes, and axiomatic definitions. Sometimes, the modeler cannot introduce all
details of the tooltip in the current level to be modeled. For instance, the definitions of
equivalent classes of AirPollution for model ml must be postponed until the modeler
defines all classes that are equivalent to AirPollution, and these are HighAirPollution,
LowAirPollution, and MediumAirPollution, as illustrated in Fig. 30.

+ WeatherPhenomen
on

—
‘-‘-"‘--,_‘__
Equivalont classos:

MedmAirPaluion or VeryHi &lpdun:olrvuﬂ.unmu:;nu | L AII‘PO”UtIOﬂ

Figure 30: Equivalent classes of AirPollution

b) OntoGraf does not demonstrate object properties and data properties; therefore, we use the
object properties and data properties tabs in Protégé to model these properties. We must
ensure that the domain and range of the properties exist on that level to investigate the
suitable refinement level for these properties. Otherwise, we must postpone the definition
of these properties until we introduce the class of the domain and the range. For instance,
in Fig. 24, the property UndergraduateDegreeFrom is defined in model ml, where we
introduce the range University.

The proposed approach does not show how to create events. However, we can use the
approach mentioned in [§] to address this issue. Reference [§] classifies requirements into several
classes. One such class that defines events is the class of event-oriented requirements, which are

CMC, 2022, vol.70, no.2 3749

defined as requirements that describe a function or activity of the system or its components,
and they are normally identified by verbs. This definition leads us to think of modeling events
based on the object properties and data properties of OWL ontologies. For instance, we can
introduce the event getMastersDegreeFrom from the object property mastersDegreeFrom in Fig. 24
and define it in Fig. 31.

event getMastersDegreeFrom
any p u
where u € University
p & mastersDegreeFrom™"[{u}]
then
mastersDegreeFrom := mastersDegreeFrom U {p — u}
end

Figure 31: Event-B model corresponding to UML-B

Similarly, since we have constants, sets, variables, and invariants, we can identify several events,
such as getUndergraduateDegreeFrom and getDoctoralDegreeFrom.

6 Conclusion

In this paper, we proposed an approach that uses OWL ontologies to construct Event-B
formal models. The approach transforms OntoGraf diagrammatic notations into UML-B dia-
grammatic notations and supports data analysis. The proposed approach has many advantages.
It (1) is a new approach for capturing requirements and transforming OWL ontologies into
Event-B formal models, (2) bridges the gap between ontologies and Event-B formal models, and
(3) reduces the effort required for verification because the transformation is performed from the
formal representations (ontologies) to Event-B formal models. Furthermore, (4) the transformation
is performed using graphical structures, including OntoGraf and UML-B, and (5) the refine-
ments are supported by the proposed approach by layering OntoGraf diagrams first and then
transforming them into UML-B diagrams. In the future, we will develop a tool to automatically
transform OntoGraf into UML-B. Another direction of future work will be to evaluate the
approach mentioned in Section 3 for developing events from OWL ontologies.

Acknowledgement: The author would like to acknowledge Taif University Researchers Supporting
Project Number (TURSP-2020/292), Taif University, Saudi Arabia.

Funding Statement: This work was supported by Taif University Researchers Supporting Project
Number (TURSP-2020/292), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References

[1] H. Knublauch, R. W. Fergerson, N. F. Noy and M. A. Musen, “The protege OWL plugin: An open
development environment for semantic web applications,” in Int. Semantic Web Conf., Berlin, Heidelberg,
pp. 229-243, 2004.

[2] T. Avdeenko and N. Pustovalova, “The ontology-based approach to support the completeness and
consistency of the requirements specification,” in Int. Siberian Conf. on Control and Communications,
Omsk, IEEE, pp. 1-4, 2015.

3750 CMC, 2022, vol.70, no.2

[3] H. E. Elsherbeiny and A. A. El-Aziz, “Survey on attempts to enhance requirements engineering
process,” CIIT International Journal of Software Engineering and Technology, vol. 8, no. 6, pp. 135-
139, 2016.

[4] D. Dermeval, J. Vilela, 1. 1. Bittencourt, J. Castro, S. Isotani et al, “Systematic review on the use of
ontologies in requirements engineering,” in 2014 Brazilian Symp. on Software Engineering, Maceio, Brazil,
IEEE, pp. 1-10, 2014.

[S] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider et al, “Daml
+ oil (March 2001) reference description, December 2001,” Internetquelle, 2007. [Online]. Available:
http://www.w3.org/TR/daml+oilreference, heruntergeladenams.

[6] J. S. Dong, J. Sun and H. Z. Wang, “Z approach to semantic web,” in Int. Conf. on Formal Engineering
Methods, Berlin, Heidelberg, pp. 156-167, 2002.

[71 S. J. T. Fotso, A. Mammar, R. Laleau and M. Frappier, “Event-B expression and verification of
translation rules between SysML/KAOS domain models and B system specifications,” in Int. Conf. on
Abstract State Machines, Alloy, B, TLA, VDM, and Z, Cham, pp. 55-70, 2018.

[8] E. H. Alkhammash, M. Butler, A. S. Fathabadi and C. Cirstea, “Building traceable event-B models
from requirements,” Science of Computer Programming, vol. 111, no. 6, pp. 318-338, 2015.

[9] E. H. Alkhammash, “Derivation of event-B models from owl ontologies,” MATEC Web of Conferences,
vol. 76, no. 6, pp. 4008, 2016.

[10] E. H. Alkhammash, “Formal modelling of OWL ontologies-based requirements for the development
of safe and secure smart city systems,” Soft Computing, vol. 24, no. 15, pp. 1-14, 2020.

[11] I. Ait-Sadoune and L. Mohand-Oussaid, “Building formal semantic domain model: An Event-B based
approach,” in Int. Conf. on Model and Data Engineering, Cham: Springer, pp. 140-155, 2019.

[12] L. Mohand-Oussaid and I. Ait-Sadoune, “Formal modelling of domain constraints in event-B,” in Int.
Conf. on Model and Data Engineering, Cham: Springer, pp. 153-166, 2017.

[13] N. Garanina, I. Anureev, E. Sidorova, V. Zyubin and S. Gorlatch, “An ontology-based approach to
support formal verification of concurrent systems,” in Int. Symp. on Formal Methods, Cham: Springer,
pp. 114-130, 2019.

[14] R. Hoehndorf, L. Slater, P. N. Schofield and G. V. Gkoutos, “Aber-OWL: A framework for ontology-
based data access in biology,” BMC Bioinformatics, vol. 16, no. 1, pp. 26, 2015.

[15] C. Patel, K. Supekar, Y. Lee and E. K. Park, “OntoKhoj: A semantic web portal for ontology
searching, ranking and classification,” in Proc. of the 5Sth ACM Int. Workshop on Web Information and
Data Management, New Orleans, Louisiana, USA, pp. 58-61, 2003.

[16] M. Y. Said, M. Butler and C. Snook, “A method of refinement in UML-B,” Software & Systems
Modeling, vol. 14, no. 4, pp. 1557-1580, 2015.

[17] J. R. Abrial and S. Hallstead, “Refinement, decomposition, and instantiation of discrete models:
Application to event-B,” Fundamenta Informaticae, vol. 77, no. 1-2, pp. 1-28, 2007.

[18] Y. Guo, Z. Pan and J. Heflin, “LUBM: A benchmark for OWL knowledge base systems,” Journal of
Web Semantics, vol. 3, no. 2-3, pp. 158-182, 2005.

[19] P. Staroch, “A weather ontology for predictive control in smart homes,” Ph.D. dissertation, Vienna
University of Technology, 2013.

http://www.w3.org/TR/daml+oilreference,heruntergeladenam5

