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Abstract: Search-based statistical structural testing (SBSST) is a promising
technique that uses automated search to construct input distributions for
statistical structural testing. It has been proved that a simple search algorithm,
for example, the hill-climber is able to optimize an input distribution.However,
due to the noisy fitness estimation of the minimum triggering probability
among all cover elements (Tri-Low-Bound), the existing approach does not
show a satisfactory efficiency. Constructing input distributions to satisfy the
Tri-Low-Bound criterion requires an extensive computation time. Tri-Low-
Bound is considered a strong criterion, and it is demonstrated to sustain a
high fault-detecting ability. This article tries to answer the following question:
if we use a relaxed constraint that significantly reduces the time consumption
on search, can the optimized input distribution still be effective in fault-
detecting ability? In this article, we propose a type of criterion called fairness-
enhanced-sum-of-triggering-probability (p-L1-Max).The criterion utilizes the
sum of triggering probabilities as the fitness value and leverages a parameter
p to adjust the uniformness of test data generation. We conducted extensive
experiments to compare the computation time and the fault-detecting ability
between the two criteria. The result shows that the 1.0-L1-Max criterion
has the highest efficiency, and it is more practical to use than the Tri-Low-
Bound criterion. To measure a criterion’s fault-detecting ability, we introduce
a definition of expected faults found in the effective test set size region. To
measure the effective test set size region, we present a theoretical analysis of the
expected faults found with respect to various test set sizes and use the uniform
distribution as a baseline to derive the effective test set size region’s definition.

Keywords: Statistical structural testing; evolutionary algorithms; optimization;
coverage criteria

1 Introduction

Statistical structural testing has been studied for decades. In SST, test inputs are sampled from
probability distributions (a.k.a, input distributions) over the input domain space. The distributions
guarantee that a sampled test input has a probability greater than a threshold to trigger each
branch cover element (BCE) under test. This criterion increases the chance of triggering BCEs
associated with a small input sub-domain space, resulting in a higher fault-detecting ability than
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random testing [1]. Constructing such distributions is not a trivial work. A tester needs to
know the input sub-domain space associated with each cover element and then assign the right
probabilities to each space to create an optimal input distribution. Fortunately, this process can
be automated by the search-based software testing framework.

Search-based SST(SBSST) is similar to the traditional search-based coverage-driven
approaches where a test input set is refined during the system under test (SUT’s) runtime. How-
ever, SBSST optimizes an input distribution’s parameter values and uses sampled test input sets
to evaluate fitness. A general evaluation criterion is the Triggering Probability Lower Bound (Tri-
Low-Bound), where the minimum triggering probability among all BCEs under test is used as the
fitness value. Poulding et al. [2] demonstrate the effectiveness of using the hill-climbing algorithm
to search input distributions with the Tri-Low-Bound criterion. However, the time consumption on
search is a significant concern. The critical issue is that the estimated triggering probabilities cause
over/underestimation, which significantly misleads the search direction. Moreover, if a BCE under
test is associated with a diminutive input sub-domain space, triggering the BCE is considered a
rare event. The probability estimation of a rare event is usually inaccurate. We conducted a small
experiment to show the problem: Our synthetic SUT has two inputs, with each consist of 30
elements. A cover element C can be triggered by 4 non-consecutive test inputs, and the sample set
used to estimate fitness has 90 test inputs. We use the hill-climbing algorithm with a Tabu list to
search for an input distribution that maximizes C’s triggering probability. The fitness is estimated
with the Wilson Score approach with continuity correction [3]. Over 5000 iterations, fitness swings
around 0.01, and the confidence band ranges from near 0 to an average around 0.15, which could
not provide helpful information to guide the search direction moving forward.

Tri-Low-Bound is considered a strong criterion since every BCE’s triggering probability is
constrained. In this article, we answer the following question: If we use a relaxed constraint
that significantly reduces the time consumption on search, can the optimized input distribution still
be effective in fault-detecting ability? We propose a new criterion called fairness-enhanced-sum-of-
triggering-probability (p-L1-Max). Instead of Tri-Low-Bound, the sum of triggering probabilities
could reduce the noisy fitness influence by estimating the group of events. However, it causes
the search direction biasing to one input sub-domain space, whereas the rests take zero chances
to be sampled. Hence, we also take fairness a parameter p into consideration, which tunes the
distribution to be uniform.

A question raised is how to compare two criteria. In SST, test inputs are sampled from
distributions, and the test set size is proportional to fault-detecting ability. This article provides
a theoretical analysis of the fault-detecting ability in terms of various test set sizes. We use
the uniform distribution as a baseline to derive the effective test set size region R where SST
outperforms random testing and determine the expected faults found in R as the effectiveness
measure of criteria. To compare two criteria, we use the effectiveness-to-cost ratio, where cost is
the wall-time on search.

The main contributions are concluded as the followings. First, we present a method called
effectiveness-to-cost ratio to evaluate the fault-detecting ability of criteria for SST problems. Sec-
ond, we proposed a new criterion(p-L1-Max) and conducted a series of experiments to compare
the proposed and traditional criteria. Our results show that the proposed criterion has a better
effectiveness-to-cost ratio, and it is more realistic in practical uses.

This paper is organized as follows. Section 2 provides the related work. Section 3 provides the
formal definition of input distribution’s effectiveness. Section 4 provides the formal representation
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of SBSST. Section 5 describes the Criteria under evaluation. Section 6 provides the experimental
study. Section 7 gives the conclusion.

2 Related Work

The traditional coverage-oriented test data generation has been widely studied for decades.
In those studies, people believe that a test set that achieves a higher coverage provides a more
thorough test indicating a stronger fault-detecting ability [4]. However, Tasiran pointed out that
the through tests may not provide a high fault-detecting ability [5]. Also, even a coverage criterion
subsumes another, the test data set that satisfies the first criterion does not necessarily prove the
stronger fault-detecting ability. The lack of randomness using the traditional method is one of
the reasons causing low fault-detecting rate. Since the coverage criteria require a fixed number of
tests for each cover element, there is no chance that a particular cover element can be triggered
multiple times than another. However, the chances are beneficial for detecting faults. In the early
work, Duran et al. [6] performed the cost-effective analysis for random testing. They showed that
the random testing demonstrates a higher fault detecting ability over branch testing for some
fault programs that have critical errors that can be discovered with a low failure rate. To combine
the randomness and the traditional coverage adequacy into test data generation, Thevenod-Fosse
created a new method, called Statistical Structural Testing (SST). In SST, test inputs are sampled
from a probability distribution over the input domain space. The distribution guarantees that the
sampled test inputs have probabilities at least greater than a pre-defined value to trigger each
cover element (a.k.a, the triggering probability lower bound). They compared the fault-detecting
power from the three approaches: deterministic, random, and SST by using mutation testing
technique [7]. The experiment results demonstrate that the test set generated by SST is superior
efficacy in detecting software fault. Constructing an optimal input distribution that satisfies the
probabilistic coverage is not a trivial work. A tester needs to know the knowledge of the sub-input
domain space associated with each cover element. Then he needs to assign proper probabilities to
each sub-input domain space to create an optimal input distribution. However, as the computing
power increases dramatically in recent years, the Search-Based Software Testing (SBST) framework
has gained much attention. SBST refers to a software testing methodology that automates the
test data generation process using intelligent search algorithms. It is often a dynamic testing
process, meaning that the test set is refined during the SUT’s run-time. A typical contribution
made by Tracey et al. [8] used G.A to build the test set against the branch coverage criteria. Up
to now, there are plenty of Meta-heuristic algorithms dedicated to generating test input set [9–13].
The SBST framework for SST problems is firstly studied by Poulding and Clark. They modeled
the input distribution as a Bayesian Network, with nodes represented as inputs, the values in
each node defined as a collection of sub-input domain spaces. Their objective is to optimize the
Bayesian network’s parameters such that the sampled inputs achieve a probability lower-bound
of triggering each branch. They used the hill-climbing as the search algorithm. Their experiment
results demonstrated the practicality of applying the SBST framework for producing an optimal
input distribution. However, their experiment results also show that efficiency is still a crucial issue.
Based on their research, we analyze the problem that causes the low-efficiency issue and proposed
the new criterion p-L1-Max.

3 Effectiveness Estimation of Input Distributions

An optimized input distribution is a biased uniform distribution. The point of biasing the
uniform distribution is to detect faults more effectively than random testing. Given a test set size,
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if the number of faults found by the uniform distribution outperforms or equal to the biased input
distribution, the biased input distribution should have no effectiveness, since random testing does
not require the input distribution construction process. Hence, to investigate an input distribution’s
effectiveness, we should determine the effective test set sizes.

3.1 Effective Test Set Size
To find effective test set size theoretically, we adopt Duran’s fault revealing ability model. Sup-

pose that an input domain space is re-organized into many consecutive, non-overlapped subsets. In
each subset, the test inputs are uniformly selected. Let θi be the failure rate of the i-th partition,
which refers to the probability that a randomly selected input triggers the system failure. Let pi
be the probability of selecting the i-th partition, k be the total number of partitions and n be
the test set size. The expected number of errors found under the assumption that each partition
contains one error is formulated as follows:

E
(
k,n, �θ , �p

)
= k−

k∑
i=1

(1− piθi)n

For a uniform input distribution, pi =
1
k
, ∀ i ∈ {1, . . . , k}. Then, the effectiveness of a biased

input distribution is the following:

E =Eb−Er =
k∑
i=1

(
1− 1

k
θi

)n

−
k∑

j=1

(
1−pjθj

)n (1)

We are interested in the maximum and minimum of E with respect to various n. This function
is a summation over exponential functions. An intuitive re-formation can be done as follows:

Suppose that a set U =
{(

1− 1
k
θ1

)
, . . . ,

(
1− 1

k
θk

)}
, a set B = {(1–p1θ1) , . . . , (1−pkθk)} and

C (x) is an indication function that C (x)= 1 if x ∈ U ; C(x) =−1 if x ∈B. Then, Eq. (1) can be
written as follows:

E =
∑

α∈U∪B
C (α)αnα ∈ [0, 1] (2)

Shestopaloff [14] proves the following corollary of the above function: “if there exists a
sequence of α such that 0 < αN, . . . ,α0 < 1, C0 > 0. This series can change its algebraic sign a
maximum of two times. It can have a maximum of two extrema. It monotonically converges to
zero after the second extremum, which is always a maximum.” α0 refers to the maximum fault-
detecting rate of a partition, it can be either from U or B. We analyze them separately. Let Ti

denote index sets that stores indexes for U and B. Specifically,

T1 =
{
ti | pi > 1

n

}

T2 =
{
tj | pj < 1

n

}



CMC, 2022, vol.70, no.2 2195

Suppose that α0 is an element in {Ui | i ∈T1}. Forming an order over U∪B with one algebraic
sign change is impossible. With two algebraic sign changes, the sequence should be the following:

{Ui | i ∈T1}> {Bi | i ∈T1 ∪T2}> {Ui | i ∈T2}
+ − +
where “>” indicates that any element in the left set is greater than any element in the right set.
This ordering relation reflects a type of input distributions. The top graph in Fig. 1 shows an
example of effectiveness function which satisfies the above sequence. The difference curve drawn
from Eq. (1) shows its maximum at the test set size marked by the dashed line. It monotonically
converges to 0 after the maximum.

Figure 1: Three typical effectiveness functions from theoretical perspective

Suppose that the maximum value α0 is an element in {Bi | i ∈ T2}. Then, the sequence with
two algebraic sign changes is

{Bi | i ∈T2}> {Ui | i ∈T1 ∪T2}> {Bi | i ∈T1}
+ − +

It is noted that C0 is a negative number. To applying the shestopaloff’s corollary, the indica-
tion function outputs the opposite number, and the output E should multiply −1 to coincide with
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the original output. The Fig. 1’s leftmost graph shows an example of an effectiveness function that
satisfies the above sequence. The zero-effectiveness test set size is marked by the blue dashed line.
After this point, the uniform distribution outperforms the biased input distribution. The maximum
effectiveness test set size is marked by the red dashed line. If a sequence contains more than two
algebraic sign changes, a possible outcome can be depicted by the rightmost figure of Fig. 1. For
this case, there is only one extreme, and it is a maximum.

Hence, for three situations in above, each effectiveness function shows a maximum effectiveness
test set size. Further, we can conclude that there is a range of test set sizes that the effectiveness of
biased input distribution outperforms the uniform distribution, and we call it the effective region.
Formally, Let nm denotes the test set size at the maximum effectiveness an ns, ns > nm denotes
the test set size at the zero or minimum effectiveness. The effective region, denoted by R, ranges
within [nm, ns]. Then the effectiveness for a coverage criterion, which measures the average number
of faults found per test for each test set in the effective region is defined as follows:

η = 1
ns− nm+ 1

ns∑
k=nm

1
k
∗Eb (3)

Algorithm 1: Algorithm to determine nm, ns

In the later assessments of criteria, for each system under test (SUT), we estimate ns, nm and
Eb, and calculate the effectiveness based on Eq. (3).

3.2 Estimation of Expected Errors Found Eb
To estimate the expected errors found, we use 32 test sets sampled with replacement from

the input distribution. Each test set runs against the mutation testing tool, named Milu [15], to
retrieve mutation scores. The averaged 32 sets of mutation scores are calculated to estimate the
expected errors found by an input distribution at each test set size.

Mutation testing is a software testing method dedicated to evaluating the effectiveness of a
test set. In mutation testing, a SUT is mutated into a set of mutants. Each mutant is a copy of the
SUT injected with an artificial fault. A test input is said to kill a mutant if one of the mutant’s
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execution results is different from the original SUT. A mutant that produces the same result as
the original SUT is called an equivalent mutant. Mutation score, defined as the percentage of the
killed but excepting the equivalent mutants, is an estimation of the expected errors found (i.e.,
fault-detecting ability) by a test set.

3.3 Estimation of the effective region R
With the given sets of mutation scores at each test set size, we perform the least-square

regression on the data set to create estimation functions of fault detecting ability with the test set
size n for both biased input distributions and the uniform distributions. To find the effective test
set region with strong confidence, we perform hypothesis testing on the data set. It is difficult to fit
the data into Eq. (1) which is a sum of exponential functions. Instead, we created an exponential
function model presented in the following to best fit the averaged mutation scores at each test
size:

pl = a2+ aa10 (a4n+ a3)a0−1 e−a1(a4n+a3)

where {a1, . . . , a4} are the learning parameters, pl, n are the training variables where pl denote the
percentage of living mutants left, which is equal to 1−ms and n denotes the test set size. The
reason not to directly applying mutation score is that the exponential functions are convex with
ms≥ 0, whereas the Eq. (1) is concave. The function model is a gamma distribution without the
normalization constant.

{a2, a3, a4} are the parameters used to shift or scale the input and output. Hypothesis test-
ing makes statistical inference on mutation score sets when comparing the effectiveness of the
uniform and biased input distributions at each test set size. If there is no significant evidence
showing either one performs better, even with the difference shown by the estimated curves, their
effectiveness is treated as equal. We perform a one-tailed hypothesis testing with the Wilcoxon
rank-sum test [16] on the two mutation score sets at each test set size. The confidence level is
0.05. Specifically, the hypotheses are:

• H0 : there is no significant difference between mutation scores that produced by random
testing and input distributions constructed from an evaluation metric.

• H1 : The mutation scores produced by random testing is significantly different from
mutation scores produced by input distributions constructed from an evaluation metric.

To determine the effective set size region, we present Algorithm 1. If there is no test set size
such that the corresponding p-value is less than 0.05, the biased input distribution is indifferent
from the uniform distribution on the fault detecting ability at any test set size that below the
maximum set size. Otherwise, the learned functions fb, fu are used to mathematically derive the
test set size at the maximum effectiveness tsmax and the zero-effectiveness set of test set sizes tsmin.
If the p-value at tsmax is less than 0.05, nm is determined to be tsmax. If there exists a test set
size t in tsmax such that t is greater than nm, then ns is determined to be t.

4 Search-Based Statistical Structural Testing

In this section, we provide a formal representation of SBSST. In SST, a SUT is essentially
treated as a control flow graph where each node represents a linear sequence of basic blocks,
and each edge represents the flow of the basic blocks [17]. In the context of structural testing,
an edge is also known as a branch cover element (BCE). A BCE is said to be triggered by an
input x if the path in CFG executed by x contains the corresponding edge. Hence, for the entire
input domain space D, there exists a subset of the input domain space that triggers each BCE.
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Suppose the BCE ci is under test. P(x) denotes a discrete probability distribution over the input
domain space. The probability of triggering the BCE ci is the sum of the probabilities of each
input in Dci . However, it is not possible to enumerate all inputs to derive the triggering probability.
Therefore, we estimate the triggering probabilities derived from the sampled input set. Suppose
the sampled set size is n, and the test size triggers ci is nci . The estimated triggering probability

of ci is
nci
n
.

4.1 Input Distribution Model
We choose the sum of the weighted uniform distributions as the input distribution model,

which is formally defined as follows:

P (x)=
k∑

i=1

wi ∗U (x) , x ∈ Si

where the weight vector w satisfies:

k∑
i=1

wi = 1 wi ≥ 0 ∀wi ∈w

U (x) is a multi-dimensional uniform distribution whose dimension equals the input domain
space’s dimension. The uniform distributions are applied on the consecutive, none-overlapped sub-
input domain spaces, denoted as S1, . . . , Sku.

4.2 Input Distribution Construction
We view the input distribution construction shown in Fig. 2 as a two-step process: First, we

arrange sub-input domains to each uniform distribution’s boundary. Second, we assign weights
to the uniform distributions. In each iteration, the genetic operators produce an arrangement to
form a new set of uniform distributions. Each uniform distribution generates a sampled input
set to run with SUT to estimate triggering probabilities. Then, we apply numerical optimization
methods to derive the best weights from the estimated triggering probabilities to maximize the
overall triggering probabilities. The purpose of adopting the Genetic Algorithm (G.A) is to search
for the best arrangement. The detail of G.A is described as follows.

• Encoding: The chromosome is encoded as an array of integers. Each integer δi represents the
size of an input-subdomain space. The lower boundary li of the i-th uniform distribution

equals
∑i−1

k=0 δk. The upper boundary ui of the i-th uniform distribution equals li+ δi.
• Recombination: We adopt the two-point crossover strategy. The two-point crossover randomly

selects two positions from two individuals and swaps the contents between them. The
crossover rate setups to 0.9.

• Mutation: We adopt the uniform mutation strategy. The uniform mutation operator mutates
a gene by randomly picking up an input set and assigning the index of the input set into
the gene. Each gene has a probability of 0.8 to be mutated.

• Selection: We adopt the roulette-wheel selection strategy with elitism for reproduction.
Elitism is applied to ensure the best solution in the current iteration is still available for
reproduction in the next generations.
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• Fitness Evaluation: The fitness function depends on the criterion, which is described in later
section.

• Stop criteria: The main loop continues until one of the two stop conditions is satisfied. First,
the fitness does not improve over the last 100 iterations. Second, the number of iterations
reaches a pre-set maximum value.

Figure 2: The overall workflow

5 Fitness Criteria

This section provides formal definitions of Tri-Low-Bound and p-L1-Max criteria and shows
how to use numerical optimization methods to derive the weight vectors. Before start, we refor-
mulate the triggering probabilities to matrix form. The triggering probabilities in all subdomains
can be written in a matrix form, denoted by A, where each column represents a subdomain in
the set S, and each row represents a BCE. The value aij of the i-th row and the j-th column is
the triggering probability of the BCE cI in Sj.

A=

⎡
⎢⎣
a11 · · · a1ku
...

. . .
...

am1 · · · amku

⎤
⎥⎦

Given a matrix A, the triggering probability vector �Pc is the linear combination of the column
vectors with scalar vector w:

�Pc =

⎡
⎢⎣
a11
...

am1

⎤
⎥⎦ω1+

⎡
⎢⎣
a12
...

am2

⎤
⎥⎦ω2+ · · · +

⎡
⎢⎣
a1ku
...

amku

⎤
⎥⎦ωku (4)

where ku denotes the number of components in the input distribution model. Ku is set to m,
which refers to the number of BCEs (i.e., the row counts of matrix A).
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5.1 Tri-Low-Bound
The Tri-Low-Bound criterion for statistical structural testing originates from the definition of

the statistical test set quality, which is defined as the minimum probability of triggering a cover
element by a test set. Formally,

Tri-Low-Bound =min{Pc1, . . . , Pcm}
5.2 p-L1-Max

The proposed p-L1-Max criterion evaluates an input distribution based on the estimated sum
of triggering probabilities, and the input distribution must satisfy the fairness property. According
to Eq. (4), the sum of triggering probabilities, denoted by fA (w) can be derived by adding up the
dot product of each row vector of matrix A and the weight vector:

fA (w)=
m∑
j

wj

∑
i

aij

Since the weight vector is constrained, we can view the above equation as a m-Simplex. The
maximum value L1-Max is equal to the maximum sum of column vectors of matrix A:

L1-Max=max

{∑
i

ai1, . . . ,
∑
i

aim

}

Hence, the weight associated with the maximum sum of column vectors equals 1.0. The
weights associated with the rest columns are 0.0. This situation brings up the fairness issue, where
only the subdomain associated with the maximum weight can be sampled. The rest have no chance
to be sampled.

It is the fact that the uniform distribution is the fairest distribution since each input has equal
probability to be sampled. Hence, we define the fairness property as the L2-distance from the input
distribution to the uniform distribution. We use a parameter p to manually adjust the importance
of the two objectives. In this way, the input distribution generation process can be tuned to bias
on L1-Max or the fairness. The formal definition of criterion p-L1-Max is defined as follows:

p-L1-Max=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2 =
∑
x∈D

(P (x)−U (x))2 subject to :

∑
i

Pci ≥L1−Max ∗ p

In this study, we use the following values for the tuning parameter p: p ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
The optimization objective becomes to minimize the L2-distance of the input distribution and the
uniform distribution, with constraints that the estimated sum of triggering probabilities should be
at least greater than the proportion of the maximum sum of triggering probabilities.

5.3 Weights Calculation for Tri-Low-Bound
The fitness measure for Tri-Low-Bound is the minimum value in the triggering probability

vector �Pc.
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Our objective is to optimize the weight vector such that the minimum value in the triggering
probability vector is maximized. The problem of Maximizing the inner minimum is equivalent to
the following linear programming problem where the objective is to maximize the variable v with
respect to weight vector w. Specifically, the optimization problem is defined as follows:

maxv subject to

v−
m∑
j=1

aijwi ≤ 0 ∀ i ∈ {1, . . . ,m}

k∑
j=1

wi = 1

wi ≥ 0, i ∈ {w1, . . . ,wm}
This is a standard linear programming problem. We selected to use the active set method

provided in ALGLIB [18] to solve the problem.

5.4 Weights Calculation for p-L1-Max
The fitness for criterion p-L1-Max is measured by the sum of estimated triggering probabili-

ties with p ∗L2-distance constraint. The tuning parameter p whose value can be categorized into
three types:

• p = 0: Any feasible weight vector satisfies the constraint
∑

i Pci ≥ 0. The L2-distance is 0.
The derived input distribution is a uniform distribution.

• p= 1 : The constraint
∑

i PcI equals L1−Max. Then, it is not necessary to minimize the
L2-distance. The fitness equals L1-Max.

• p> 0 & p< 1: see below.

We treat the optimization problem as a Constrained Quadratic Programming (CQP) problem
which can be solved by the active set method. To form the problem as a CQP problem, we
construct the quadratic matrix Q and the linear vector H. After expanding the L2-distance
equation, matrix Q becomes a diagonal matrix with elements qI,i = 2 ∗ |Si|−2 , ∀ i ∈ {1, . . . ,m}. The
vector H has elements hi =−2 ∗ |Si|−1 ∗ |S|−1 , ∀ i ∈ {1, . . . ,m}.

The whole process to optimize the weight vector starts from checking the value of p. If p
equals 0, the process finishes and outputs the uniform distribution. If p equals 1, the process
ignores the fairness property and uses L1-Max as the fitness. If p is between 0 and 1, the process
first forms matrix Q and vector H and then it applies the active set method to derive the optimal
weight vector �w∗.

6 Experiments

Our experiment’s objective is to compare the effectiveness-to-cost ratios of SSBST by adopting
different criteria. Hence, we naturally divided the experiments into three sections: the effectiveness,
the search run-time, and the effectiveness-to-cost ratio sections. For criterion p-L1-Max, we select
p= {0.2, 0.4, 0.6, 0.8, 1.0} for study. We implemented the G.A by C++ and C# under the Windows
10 environment. We use the mutation testing tool under Ubuntu 12. The hardware configuration
is IntelCore i7-4770K 3.50 GHz with 16 GB DDR3 memory. We continue to use the benchmark
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programs provided by Poulding that are sufficient for our research purpose. The characteristics
are shown in Tab. 1. NLOC denotes the number of lines of code. CCN denotes the Cyclomatic
complexity of a SUT. NBC denotes the number of branches of a SUT. Param denotes the number
of input variables. Triangle and Nichneu can be found in [19,20].

Table 1: SUT characteristics

6.1 Effectiveness
6.1.1 Regression Goodness of Fit

The effectiveness measure requires the estimation of nm and ns. We performed regression
analysis on the proposed exponential model for uniform and biased distribution’s test data sets
to find the values. The goodness of fit of the regression model is represented by the Root Mean
Square Error shown in Tab. 2.

Table 2: RMSE table

In general, the smaller RMSE, the fitter the estimated model. If the RMSE value is smaller
or equal to 0.3, the estimated model is acceptable [21]. In Tab. 2, the maximum value is 0.141,
and the averaged value is 0.0117, which is far less than 0.3. Hence, our model can accurately
predict the expected number of errors found with different test set sizes.

6.1.2 Estimating nm and ns
We use Algorithm 1 to determine nm and ns. Speaking in detail, Fig. 3 shows the function

curves and the p-values at each test set size for the three coverage criteria on the three SUTs.
The dashed blue line represents the calculated test set size at nm, and the dashed yellow line
represents the calculated test set size at ns. For Triangle SUT, p-values on all coverage criteria
have a pyramidal peak shape, which indicates that the mutation scores of biased and uniform
distributions are significantly different on the left side and right side of the peak. The inflection
points of the peaks, which p-values are at least greater than 0.9 are the test set sizes that ns is
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mostly located. By solving the two learned functions mathematically, it can be seen that ns is
very close to the inflection point. p-value at nm is less than 0.05. For BestMove, the p-values
for all coverage criteria are decreasing as the test set size increases. The Tri-Low-Bound criterion
shows the highest decreasing speed. It is observed that the difference between the two functions
is gradually diminishing after the test set size passes nm. Hence, it can be inferred that after
the maximum test set size, which is set to 100, there exists a pyramidal peak on the p-value.
For Nichneu, the p-values behave differently for each coverage criteria. The p-values in 0.2-L1-
Max are all above 0.05 which indicates that the biased input distribution is indifferent from the
uniform distribution in detecting faults. The p-values in 1.0-L1-Max have a pyramidal peak shape,
and ns is located near the inflection point. The p-values for Tri-Low-Bound have multiple local
optima, which indicates that ns is in a relatively large test set size interval than the unique global
optima. Above all, the estimated nm and ns matches the observations from the figures. The detailed
assessment data for all the coverage criteria are shown in Tabs. 3–5 respectively.

Figure 3: Estimated effectiveness graphs for Tri (first row), BestMove (2nd row) and Nichneu (3rd
row)

The column p-value < 0.05 is true if there is a significant difference between biased and
uniform distribution. It is observed that 0.2, 0.4, 0.6 and 0.8-L1-Max criteria does not show
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any difference for Nichneu. After analyzing the SUT, we noticed that the artificial faults can
be triggered only by a few partitions of input-domain space, and this is the limitation of using
mutation testing to estimate the triggering probabilities. However, for Tri and BestMove, such
difference is obvious. The column Improvement% shows the percentage improvement on mutation
scores from the uniform distribution at the test set size nm. We observe that the Tri-Low-Bound
is significantly superior to any p-L1-Max coverage criteria except for the Triangle. We suspect
the estimation error on nm which rounds up to integer, causes 1.0-L1-Max outperforms Tri-
Low-Bound with 15% lead. Besides this, we recognize the following criteria order on maximum
effectiveness:

Tri-Low-Bound ≥ 1.0-L1-Max ≥,. . . , 0.2-L1-Max

Table 3: Effective test set size region on Tri

Table 4: Effective test set size region on BestMove

Table 5: Effective test set size region on Nichneu

6.1.3 Effectiveness
The effectiveness measure η, defined in Eq. (3), represents the average number of errors found

per test in the effective test set size region. The effectiveness data is shown in Tab. 6. For Triangle
and Nichneu, the 1.0-L1-Max coverage criterion outperforms the Tri-Low-Bound criteria by 68.22
and 10.33 respectively. For BestMove, Tri-Low-Bound outperforms 1.0-L1-Max, since the actual
ns beyond 100. Above all, we conclude that 1.0-L1-Max outperforms Tri-Low-Bound. We noted
that as the cyclomatic complexity increases, the superiority of Tri-Low-Bound is decreasing. Also,
adding more fairness into the input distribution construction process does not benefit the fault-
detecting ability. We believe this is due to the weakness of using mutation testing to evaluate
the fault-detecting ability. A real software bug is sometimes much more difficult to discover than
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a bug automatically generated from a template. Hence, increasing test diversity is important in
real-world usages.

Table 6: Effectiveness table

6.2 Search Results
We solely present the 1.0-L1-Max criterion’s search result, since 1.0-L1-Max requires the least

computation time in the family of p-L1-Max criteria. The results are shown in Tabs. 7 and 8.
The first five columns show the fitness statistics. The column Fit. Of Unif. Dist shows the fitness
values for the uniform distribution. The column Improv. shows the increment in the percentage of
the average fitness of an optimized input distribution over the uniform distribution. We observed
that the fitness improvement is much more significant by using the Tri-Low-Bound criterion. The
last four columns present the computation time statistics. For each SUT, the average computation
time for the Tri-Low-Bound criterion is greater than the 1.0-L1-Max criterion.

Table 7: Search results for 1.0-L1-Max

Table 8: Search results for Tri-Low-Bound

6.3 Effectiveness-to-Cost Ratio
The effectiveness-to-cost ratio measures the criterion’s efficiency on fault-detecting ability, it

is expressed as a fraction of the effectiveness over the search time. In Fig. 4, for all SUTs, the
efficiency for 1.0-L1-Max is significantly greater than the Tri-Low-Bound. For p-L1-Max coverage
criteria, the efficiency decreases as p decreases. Except for Nichneu, where 0.2, 0.4, 0.6-L1-
Max exposes no efficiency (uniform outperforms biased distributions), p-L1-Max shows a higher
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efficiency value than Tri-Low-Bound. Hence, we conclude that the search algorithm by using the
1.0-L1-Max coverage criterion has the most excellent efficiency in detecting software faults than
any other criterion. The Tri-Low-Bound has the least efficiency due to the significant computation
time required to search for the optimal input distribution.

Figure 4: Effectiveness-to-cost ratio for investigated coverage criteria

7 Conclusion

The current search-based statistical structural testing has its limitations on efficiency. The
primary reason is the noisy fitness estimation of triggering probabilities. This paper aims to
improve efficiency by investigating criteria. We proposed a new criterion, called p-L1-Max, and
conducted experiments to compare the efficiency of input distributions produced against the
p-L1-Max and the traditional Tri-Low-Bound criterion. The experiments show that 1.0-L1-Max
provides the highest effectiveness and efficiency. However, the fault-detecting abilities to find real
bugs is different from the template bugs. Hence, the tuning parameter p to adjust the test diversity
is equally essential.
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