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Abstract: In this study, it is proposed that the diffusion least mean square
(LMS) algorithm can be improved by applying the fractional order signal
processing methodologies. Application of Caputo’s fractional derivatives are
considered in the optimization of cost function. It is suggested to derive a
fractional order variant of the diffusion LMS algorithm. The applicability is
tested for the estimation of channel parameters in a distributed environment
consisting of randomly distributed sensors communicating through wireless
medium. The topology of the network is selected such that a smaller number
of nodes are informed. In the network, a random sleep strategy is followed
to conserve the transmission power at the nodes. The proposed fractional
order modified diffusion LMS algorithms are applied in the two configurations
of combine-then-adapt and adapt-then-combine. The average squared error
performance of the proposed algorithms along with its traditional counter-
parts are evaluated for the estimation of the Rayleigh channel parameters.
A mathematical proof of convergence is provided showing that the addition of
the nonlinear term resulting from fractional derivatives helps adjusts the auto-
correlation matrix in such a way that the spread of its eigenvalues decreases.
This increases the convergence as well as the steady state response even for
the larger step sizes. Experimental results are shown for different number of
nodes and fractional orders. The simulation results establish that the accuracy
of the proposed scheme is far better than its classical counterparts, therefore,
helps better solves the channel gains estimation problem in a distributed
wireless environment. The algorithm has the potential to be applied in other
applications related to learning and adaptation.

Keywords: Diffusion strategies; distributed channel gains; fractional
derivatives; mean squared error

1 Introduction

Adaptive algorithms provide solutions including learning and inference to a class of problems
arising in signal processing, instrumentations, control systems, machine learning and evolutionary
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computations which are all related to applied sciences and engineering [1-3]. The workhorse or
the performance metric in these algorithms is the minimization of Mean Squared Error (MSE)
in one way or the other. The MSE is the expected value of the squared error which is dif-
ference between the desired output and the model or the estimated output. In the recent past,
fractional calculus (FC) theory has been applied in the optimization process for algorithms based
on the MSE to develop Fractional-Order (FO) adaptive frameworks. Their applications include
solution of quadratic Riccati equation [4], electromagnetic field theory [5], railway track model [6],
continues and discrete time fractional linear systems [7,8], active noise control systems [9], and
tracking of time varying fading channels characterized by high Doppler shifts in a vehicular
communication system [10]. In comparison to the standard integer order calculus where the orders
of the differentiation operation are classified in a commensurate manner of 15, ond 3rd gpd so
on, the fractional order calculus generates the same results not only for these integer orders but
are also applicable with different fractional orders. Least Mean Square (LMS) based diffusion
strategies have recently been applied to model adaptive networks. These especially useful when
there are limited number of informed agents involved to achieve an objective in a collaborative
manner [|1]. The applications include distributed sensing and estimation, online machine learning,
intrusion detection, and target localization. One of the important problems is the channel gains
estimation in a distributed wireless sensor network (WSN) [12]. In WSN, mostly a random sleep
strategy is applied to conserve transmission energy. In the case of randomly positioned sensors,
estimation of the initial channel gains become very important for adjusting the transmission power
which helps prolong the operation time. The duty cycling scheme is mostly used [13—16] where a
small number of nodes are in awakening mode. In the recent past, one of the most suitable and
applied technique is the Diffusion Least Mean Square (DLMS) algorithm [11,13] in distributed
applications since it does not require any prior information about the distribution. The DLMS
algorithm, however, has the disadvantage of slow convergence even for the maximum step size
of unity as compared to algorithms requiring prior information such expectation propagation
approach [12], although the latter is as computationally expensive. Recently, FO Signal Processing
(FOSP) techniques [17,18] have been found useful in applications such as the development of
FO variant of filtered error LMS for active noise control systems [9] and the FO constant
modulus algorithm [8] for blind equalization, and [10] tracking of multipath channels. FC relies on
new feature space in comparison with the traditional integer order derivatives such as treatment
of FO chaotic systems [19,20] and exploited for the solution of different problems arising in
applied physics and engineering such as modified least mean square [21], complex domain LMS
and NLMS algorithms for channel equalization [22], active noise control systems [23], Improved
design of digital fractional-order differentiator [24], and chemotaxis model involving fractional
operators [25]. The FC adaptive strategies have seen its importance in system identification of
Hammerstein type and outperform the standard counterparts such as vibration control [26], uncer-
tain chaotic systems [27], FO constant modulus blind algorithms [&], tracking of Rayleigh fading
sequences [10], momentum LMS for parameter estimation of Hammerstein systems [28]. We have
observed that different variants of the diffusion LMS have been proposed [12,13,29] and applied
to the problems of distributed sensing and estimation [30-33], machine learning [34-37], intrusion
detection [38-40] and target localization [41], and channel gains estimation [8,42-44]. In this study,
we propose a fractional variant of the Diffusion LMS and apply in its two configurations. This
paper contributes by proposing FO DLMS and its formulation for the estimation of channel gains
in distributed WSN. We consider modelling of the channel gains [§8,19], which are generated using
the path loss and log-normal effects [38-46]; and then the estimation of these gains through the
FO DLMS. Recently, similar techniques for non-distributed environments published in reputed
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databases includes RC circuit modelled with nonlinear differential order system [47], design of
multi-innovation fractional LMS algorithm [48], fractional evolutionary processing [49], power
signal parameter estimation [50], and design of momentum fractional LMS for Hammerstein non-
linear system identification [51]. Evaluation through numerical experimentation is performed for
different number of sleep cycles, compare the results with conventional DLMS and for different
fractional orders. The performance metric of average squared error is used for the assessment.
The contributions of the study are:

e Development of FO Diffusion Least Mean Square (FO DLMS) for application of channel
estimation in distributed wireless sensor networks.

e Development of FO variant of the LMS algorithm to have fast convergence with stable
MSE performance for larger step size.

e There will be few nodes alive/informed to conserve energy by reducing communication
overhead. The random sleep strategy will be used for this purpose.

e Modification for both combine-then-adapt (CTA) and adapt then-combine (ATC) configu-
rations suggested and experimentations.

e Mathematical convergence analysis for performance for the proof of concept and simulation
comparison of proposed strategies will be compared with existing techniques.

e Conclusion and future enhancement applications will be stated.

The paper is organized as follows. Sections 2 and 3 describe the channel estimation problem
in a two nodes communications perspective. Section 4 presents introduction to fractional deriva-
tives especially for polynomial functions. Section 5 presents a distributed wireless channel gains
estimation using the DLMS algorithm and Section 6 discuss the channel gains estimation for the
CTA and ATC mechanisms using fractional derivative based DLMS. In Section 7, Simulation
results and computational performance is presented and finally the main concluding remarks and
future work is proposed.

2 System Model and MSE Based Adaptive Algorithms

Designing adaptive algorithms requires that the filter weights are progressively adjusted
according to an optimization criterion. This criterion is mostly based on the input environment
and the resulting error. To make a reliable communication between nodes, it is necessary that
channel gains be estimated properly. In a distributed environment with limited power at the
nodes, early channel parameters estimation helps improve frame efficiency through small number
of training or pilot symbols possible and the conservation of power through the avoidance of
re-transmissions. This section is divided in two subsections including (a) two nodes channel estima-
tion as shown in Fig. 1, and (b) channel gains estimation in a distributed wireless sensor network
in which the nodes are positioned randomly. The basic principle is to send training or pilot
symbols to estimate the channel, then send a block of useful data and using the already obtained
channel estimates for compensation of the channel effects. We consider the transmission of Binary
Phase Shift Keying (BPSK) symbols drawn from a finite alphabet set x through a channel with
memory, modelled as an M™ order Finite Impulse Response (FIR) filter. This is represented by the
vector hy(n) = [hy(n), hye(n—1), ..., hy(n— M + 1)]T; where ()7 represents the vector transpose
and the subscript /k represents link between nodes / and k. The received signal is formed from

the channel output, that is, Zf‘ig ! hy () x(k —1i) and is corrupted by the additive noise. The corre-

sponding input regression vector is represented by x;.(n) =[x (), xpe(n—1), ..., xp(n — N + D]
In the training phase, the transmitted signal sequence x(n) is known to the receiver and is
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convolved with the estimated channel response of the adaptive filter to produce an output denoted

by yi(n) = Zgg 1izlk(t)x(n —I). The estimator relies on an FIR filter for the estimation of the
channel gains at a particular node and an adaptation and step size adjustment for progressively

adjusting the FIR filter weights to ensure stability and convergence. Ideally, izlk(n) =dy.(n). The
estimation error is the difference between the channel and the filter outputs, that is, e(n) =

d(n) —cAl(n), and the optimization objective is to keep the error e(n) as small as possible.

a(k)

| Rayleigh Channel !

d(k)

—@

R 3

Figure 1: Block diagram for channel estimation on a single node

Fig. 2 shows a block diagram of the system with discrete-time M™ order FIR filter represent-
ing the channel h(n) = [ho, hy, ho, ..., K M_l]T at time instant 7, the channel output samples d(n)
are acquired in the presence of noise which is modelled as additive Gaussian random variable

with zero mean and unit variance, that is, d(n) = Zf‘i 0 ! hp (D) x(n—1i)+38(n). An FIR filter is used

to estimate a desired signal d(n), with u(n) = [ug, uy, us, ..., uM_l]T as the input vector, where n
is the index or sample number. It is assumed that u(n) and d(n) are obtained from infinite length
random processes. The symbol y(n) = u” (n)h(n) = T (nyu(n) represents the output of the FIR filter
and e(n) is the estimation error given by the difference e(n) = d(n) — u” (n)h(n). The output of
the filter is adjusted iteratively so that it matches the desired signal d(n) and the error between
the desired response and output of the filter is progressively minimized. The Mean Square Error
(MSE) is one of the criterions used for the design of adaptive filters and is expressed as follows:

s =E[ || ()



CMC, 2022, vol.70, no.2 2213

where the operator E[.] represents the statistical expected value. The MSE criterion is best suited
for the performance comparison because it is mathematically tractable, physically relevant to
energy and has a single global minimum (or maximum) point resulting in optimal values of
the filter coefficients [40]. Particularly, in the case of absence of noise, it produces an unbiased
estimation. This is characteristic of non-recursive FIR filters that have a smooth performance
surface with continuous derivatives. The performance function &(n) is, therefore, a bowl-shaped
hyper paraboloid with one minimum point. This point represents the optimal filter coefficients
that are the true or desired weights for an adaptive filter to achieve optimal performance in the
given application. In (1), the expectation operation applied to the squared error results in the
generation of auto-correlation matrix and cross correlation vector. However, the auto and cross
correlation coefficients need to be known beforehand and the method is not practically applicable.
Moreover, for the Wiener Filter case, the calculation of optimal weights requires computationally
complex matrix operations of multiplication and inverse. An iterative algorithm, on the other
hand is more appropriate for practical use and suits the framework of an adaptive system with
changing environment [46]. The basic philosophy in such cases is to minimize the MSE at each
time instant n, by applying a correction term Ah(n) to the filter weights A(n) to form a new set
of coefficients at time n + 1, that is:

h(n+ 1) = h(n) + Ah(n) 2)

The design objective of the adaptive filters is determining the correction term such that the
filter weights converge to the desired response as early as possible and adjust the weights when in
the steady state of operation. The most commonly techniques using first order derivative based
gradient search method include the Least Mean Squares (LMS) and the Recursive Least Squares
(RLS) algorithms. The first is based on the instantaneous error which makes it attractive for real
time applications but has relatively slow convergence. The second recursively approximates the
autocorrelation matrix leading to a faster convergent algorithm [34,40], but it is computationally
expensive.

Alive
nodes in
1" sleep

cycle (k)

Alive
nodes in
2™ sleep
cycle (ko)

Figure 2: Random set of awaken sensor nodes during two different sleep cycles
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The LMS algorithm approximates the stochastic gradient steepest descent technique. The
LMS updates the tap weights iteratively in the direction of the negative gradient of the squared
amplitude of instantaneous error signal [41] converging to the Wiener or optimal solution. The
convergence is controlled by a step size parameter u < 1 that for large values results in faster
convergence but degrading performance in the steady-state behavior. The smaller values of step
size results in slower convergence but better steady-state behavior performance. The suitability
of the LMS algorithm for real world applications is owed to their low computational cost that
do not require complex operations (e.g., squaring, averaging, differentials, matrix inversion or
measurement of the correlation functions [42,46]) such as mean or correlation coefficients. For an
N-tap adaptive FIR filter system, the correction term for the LMS algorithm can be expressed as:

—VJ,(n) = e(n)u(n) (3)

Incorporating (3) in (2), for the correction term Ah(n) = —VJ,(n), we obtain a generalized
update equation for the channel estimates at each iteration for the LMS algorithm given by:

h(n+1) = h(n) + pem)u(n) “4)

As already stated, if u is too small, the filter takes too long to converge, and if p is too big,
the filter may diverge in the steady state. The complexity of the LMS algorithm is O(N) [46] and
constitutes a good choice for online computations in adaptive filtering.

3 Fractional Diffusion LMS Algorithm for Distributed Channel Gains Estimation
Consider the scenario of N active sensors with each one interested in estimating the unknown

channel response with AM-taps, that is, ilk(}’l) = [izk,o, izk’l, izk,z, . izk, M_l]T. At sample index
n, each sensor k independently probes / and observe its response ri(n) to the input wui(n) =
[uk,o, Uje 15 U 25 - - - U, M]T in the presence of additive noise §;(7) modelled as zero mean Gaus-
sian noise with variance a,f’ N () = E[8(n)d(n)]. The desired response for each sensor k is written
as [11,12]:

M—1
de(n) =" Iyt 10 — i) + 8 () = b (g () + 81 () (5)

i=0
where hj.(n) represents the exact or optimal weights vector of the channel. The network objective
is to choose the estimated channel vector itk(n) such that to minimize the cost function:

N
min Z Ji(n) (6)

m=1

where Jj(n) = dj.(n) —it,f(n)uk’ j(n). Using random sleep strategy [12,23] for the channel estimation,
now consider the first sleep cycle. Suppose that the node i is awake at sleep cycle instant & and
it transmits its training sequence of length M which is denoted by uy ;(n). Each node j receives
the output ry ; ; ,, from the channel having gain /;; where me {1, 2, ..., M}. The received signal
at a given node will be:

Tk,ji,m= hi,jui, m+ Sk,j, im (7)
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The network nodes i" € S(k)\{i} can use the diffusion LMS algorithm [7] to estimate A; ;.

. . . . ~k, . .
Denote the estimate of 4; ; at time instant m of sleep cycle instant k by A; ;n. Then, the diffusion

update becomes:

~k,m ~k,m—1

hi,i/ :hi,i/ + WU m€k, i i,m (®)
where p is the step size and ey ; ; , 1s the error and is equal to the difference of r4 7 ; , and the
. ~k,m—1 .
estimator outpout h; ;n u; m. At the end of each sleep cycle instant k, the nodes that are awake
diffuse their estimates to get the combined estimate Wk as:
W= akih ©)
ieS(k)
where ilf-‘ is the estimate of h at node i at the end of the sleep cycle instant k and « (k, i)

satisfy ), S o (k, i)=1. The nodes i € S (k) use the combined estimate W for estimation during
the later sleep cycle instants. The coefficients « (k, i) are free parameters that are chosen by
the designer and their careful selection influences the performance of the algorithm. To further
refine the estimation of channel gains, a fractional order modified diffusion LMS algorithm is
proposed. The FrDLMS relies on fractional derivative based term in the standard LMS. Having

. .~k . .
the estimated channel gain A and the error e 7 ; »,, the cost function that a given node has to
minimize is the mean square error defined as:

~ 2
J(n)=FE |:(rk, i i,m hii’l?_lui,in) :| (10)

The network objective is to minimize the cost function, that is, each node chooses the channel
estimates / such that, min; SN Jim)y=E [¢}(n)]. For minimizing, taking the partial derivative of

the squared error in (10) with respect to h such that at a given cycle }Azzizf’;"_l, we have,
aJ (n) d Se,m—1
g 26(”)W (Vk, voim =y U, m) (11)

ii'
which results in the second part of Eq. (3). To introduce fractional part [47-51], we introduce the

Caputo fractional derivative of order v such that n—1 <v <n of a function g(t) =¢, for p>0
as given in [14,46-51] as:

Fp+1)

—— —1 12
ro—vtl) p>n (12)

D"g(t) = {

For p <n—1, the fractional derivatives of the polynomial function g(¢) =# is zero. In (12),
the operator DV corresponds to the fractional derivative and ' denotes the gamma function and is
o0

calculated with integral function I' (1) = [, x'~le=*dx. Applying the Caputo derivative of Eq. (12)
in (11) we have the partial derivatives as:

d 7k, m—1
e e 3 W (Vk, i i,m h,-, i ui,m) (13)
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and on further simplifying, we have,

~l—v
a"J(n) _ . h (-1
T =-2|emu;, O —F(Z ) (14)

The symbol O represents element-wise multiplication between two vectors u; , and h. The
update expression utilizes both integer and fractional-order derivatives together; the algorithm
rely on two step-sizes for learning rate control, that is, u; and us and the fractional order v
which is between 0 and 1. For 0 <v < 1 and p = 1, the ' function always operate on R+.
It is worth mentioning to note that the fractional or real power of a negative number results
in a complex number. To have all the real weights, we use the following identical equation
h'=v(n) = |h|'=Y (n)sgn(h(n)) to avoid the generation of complex numbers [18]. Here, sgn is the
sign function. We modify the update Eq. (4) with the correction term Ah(n) as the sum of integer
order derivative as in (11) and the fractional part as in (14), and is given as:

~k,m  ak,m—1 }Azl_”(n— 1)

by =h ;  +pisimek i im U mek, 7 i m © Te (15)
where r is step size for the fractional part in the adaptation Eq. (15). This is the final equation
used to estimate the channel gains in the distributed environments and the weights so obtained
would be used in the fusion Eq. (9).

Fig. 3 shows the effects of varying a weight w with different fractional powers while chang-
ing the weight from 0 to 1. The nonlinear behavior can be seen where the left side curves
show the effects of different fractional orders when one considers the combined factor of
F1=w?>""/T'(3—v) considering both integer and fractional derivatives for the optimization while
the right side shows the effects of fractional order of only the fractional part, that is, F2 =
w!=v/I'(2—v). As opposed to the standard linear techniques, this approach helps adjust the
weights according to its importance as required by partial update functions [46].

1 : . . T 1.2
v=0.01
v=0.11
0.8
——py=(.31
—p=0.41
0.6
— v=051
= N——v=0861
0.4
—— =071
v=0.81 ks
02 »=0.91 0.2 ,,-';’;’y
=100 ’;':"'(
0 0 : : : :
0 0.2 0.4 0.6 0.8 1

w

Figure 3: Weight behavior for different fractional orders
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We would be considering this implementation for the two configurations of the diffusion
strategies, that is, combine-then-adapt (CTA) and Adapt-then-Combine (ATC). These algorithms
utilize an accumulation step [12,23] in the adaptation mechanism to fuse information obtained
from the local neighborhoods. At every instant i, all the agents in the CTA strategy performs the
two steps, that is, a combination step where the agent j aggregates the channel gains estimations
from its neighbors to obtain the intermediate estimations of previous step i—/ and the adaptation
step where agent k uses its data to update its intermediate estimations of the channel gains.
The intermediate state allows information to diffuse through the network. ATC is an alternative
form of the CTA diffusion strategy and is obtained by swapping the order of the combination
and adaptation steps. Tab. 1 shows a summary of the fractional order diffusion algorithm imple-
menting the ATC strategy and Tab. 2 shows the implementation of fractional order for CTA
based approach. Both algorithms rely on same input and controlling parameters or data, only the
adaptation parts of the algorithms are modified.

Table 1: Adapt-then-combine scheme

Initialization and Input Parameters

Filter Order N, Step Sizes u; & jur, Fractional order v
Input Vector u

Filter Output y

Initialize u, h, with zeros

At each node i, initialize h; to my,

In each sleep cycle and instant k, at each node i € S(k)

Repeat:

For all, i € S (k), calculate the error from the estimates as:
- 7k, m—1

€(l,l)= rk,i/,i,m_hl-,i/ Uim

Update the channel gains

~k,m ~k,m—1

v m—1
hi, ;o= hi, P + g pe (i, i/) + wrui me (i, i/) © L

K '2-—v)
diffuse the estimate to get i< as in (9).
= > iesio @ (K, D) hi'{

The computational complexity of the FrDLMS is a-bit higher than the DLMS, the for-
mer requires PKd (Z(d —HM +d%‘l) additions [12] while the later require PKd 2(d —1)M +

d%_l) + 3M additions. Similarly, the number of multiplications required for the DLMS are

PKd ((d—1D@M +24=L) while for FrDLMS ate PKd ((d— D@M +Y4=) + MX where X is

the number of fractional powers. The FrDLMS also require the calculation of fractional power
of the weight vector. The memory requirements for the FrDLMS and DLMS is same, that is,

(MN + %), however, the FrDLMS require two other adaptation parameters, namely, a step

size and fractional order.
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Table 2: Combine-then-adapt scheme

Initialization and Input Parameters
Filter Order N, Step Sizes uy & uy
Fractional order v

Input Vector u

Filter Output y

Initialize u, h, with zeros

At each node i, initialize h; to my,
In each sleep cycle and instant k, at each node i € S(k)

Repeat: _

diffuse the estimate to get h* as in (9).

Wk = ZieS(k) a (k, i) hf'(

For all, i € S (k), calculate the error from the estimates as:

.y 7k, m—1
€(l, l) = (rk,i/,i,m_hl-,i/ ui,m)

Update the channel gains.

~k,m ~k,m—1

= (-1
hi, i == hi, i + /J,lul"me (l, l/) + /qu,',me (l, l/) @ L

'2-—v)

4 Convergence Analysis

To get the convergence properties of the fractional LMS algorithm in (15), we convert to a
different frame of reference. We define an error vector v (n) at instant n as:

V(}’l)=il(l’l)—ilo (16)
where, h, represents the optimum channel gains vector. The error due to these gains is given by:
eo () =r(n) —u" (Wh, (17)

In terms of v (n), the relationship in Eq. (15) can further be written for a future gain at index
n+1 as:

vl—v (l’l)

I'2-v) (1%)

v(n+1) =v(n)+ pie(mun) + pre(mu(n) ©

For simplicity, we put us =T (2—v)u; and using the value of ¢, (n) and taking the expec-
tation on both sides to apply the principle of orthogonality, one would arrive at the following
relation:

E[y(n+1)]= [1— uR—i—uR@E[lv(n) |1—”H E[» (n)] (19)

which, in simplified form can be written as:

E[r(n+1)]= [1— MR(I—I@E[lv(n) |1—”])] E[v ()] (20)

Representing the product I © E [|v(n) |1_”] by F (il(l’l), V), the relation can be written as:

Ely 1+ D] = |1 = uRU = Flh(w, ) | E[v (0] @1)
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The mean power of the weight difference should be a decreasing function of the number of
iterations and at steady state, we have,

Lim | E[v(n) 1>=0 (22)

which is only possible for —1 — u <R —F <i: (n), v>> < 1. This results in a simplified form:

2
O<p< ~ (23)
R-F <h ), v)
In terms of maximum eigenvalue Ay, it can be written as:
2
O<pu< (24)

Somar — F (l} o), v>

This equation provides the selection of step size parameter to ensure convergence of the
FLMS algorithm. It can be seen in (23), (24) that the addition of nonlinear term resulting from
fractional derivatives helps adjusts the autocorrelation matrix in such a way that the spread of
its eigenvalues decreases and hence, the convergence improves as well as the steady state response
even for the larger step sizes.

5 Simulation Results

A logical diagram of the proposed algorithm and its application to the estimation of channel
gains in a distributed environment is depicted in Fig. 4. The simulation procedure includes the
initialization of parameters related to the wireless sensor network such as the number of sensor
nodes N, the length of the training sequence M, the number of time instants k in the sleep cycle
and the number of nodes d awake at a time. Other controlling parameters include the step sizes
w1 and w7, fractional order v, and calculating a value of gamma function based on the given
fractional order. The number of times a node is awake is kd/N, while the number of edges is kd.

First of all, the prior statistics of mean and covariance based on 20 thousand experiments
is generated for the channel gains using only the path loss effect with path loss exponent of
4 [12]. This is followed by Monte Carlo loop. In the start, the shadowing effect based on normal
distribution is added. After this, a random sleep strategy (RSS) is applied. The nearest neighbors
(first and second) are found, and links are established after first, second and third sleep cycles.
For each time event, a random sequence u drawn from independent and identically distributed
gaussian process and modulated as binary phase shift keying symbols. The symbols are input to
the channel. The output of the channel at a node is the desired reference for the error of the
diffusion algorithm. The adaption algorithm based on the proposed methodology is applied for
the estimates of the channel and is followed by the diffusion process. The estimates are obtained
after the diffusion, the process repeats, and the average error is calculated.

We would be considering this implementation for the CTA in the given two configurations of
the diffusion strategies as this is the most widely used one. Simulations results are presented for
both the standard DLMS [12] and FrDLMS algorithms, plots are shown for the estimation errors.
The performance metric for comparison is the average squared error. We estimate the channel
gains vector A while considering a WSN having 20 nodes, it employs random sleep strategy
with K =10 and d = 4. The sensor positions are generated as i.i.d. with Gaussian distribution
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having zero mean and unit variance. The true channel gains which need to be estimated are
generated with path loss and log-normal shadowing effects [33-36]. Five hundred binary phase
shift keying symbols have been used for training purpose, unit variance of noise is considered for
the experiments and the averaged mean squared error is obtained using 50 independent Monte
Carlo runs. The performance metric of average MSE against the number sleep cycles is used for
comparison purpose; three different cases with /=1, 2, 3 are considered. In the simulations, the
step size parameter is kept at 1.0 for the fastest convergence possible for the DLMS algorithm.
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= Desired Si
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Figure 4: Logical diagram of simulation results generation

Fig. 5 shows the average squared error performance vs. the number of sleep cycles for the
DLMS algorithm [12]. In the simulation, the fractional order is fixed at 0.9. It can be seen that
FrDLMS performs well than DLMS, helping the WSN nodes to estimate the channel gains in
small number of sleep cycles. The proposed FrDLMS algorithm has much superior performance
than the DLMS algorithm. It is with almost an 8-dB gain over the DLMS algorithm.

Fig. 6 shows the average squared error performance vs. the number of sleep cycles (20) for
the DLMS and FrDLMS algorithms for all the three cases, that is, ‘Case 1,” ‘Case 2’ and ‘Case 3’
with the step size kept at 1.0 and the fractional order is set to 0.3 to see the effects of fractional
order on the convergence. Again, it can be seen clearly that the FrDLMS algorithm offer better
performance than the standard DLMS algorithm for this is the network conditions in which small
numbers of sleep cycles are used for the estimation of channel gains. The proposed FrDLMS has
much superior performance than DLMS with almost a 6-dB gain over the DLMS algorithm for
all the cases. One can observe that the convergence improves with increasing the fractional order.



CMC, 2022, vol.70, no.2

Figure 5: DLMS vs. FrDLMS for three Cases with v=0.9

Figure 6: DLMS vs. FrDLMS for three Cases with v=10.3

6 Conclusions
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We proposed a novel fractional order modified diffusion least mean square algorithm and
applied for the estimation of channel gains in a wireless sensor network. We considered different
cases of the random sleep strategy; using the average squared error as the performance metric,
we found that the proposed algorithm has much superior performance than its conventional
counterpart. The results were generated for different fractional orders, and it was found that that
the gain is of the order of 6-8-dB when 0-dB additive noise is considered at each node. The
performance in terms of convergence speed increases when we increase the fractional order. We
believe that the fractional order DLMS is a useful addition in fractional order signal processing; it
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is open to further research and can be applied in a other applications such as distributed sensing
and estimation, online machine learning, intrusion detection and target localization.
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