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Abstract: In this paper, a deterministic and stochastic fractional-order model
of the tri-trophic food chain model incorporating harvesting is proposed
and analysed. The interaction between prey, middle predator and top preda-
tor population is investigated. In order to clarify the characteristics of the
proposed model, the analysis of existence, uniqueness, non-negativity and
boundedness of the solutions of the proposed model are examined. Some
sufficient conditions that ensure the local and global stability of equilibrium
points are obtained. By using stability analysis of the fractional-order system,
it is proved that if the basic reproduction number R0 < 1, the predator free
equilibrium point E1 is globally asymptotically stable. The occurrence of
local bifurcation near the equilibrium points is investigated with the help of
Sotomayor’s theorem. Some numerical examples are given to illustrate the
theoretical findings. The impact of harvesting on prey and themiddle predator
is studied. We conclude that harvesting parameters can control the dynamics
of the middle predator. A numerical approximation method is developed for
the proposed stochastic fractional-order model.

Keywords: Food chain model; global dynamics; stability; stochastic;
Hastings-Powell model; harvesting

1 Introduction

Mathematical analysis is one of the important tools for understanding and interpreting
different interactions in the environment around us. The food chain model system is attractive
to researchers in theoretical ecology because it helps to understand the relationships between
populations and describe the behavior of the ecosystem. Hastings et al. [1] investigated a three-
species food chain model with Holling type II functional responses. Hastings-Powell model, has
been revisited recently by many authors [2–16]. In the real world, food chain models are always
affected by environmental noise. Thus, the stochastic models may be a more appropriate way of
modeling the Hastings-Powell food chain model in many circumstances [17,18]. Recently, fractional
calculus has been applied to describe different mathematical models, and it has been shown to
be more accurate in some cases compared to the classical models [19–26]. The main objective
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of this paper is to study the deterministic and stochastic fractional-order Hastings-Powell model
incorporating harvesting. This model is an extension of the classical Hastings-Powell model (1)
by introducing fractional derivative, stochastic and harvesting. The qualitative behavior of the
proposed model is investigated. Also, a numerical approximation method is developed for the
proposed stochastic fractional-order model.

The paper is arranged as follows: In Section 2, the mathematical model is described. Some
preliminary results, such as existence, uniqueness, nonnegativity and boundedness are presented in
Section 3. The local and global stability of equilibrium points of the fractional-order food chain
model is analyzed in Section 4. With the help of Sotomayor’s theorem, the transcritical bifurcation
of the proposed model is investigated in Section 5. Section 6 extends the deterministic fractional-
order food chain model to the stochastic fractional-order model. In Section 7, some numerical
simulations are presented to verify the obtained theoretical results. Finally, the conclusions are
given in Section 8.

2 Mathematical Model

Recently, Nath et al. [27] studied the following system of integer order differential equations
to understand the underlying dynamics of the food chain model:

dX
dT

= rX
(
1− X

k

)
− βXY
A+X

−H1X ,

dY
dT

= e1βXY
A+X

− γYZ
B+Y

− dY −H2Y2, (1)

dZ
dT

= e2γYZ
B+Y

− δZ−H3Z,

with initial values X(0)=X0 ≥ 0, Y (0)=Y0 ≥ 0, Z(0)=Z0 ≥ 0.

In the above model X(T), Y (T) and Z(T) represent the population density of prey, middle
predator and top predator at time T , respectively. The prey grows with an intrinsic growth rate
r and carrying capacity k in the absence of predation. It is assumed that the middle predator
consumes prey following Holling type II functional response, and β is the maximum predation
rate of the middle predator in prey. The middle predator is attacked by the top predator at rate
γ using Holling type II functional response. A and B are the half saturation constants. e1 and e2
are conversion rate for middle predator and top predator, respectively. d and δ are the mortality
rate of the middle predator and top predator, respectively. Here H1 and H3 are the harvesting rate
of the prey population and top predator, respectively. The term H2Y2 represents the quadratic
harvesting of the middle predator.

Introducing dimensionless

x= X
k
, y= Y

ke1
, z= Z

ke1e2
, t= rT .

Making the above substitutions in the model (1). Then the system yields the following form

dx
dt

= x(1−x)− a1xy
1+ b1x

− hx,
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dy
dt

= a1xy
1+ b1x

− a2yz
1+ b2y

−μ1y− η y2, A= πr2 (2)

dz
dt

= a2yz
1+ b2y

−μ2z.

The dimensionless parameters in the food chain model (2) are defined as

a1 = kβe1
rA

, a2 = kγ e1e2
rB

, b1 = k
A
, b2 = ke1

B
, h= H1

r
, μ1 = d

r
, μ2 = δ+H3

r
,

η = ke1H2

r

Following [13,15,16], by replacing the integer derivative by a Caputo fractional derivative in
(2), one can obtain the following fractional-order system

cDαx= x(γ −x)− a1xy
1+ b1x

,

cDαy= a1xy
1+ b1x

− a2yz
1+ b2y

−μ1y− η y2, (3)

cDαz= a2yz
1+ b2y

−μ2z,

where, 0< α < 1 and γ = 1− h.

3 Some Preliminary Results

3.1 Existence and Uniqueness
In this section, the existence and uniqueness of the solutions of the fractional-order system

(3) are investigate in the region �× (0,T ] where

�=
{
(x, y, z) ∈R+3 : max (|x|, |y|, |z|)≤ ϕ

}
,

for sufficiently large ϕ.

Theorem 1. For each X0 = (x0, y0, z0) ∈ �, there exists a unique solution X(t) ∈ � of the
fractional-order system (3), which is defined for all t≥ 0.

Proof. Define a mapping F(X)= (F1(X), F2(X), F3(X)), in which

F1(X)= x (γ −x)− a1xy
1+ b1x

,

F2(X)= a1xy
1+ b1x

− a2yz
1+ b2y

−μ1y− ηy2, (4)

F3(X)= a2yz
1+ b2y

−μ2z.
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For any X , X ∈�, it follows from (3) that∥∥F (X)−F
(
X
)∥∥= ∣∣F1 (X)−F1

(
X
)∣∣+ ∣∣F2 (X)−F2

(
X
)∣∣+ ∣∣F3 (X)−F3

(
X
)∣∣

=
∣∣∣∣x (γ −x)− a1xy

1+ b1x
−x (γ −x)+ a1xy

1+ b1x

∣∣∣∣
+
∣∣∣∣ a1xy
1+ b1x

− a2yz
1+ b2y

−μ1y− ηy2− a1xy
1+ b1x

+ a2yz
1+ b2y

+μ1y+ ηy2
∣∣∣∣

+
∣∣∣∣ a2yz
1+ b2y

−μ2z− a2yz
1+ b2y

+μ2z

∣∣∣∣
≤ (γ + 2ϕ + 2a1ϕ) |x−x| +

(
μ1+ 2ηϕ + 2a1ϕ + 2a1

b1
+ 2a2ϕ

)
|y− y|

+
(

μ2+ 4a2
b2

)
|z− z|

≤M1
∥∥X −X

∥∥ ,
where

M1 =max
{
γ + 2ϕ (1+ a1) , μ1+ 2ηϕ + 2a1ϕ + 2a1

b1
+ 2a2ϕ, μ2+ 4a2

b2

}
.

Hence, F(X) satisfies the Lipschitz condition with respect to X . According to Cresson
et al. [28], as F(X) locally Lipschitz. Then there exists a unique local solution to the fractional-
order system (3).

3.2 Non-Negativity and Boundedness
The following results show the non-negativity of the solutions of the fractional-order system

(3). According to [28], a model of the form
dX
dt

= F(X) satisfies the positivity property if and

only if for all i = 1, 2, 3, Fi(X) ≥ 0 for all X ∈ R3+ such that Xi = 0. Thus, the solution of
the integer-order model (1), with nonnegative initial conditions remains nonnegative. Also, the
solution satisfies the Lipschitz condition, as stated in Theorem 1. By Theorem 5 and Theorem 6 in
Cresson et al. [28], the solution of the fractional-order model (3) also satisfies the non-negativity.
The boundedness of the solutions of model (3) are given in the following theorem.

Theorem 2. All the solutions of the fractional-order food chain Model (3) starting in R
3+ are

uniformly bounded.

Proof. The approach of [29,30] is utilized. Let (x(t), y(t), z(t)) to be any solution of the
system (3) with non-negative initial conditions. Let w(t)= x(t)+ y(t)+ z(t), then
cDαw (t)≤−x2+ γ x−μ1y−μ2z

≤−x2+ 2γ x− ν (x+ y+ z) ,
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where, ν < min {γ , μ1, μ2}, thus, cDαw(t) + νw ≤ γ 2. In accordance with Lemma 9 in Choi
et al. [31], it follows that

0≤w (t)≤w (0)Eα

(−νtα
)+ γ 2tαEα,α+1

(−νtα
)
,

where Eα is the Mittag-Leffler function. According to Lemma 5 and Corollary 6 in Choi
et al. [31], it follows

0≤w (t)≤ γ 2

ν
, as t→∞.

Hence all the solutions of fractional-order a tri-trophic food chain model (3) that start in R
3+

are uniformly bounded in the region

H =
{

(x, y, z) ∈ R
3
+ : w (t)≤ γ 2

ν
+ ξ , for any ξ > 0

}
.

One can also prove that x≤ γ .

4 Equilibria and Stability

The fractional-order system (3) has the following equilibrium points:

1) E0 = (0, 0, 0), that is, the extinction of prey, middle predator, and top predator. The trivial
equilibrium E0 always exists.

2) The middle predator and top predator free equilibrium point E1 = (γ , 0, 0). Therefore E1
exists if h< 1. Using the next generation method, one can obtain the basic reproduction number

R0 = a1γ
μ1 (1+ b1 γ )

.

3) Following [32], R0 determine the local and global stability of E1. Here
γ a1

(1+ γ b1)
and

1
μ1

are the birth rate and the mean lifespan of middle predator at E1, respectively. Subsequently their
product gives the basic reproduction number at E1. In the following, two critical parameters R1
and R2, can be used to classify the dynamics of the fractional-order model (3). The threshold

parameter R1 defined by R1 = a1x2
μ1(1+ b1x2)

, while the threshold parameter R2 defined by R2 =
a2y2

μ2(1+ b2y2)
.

4) The top predator extinction equilibrium point E2 = (x2, y2, 0), where y2 = μ1

η
(R1− 1) , and

x2 satisfies the equation

b1x22 + (1− γ b1)x2+ a1μ1

η
(R1− 1)− γ = 0.
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5) The top predator extinction equilibrium point E2 exists if b1γ > 1 and 1+ γ η

a1μ1
< R1 <

1+ η(1+ b1γ )2

4a1b1μ1
.

6) The coexistence positive equilibrium point E3 = (x3, y3, z3), where

y3 = μ2

a2−μ2b2
, z3 = (1+ b2y3)

a2

(
a1x3

1+ b1x3
−μ1 − η y3

)
,

7) and x3 is the positive root of the equation:

b1x3
2 + (1− γ b1)x3 + (a1y3− γ )= 0. (5)

E3(x3,y3, z3) exists if

a2 > μ2b2,
a1x3

1+ b1x3
> μ1+ ηy3, b1γ > 1, a1y3 > γ , (1− γ b1)

2 > 4b1 (a1y3− γ ) .

The locally and globally asymptotically stable of equilibrium points of fractional-order food
chain model (3) are now investigated. The Jacobian matrix is given as follows:

J (x,y, z)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ − 2x− a1y

(1+ b1x)
2

−a1x
1+ b1x

0

a1y

(1+ b1x)
2

a1x
1+ b1x

− a2z

(1+ b2y)
2 −μ1− 2η y

−a2y
1+ b2y

0
a2z

(1+ b2y)
2

a2y
1+ b2y

−μ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

The eigenvalues of J around E0 are γ , −μ1 and −μ2, therefore E0 is unstable saddle point.
The stability of middle predator extinction equilibrium point E1 is investigated as follows

Theorem 3. If R0 < 1, then E1 is locally asymptotically stable.

Proof. The Jacobian matrix of model (3) at E1 is

J(E1)=

⎛
⎜⎜⎜⎜⎜⎜⎝

−γ
−a1γ
1+ b1γ

0

0
a1γ

1+ b1γ
−μ1 0

0 0 −μ2

⎞
⎟⎟⎟⎟⎟⎟⎠
. (7)

The eigenvalues of J(E1) are −γ , −μ2 and
a1γ

1+ b1γ
−μ1. Thus, E1 is locally asymptotically

stable if
a1γ

1+ b1γ
< μ1, which is equivalent to R0 < 1.

Theorem 4. If R0 < 1, then E1 is globally asymptotically stable.
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Proof. Let us consider the following positive definite Lyapunov function

V1 = L1

2
(x− γ )2+ 1

2
y2+ y+ z.

The time derivative of V1 along the solution of fractional-order tri-trophic food chain model
(3), one obtains

cDαV1 ≤L1 (x− γ )
dx
dt

+ (1+ y)
dy
dt

+ dz
dt

≤L1 (x− γ )

(
x (γ −x)− a1xy

1+ b1x

)
+ (1+ y)

[
a1xy

1+ b1x
− a2yz

1+ b2y
−μ1y− ηy2

]

+
(

a2yz
1+ b2y

−μ2z
)

≤−L1x (x− γ )2+
(

a1x
1+ b1x

−μ1

)
y2+

(
L1a1γ x
1+ b1x

+ a1x
1+ b1x

−μ1

)
y.

According to Theorem 1, x ≤ γ , and consequently
a1x

1+ b1x
≤ a1γ

1+ b1γ
. The above inequality

can be written as

cDαV1 ≤
(

a1γ
1+ b1γ

−μ1

)
y2+

(
L1a1γ 2

1+ b1γ
+ a1γ

1+ b1γ
−μ1

)
y.

Choosing L1 = 1−R0

γR0
, one obtains cDαV1 ≤ 0.

According to generalized Lyapunov–Lasalle’s invariance principle [33], E1 is globally asymp-
totically stable.

Hence the equilibrium point E1 is globally asymptotically stable if R0 < 1.

The global stability of the equilibrium point E1 can be further demonstrated from the second
equation of the system (3) as follows

cDαy≤
(

a1x
1+ b1x

−μ1

)
y≤

(
a1γ

1+ b1γ
−μ1

)
y≤μ1 (R0− 1)y,

when R0 < 1, y(t) → ∞. The extinction of middle predator y(t) implies the extinction of top
predator z(t). Furthermore, the equilibrium point E1 is globally asymptotically stable. Follow-
ing [32], R0 < 1, implies that the conversion of prey into middle predator during lifespan of middle
predator is less than unity. As a result, the biomass flow from prey to middle predator and top
predator will stop. In this case, the middle predator and top predator will be extinct.

The stability of top predator extinction equilibrium point E2 is investigated as follows

Theorem 5. If R2 < 1 and
a1b1y2

(1+ b1x2)
2 < 1 then the top predator extinction equilibrium point

E2 is locally asymptotically stable.
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Proof. The Jacobian matrix of model (3) at E2 is

J (E2)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϒ
−a1x2
1+ b1x2

0

a1y2
(1+ b1x2)2

−ηy2
−a2y2
1+ b2y2

0 0
a2y2

1+ b2y2
−μ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where ϒ = γ − 2x2− a1y2
(1+ b1x2)2

. The eigenvalues of J(E2) are the roots of equation

(
a2y2

1+ b2y2
−μ2−λ

)(
λ2+ (η y2−ϒ)λ+ a21x2y2

(1+ b1x2)
3 − η y2ϒ

)
= 0.

The above equation has the following eigenvalue λ1 = a2y2
1+ b2y2

− μ2 = μ2(R2 − 1). The

eigenvalues λ2, 3 have negative real parts if ϒ < 0. Thus, if R2 < 1 and ϒ < 0, then the top predator
extinction equilibrium point E2 is locally asymptotically stable.

Theorem 6. If
a1b1y2

(1+ b1x2)
< 1 and a2y2 < μ2, then the top predator extinction equilibrium point

E2 is globally asymptotically stable.

Proof. The following positive definite Lyapunov function is considered.

V2 =L2

(
x−x2 −x2 ln

x
x2

)
+ y− y2− y2 ln

y
y2

+ z.

By calculating the time derivative of V2 along the solution of system (3), one obtains,

cDαV2 ≤L2 (x−x2)
[
γ −x− a1y

1+ b1x

]
+ (y− y2)

[
a1x

1+ b1x
− a2z

1+ b2y
−μ1− ηy

]
+ z

(
a2y

1+ b2y
−μ2

)

≤L2 (x−x2)
2
(

a1b1y2
(1+ b1x) (1+ b1x2)

− 1
)
+ [a1− a1L2− a1b1L2x2]

(1+ b1x) (1+ b1x1)
(x−x2) (y− y2)

+ z (a2y2−μ2) .

Choosing L2 = 1
1+ b1x2

, then cDαV2 ≤ 0 when
a1b1y2

(1+ b1x2)
< 1 and a2y2 < μ2, and hence,

according to generalized Lyapunov–Lasalle’s invariance principle [33], the top predator extinction

equilibrium point E2 is globally asymptotically stable when
a1b1y2

(1+ b1x2)
< 1 and a2y2 < μ2.

The stability of coexistence equilibrium point E3 is investigated as follows.

Theorem 7. If
a1b1y3

(1+ b1x3)2
< 1 and

a2b2z3
(1+ b2y3)2

< η, then the coexistence equilibrium point E3

is locally asymptotically stable.
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Proof. The Jacobian matrix of model (3) at E3 is

J (E3)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1
−a1x3
1+ b1x3

0

a1y3
(1+ b1x3)

2 C2
−a2y3
1+ b2y3

0
a2z3

(1+ b2y3)
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where C1 = a1b1x3y3
(1+ b1x3)

2 − x3 and C2 = a2b2y3z3
(1+ b2y3)

2 − η y3. The characteristic polynomial of J(E3)

is

λ3+φ1λ
2+φ2λ+φ3 = 0, (9)

where

φ1 =− (C1+C2) ,

φ2 =
[

a21x3y3

(1+ b1x3)
3 +

a22y3z3

(1+ b2y3)
3 +C1C2

]
,

φ3 =
−a22C1y3z3

(1+ b2y3)
3 .

If we choose C1 < 0 and C2 < 0, then φ1 > 0,φ2 > 0,φ3 > 0 and φ1φ2 > φ3. According to
Routh-Hurtwitz criteria, the system (3) is locally asymptotically stable around the coexistence

equilibrium point E3, when
a1b1y3

(1+ b1x3)2
< 1 and

a2b2z3
(1+ b2y3)2

< η.

Following [34], it is interested to note that the function

�i(α, θ)= απ

2
− |arg (λi(θ))| , i= 1, 2, 3, (10)

has a similar effect as the real part of the eigenvalue in the integer order system. If �i(α, θ) < 0
for all i = 1, 2, 3, then E3 is locally asymptotically stable. If there exist i such that �i(α, θ) > 0,
then E3 is unstable.

Theorem 8. If
a1b1y3
1+ b1x3

< 1 and
a2b2z3
1+ b1y3

< η, then the coexistence equilibrium point E3 is

globally asymptotically stable.

Proof. Let us consider the function

V3 =L3

(
x−x3 −x3 ln

x
x3

)
+
(
y− y3− y3 ln

y
y3

)
+L4

(
z− z3− z3 ln

z
z3

)
.
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By calculating the time derivative of V3 along along with the solution of system (3), one
obtains,

cDαV3 ≤L3 (x−x3)
[
γ −x− a1y

1+ b1x

]
+ (y− y3)

[
a1x

1+ b1x
− a2z

1+ b2y
−μ1− ηy

]

+L4 (z− z3)
[

a2y
1+ b2y

−μ2

]

=L3 (x−x3)
[
(x3−x)+ a1y3

1+ b1x3
− a1y

1+ b1x

]
+L4 (z− z3)

[
a2y

1+ b2y
− a2y3

1+ b2y3

]

+ (y− y3)
[

a1x
1+ b1x

− a1x3
1+ b1x3

+ a2z3
1+ b2y3

− a2z
1+ b2y

+ η (y3− y)
]

=L3

(
a1b1y3

(1+ b1x) (1+ b1x3)
− 1

)
(x−x3)

2+ (x−x3) (y− y3)
(1+ b1x) (1+ b1x3)

[a1− a1L3− a1b1L3x3]

+ (y− y3) (z− z3)
(1+ b2y) (1+ b2y3)

[a2L4− a2 − a2b2y3]+
(

a2b2z3
(1+ b2y) (1+ b2y3)

− η

)
(y− y3)

2 .

Choosing L3 = 1
1+ b1x3

and L4 = 1+b2y3, then cDαV3 ≤ 0 when
a1b1y3
1+ b1x3

< 1 and
a2b2z3
1+ b2y3

<

η. Thus, according to generalized Lyapunov–Lasalle’s invariance principle [33], the coexistence
equilibrium point E3 is globally asymptotically stable.

5 Bifurcation Analysis

In this section we will investigate the local bifurcation near the free predator equilibrium point
of the food chain model (2) with the help of Sotomayor’s theorem [35] to discuss the bifurcation
analysis of the underlying system. The food chain model (2) can be rewritten in a vector form
dX
dt

= F(X), where X = (x, y, z)T and F = (F1, F2, F3)T with Fi, i= 1, 2, 3 are given in (4).

Theorem 9. The food chain model (2) undergoes a transcritical bifurcation with respect to the
bifurcation parameter μ1 around the free predator equilibrium point E1 = (γ , 0, 0) if R0 = 1.

Proof. The Jacobian matrix of the food chain model (2) at the free predator equilibrium point

E1 with μ1 =μ∗
1 =

γ a1
1+ b1γ

has zero eigenvalue takes the form

J (E1)=

⎛
⎜⎜⎜⎜⎝
−γ − γ a1

1+ b1γ
0

0 0 0

0 0 −μ2

⎞
⎟⎟⎟⎟⎠ .

The eigenvector corresponding to J(E1)W1 = 0 is W1 =
(

ν1, −(1+ b1γ )

a1
, 0
)T

where ν1 is

any non zero real number. Similarly, the eigenvector corresponding to J(E1)
TW2 = 0 is given by
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W2 = (0, τ2, 0)T , where τ2 is any non zero real number. Consider,
∂F
∂μ1

= Fμ1(X , μ1)= (0, −y, 0)T ,
thus, WT

2 Fμ1(E1, μ∗
1)= 0. Therefore, according to Sotomayor’s theorem for local bifurcation, the

food chain model (2) has no saddle-node bifurcation near E1 at μ∗
1 =

γ a1
1+ b1γ

. Now,

DFμ1

(
E1, μ∗

1

)=
⎛
⎜⎝
0 0 0

0 −1 0

0 0 0

⎞
⎟⎠ ,

then WT
2 DFμ1(E1, μ∗

1)W1 = ν1τ2 (b1γ + 1)
a1

�= 0, and

WT
2 D

2F (X , μ1) (W1, W1)= τ2

(
2a1ν1ν2

(b1γ + 1)2
− 2a2ν3ν2 − 2ην22

)
�= 0.

Thus, according to Sotomayor’s theorem, the food chain model (2) has a transcritical bifurca-

tion at μ∗
1 =

γ a1
1+ b1γ

as the parameter μ1 passes through the value μ∗
1, thus the proof is complete.

It is interested to note that R0 = 1 is equivalent to μ1 = γ a1
1+ b1γ

.

6 Stochastic Fractional-order Model

This section extends the deterministic fractional-order food chain model (3) to the following
stochastic fractional-order model.

CDαx= x(γ −x)− a1xy
1+ b1x

+ σ1 x
dσ1

dt
,

CDαy= a1xy
1+ b1x

− a2yz
1+ b2y

−μ1y− η y2+ σ2 y
dσ2

dt
, (11)

CDαz= a2yz
1+ b2y

−μ2z+ σ3 z
dσ3

dt
,

where σi(i= 1, 2, 3) are independent standard Brownian motions with σi(0)= 0 and σi > 0 denote
the intensities of the white noise. The stochastic fractional-order food chain model (11) can be
written in the general form:

CDαX(t)= F(X)+ g(X)
dσ

dt
, (12)

where F(X) is given in (4), g(x) = (σ1x, σ2y, σ3z) and
dσ

dt
=
(
dσ1

dt
,
dσ2

dt
,
dσ3

dt

)T
. Applying

Riemann–Liouville integral to both sides of (12), one can obtain the following stochastic Volterra
integral equation.

X(t)=X0+
∫ t

0

F(X)(t− s)α−1

�(α)
ds+

∫ t

0

g(X)(t− s)α−1 dσ(s)
�(α)

ds. (13)
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According to [36–39], under some conditions on the coefficient functions, the global existence
and uniqueness of solutions for the stochastic fractional-order system (13) can be investigated.
Because Grunwald-Letnikov’s definition is the most straightforward from the point of view of
numerical implementation, so one can use it to solve the Hastings-Pwoell system of fractional-
order stochastic differential equations. Grunwald-Letnikov (GLDα) fractional derivative of order α

defined by [40–43]

GLDαf (t)=Lim
h→0

h−α

[ t−ah ]∑
j=0

(−1)j
(

α

j

)
f (t− jh) , (14)

where
[
t− a
h

]
means the integer part of

t− a
h

. This formula can be reduced to

GLDαf (tn)≈ h−α

n∑
j=0

wα
j f
(
tn−j

)
, (15)

where h is the time step, tn = nh and wα
j are the Grunwald-Letnikov coefficients satisfy the

following recurrence relationship

wα
0 = 1, wα

j =
(
1− 1+α

j

)
wα
j−1, j= 1, 2, 3, . . .

If f (t) is continuous function and f ′(t) is integrable function in the interval [0, T ], then the
relation between Caputo and Grunwald-Letnikov fractional derivative takes the form [44–46]

CDαf (t)= GLDαf (t)− f (0) t−α

�(1−α)

=GL Dαf (t)− Lim
n→∞

(−1)n

hα

(
α− 1
n

)
f (0) (16)

≈ 1
hα

n∑
j=0

wα
j
(
f (tn−j)− f (0)

)
.

Now, the fractional-order stochastic Hastings-Pwoell model (11) in Grunwald-Letnikov sense
can be written as

xn = x0+ hα

(
xn−1(γ −xn−1)− a1xn−1yn−1

1+ b1xn−1
+ σ1xn−1

√
hζ1n

)
−

n∑
j=1

wα
j (xn−j −x0)

yn = y0+ hα

(
a1xn−1yn−1

1+ b1xn−1
− a2yn−1zn−1

1+ b2yn−1
−μ1yn−1− η y2n−1+ σ2yn−1

√
hζ2n

)
−

n∑
j=1

wα
j (yn−j− y0) (17)

zn = z0+ hα

(
a2yn−1zn−1

1+ b2yn−1
−μ2zn−1+ σ3zn−1

√
hζ3n

)
−

n∑
j=1

wα
j (zn−j− z0),
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where, σi and ζi(n) represent real constants and a 3D Gaussian white noise processes, respectively,
i= 1, 2, 3. ζi satisfy the follows:〈
ζj (t)

〉= 0, (j= 0, 1, 2, 3) and
〈
ζi (t1) ζj (t2)

〉= δijδ
(
t1 − tj

)
,

δij is Kronecker delta and δ(t1 − tj) is the Dirac delta function.

7 Numerical Simulations

In this part, the numerical simulations of the mathematical model (3) will be examined, and
the focus will be on the effect of harvesting parameters. The numerical results will be compared
with the theorems formulated in the previous sections. The interactions between prey, middle
predator and the top predator will be simulated by the following parameters: a1 = 2, a2 = 0.2, b1 =
2, b2 = 1, h= 0.1, μ1 = 0.1, μ2 = 0.02.

In order to show the effects of fractional derivative α on the dynamics of system (3) one
can draw the bifurcation diagram considering fractional-order α as a bifurcation parameter. The
supercritical Hopf bifurcation value centralizes at α∗ = 0.912047 as indicated in Fig. 1. When α <

α∗, the coexistence equilibrium point E3(0.8155, 0.1111, 2.88787) is locally asymptotically stable
as shown in Fig. 1 and coincide with Fig. 2 when α = 0.9. For α > α∗, the system undergoes a
limit cycle oscillations as exhibits in Fig. 1 and coincide with Fig. 2 when α = 0.92.

Figure 1: Bifurcation diagram of the fractional-order system (3) with respect to α

For better understand the effect of the quadratic harvesting of the middle predator η around
the positive equilibrium point E3, one can draw the bifurcation diagram with respect to η as a
bifurcation parameter. It can be seen that the supercritical Hopf bifurcation value localized at
η∗ = 0.229688 as shown in Fig. 3. It can also be observed that when η < 0.229688 the fractional-
order system (3) undergoes limit cycle behaviour as shown in Fig. 3 and coincide with Fig. 4 when
η = 0.15. For η > 0.229688 the interior equilibrium point E3 = (0.815539, 0.111111, 2.64157418) is
locally asymptotically stable as indicated in Fig. 3 and coincide with Fig. 4 when η = 0.4. It can
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also be observed that the conditions of local stability that are proven in Theorem 7 are verified

because
a1b1y3

(1+ b1x3)2
= 0.0642022< 1 and

a2b2z3
(1+ b2y3)2

= 0.027935< η∗.

Figure 2: Time series and phase diagram of the equilibrium point E3 of model (3) with different
values of α

Figure 3: Bifurcation diagram of the fractional-order system (3) with respect to η

The effect of prey harvesting rate h is shown in Fig. 5. From the bifurcation diagram with
respect to h as a bifurcation parameter, it can be seen that the supercritical Hopf bifurcation
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value localized at h∗ = 0.3583 as shown in Fig. 5. For h< 0.3583 the fractional-order system (3)
undergoes limit cycle behaviour as indicated in Fig. 6 when h= 0.2. It can also be observed that
when h> 0.3583 the interior equilibrium point is locally asymptotically stable as shown in Fig. 5
and coincide with Fig. 6 when h= 0.4.

Figure 4: Time series and phase diagram of the equilibrium point E3 of model (3) with different
values of η

Figure 5: Bifurcation diagram of fractional-order system (3) with respect to h
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Figure 6: Time series and phase diagram of the equilibrium point E3 of model (3) with h= 0.02
and h= 0.4

Figure 7: Bifurcation diagram of fractional-order system (3) with respect to μ1

If we increase the value of middle predator death rate μ1 and keeping all other parameters
value fixes, it can be seen that a transcritical bifurcation occurs at μ1 = 0.642857 as shown
in Fig. 7 and stated in Theorem 9. For μ1 < 0.642857 the interior equilibrium point E3 =
(0.911269, 0.111111, 1.36443) is locally asymptotically stable as indicated in Fig. 7 and coincide
with Fig. 8 when μ1 = 0.4. For μ1 > 0.642857 the free predator equilibrium point E3 = (0.99, 0, 0)
is locally asymptotically stable as shown in Fig. 7 and coincide with Fig. 8 when μ1 = 0.7.
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Figure 8: Time series of the food chain model (3) with μ1 = 0.4 and μ1 = 0.7

8 Conclusion

In this paper, a deterministic and stochastic fractional-order model of the tri-trophic food
chain model incorporating harvesting has been proposed. It is shown that the proposed model
has bounded and non-negative solution as desired in any population dynamics. By using stability
analysis of fractional-order system, we have proved that if the basic reproduction number R0 < 1,
the predator free equilibrium point E1 is globally asymptotically stable. The interaction between
prey, the middle predator, and the top predator was investigated. The impact of harvesting on
prey and middle predator was studied. Some sufficient conditions that ensure the local and global
stability of equilibrium points have been obtained. We conclude that harvesting parameters can
control the dynamics of the middle predator. A numerical approximation method is developed for
the proposed stochastic fractional-order model.
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