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Abstract: The dispersion relation of torsional wave in a dissipative, incom-
pressible cylindrical shell of infinite length incorporating initial stresses effects
is investigated. The governing equation and closed form solutions are derived
with the aid of Biot’s principle. Phase velocity and damping of torsional wave
are obtained analytically and the influences of dissipation and initial stresses
are studied in details. We proposed a new method for obtaining the phase and
damping velocities of torsional wave in a complex form. Numerical results
analyzing the torsional wave propagation incorporating initial stress effects
are analyzed and presented in graphs. The analytical and numerical solutions
reveal that, the dissipation as well as the initial stresses have notable impacts
on the phase velocity of torsional wave in a pre-stressed dissipative cylindrical
shell. The numerical results reveal that, the initial stresses and dissipation, con-
siderably, effect the phase velocity of the torsional wave. It has been observed
that, any change in dissipation parameter (δ) produces a substantial change in
damping velocity of torsional wave. In addition, it can be seen that, the phase
velocity increases as the initial stress parameter increases. Finally, the result
of numerical simulation illustrated the influence of dissipation and initial
stresses on damping and phase velocities of torsional wave propagation. The
conclusion made shown the consistency with the Biot’s incremental deforma-
tion theory, and the effective on model such as engineering mechanics and
displacement of particles.

Keywords: Propagation; torsional wave; dissipation; cylindrical shell; initial
stress

1 Introduction

Waves propagation in the elastic media is an interesting topic for numerus scientists due to
the needs of the complete understanding of different medium characteristics. The early literature
studied the waves propagation in the elastic media, is the book of Ewing et al. [1]. After Ewing‘s
published his book, many research papers have been published. More attention are paid to study
the torsional waves propagation in elastic media, and less attention is paid on the dissipative media
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based on the torsional wave how to model and get the solutions to the governing equations. Xie
et al. [2] studied the propagation of transient torsional wave in a transversely isotropic medium.
Kudlicka [3,4] studied the dispersion of torsional wave in transversely isotropic thick-walled
cylinder of infinite length. In addition, Yokoyama et al. [5] studied the distribution of shear stress
of torsional wave propagation in a strengthening rod. Wang [6] analyzed the propagation of wave
in a coated cylinder with piezoelectric layer. Xi et al. [7] proposed a layered element method to
analysis dispersive behaviors of torsional waves in a laminated composite cylinder surrounded by
a fluid. It is well known that the actual Earth crust is an initially stressed medium due to various
reasons, such as change of temperatures and gravity variation, etc. Gupta et al. [8] reported
a new result about the torsional surface wave propagation in a heterogeneous layer over pre-
stressed heterogeneous half-space. Kepceler [9] analyzed the dispersion relation of torsional wave
in an initially stressed bi-material compounded cylinder. In recent years, the phenomena of initial
stresses impacts have been a subject of continued researcher’s interest due to its importance in
seismology and earthquake engineering fields. The main important information about the physical
effects of initial stresses on the waves propagation in the elastic media are contained in the famous
book with the title “Mechanics Incremental Deformations” by Biot [10]. References can be made
to Dey et al. [11–13], Selim [14–18] for their contributions in studying the torsional wave propa-
gation in the elastic media under various conditions. Nowadays, torsional wave propagation in the
nanostructures has received more attention in nanotechnology fields. Adeli et al. [19] employed
the strain gradient theory to achieve the free torsional vibration of nonlinear homogenous and
isotropic nano-cone. Asad Ullah et al. [20,21] studied the thermal behavior of nanofluids on an
inclined rotating surface.

Based on Kelvin-Voigt model, El-Borgi et al. [22] have reported a novel model to investigate
the vibrational behavior of the viscoelastic nanorods. Zhu et al. [23] have used the nonlocal
integral elasticity to study Longitudinal and torsional vibrations of nanorods. Nazemnezhad and
Fahimi [24] have discussed the effects of surface energy on the free torsional vibration of cracked
nanobeams at different boundary conditions based on the surface elasticity theory. Yayli [25] and
Huang [26] investigated the torsional vibrations of restrained nanotubes subjected to constraint
of surface elasticity. Taking the effect of nonlocal strain, Yayli et al. [27] investigated the effects
of torsional restraints on the vibration of cracked carbon nanotubes. Khosravi et al. [28] analyzed
the torsional vibrations of nanowire. The existence of dissipation and initial stresses are common
occurred in Earth crust. Such existence play an important role on the vibrational analysis of
torsional wave propagation [29–32].

It is obvious that the dissipation and the initial stress parameter influences the behavior of
the torsional wave propagation in a cylindrical shell. Hence, it is of great importance to study
propagation of torsional wave in a dissipative cylindrical shell incorporating initial stress effects.
Thus, the present work proposed a new method to analysis the impacts of initial stress and
medium‘s dissipation on the phase velocities of torsional wave propagation in a pre-stressed,
dissipative, incompressible cylindrical shell. The analysis are carried based on Biot’s incremental
deformation theory.

2 Formulation of the Problem and Its Solution

Let us consider a dissipative incompressible elastic cylindrical shell with radius a under com-
pressional initial stress P. The cylindrical coordinates (r, θ , z) are shown in Fig. 1. The equations
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of motion with the initial stress (SZZ =−P) and dissipation (γ ) effects are [10]:
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where ρ is the density, Srr,Sθθ , Szz, Srz, Srθ and Sθz are the stress components, u, v,w are the
displacement components and ωr, ωθ are the rotational components which are given by [10]:
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Figure 1: Geometry of initially stressed cylindrical shell

Eqs. (1)–(3) contains the dissipation (damping) term (γ ), which is proportional to the velocity.

The tress-strain relations in our case, can be written in the following form [10]:

Srr=B11err+B12eθθ +B13ezz,
Sθθ =B21err+B22eθθ +B23ezz,
Szz =B13err+B23eθθ +B33ezz,
SθZ = 2Q1eθZ,
SrZ = 2Q2erZ,
Srθ = 2Q3erθ ,

(5)

where Bmn (m,n= 1, 2, 3) and Qm are the incremental constants and shear coefficients,
respectively.
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The incremental strain components can be written as a function of the displacements u, v and
w as follows:
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The present study investigates the torsional wave propagation in a dissipative cylindrical shell.
Then, the propagation having θ symmetry, then it can be easily observed that Eqs. (1) and (3) are
automatically satisfied as u=w= 0. Using relation (4), the Eq. (2) takes the form:
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The relations (5) in this case may be written as:

sθ z = 2Q2 eθ z, srθ = 2Q1 erθ , (8)

where Q1 and Q2 are the incremental elastic coefficients and can be written by Biot [10] as
follows:

Q1 = μ

2
(λ2r +λ2θ ), Q2 = μ

2
(λ2θ +λ2z) (9)

Where μ is the elastic modulus of unstressed cylindrical shell and λr,λθ ,λz are the extension
ratios.

The incompressibility condition can be written as:

λr λθ λz = 1. (10)

From the relation obtained by Biot [10], between the initial stresses and extension ratios we
can get:
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1
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= 1
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Inserting relations (4)–(6), (8)–(12) in (7) one gets:
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Assuming harmonic wave solution eik(z−ct) and the general solution for torsional displacement
components in the cylindrical shell becomes:

v(r, z, t)=V(r) eik(z−ct) (14)

From Eq. (14) into Eq. (13) one gets:

r2
d2V
dr2

+ r
dV
dr

+ [η2 r2− 1]V = 0, (15)
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where

η2 = k2
(
c2λ
β2 −λ3

)
+ ikcλγ

μ
, (16)

and β = (
μ
ρ
)
1
2 is the phase velocity of torsional wave propagating in unstressed cylindrical shell; c

is the phase velocity in an initially stressed cylindrical shell. Eq. (15) is so-called parametric Bessel
equation, which its general solution can be defined as follows:

V(r)=AJ1(ηr)+BY1(ηr), (17)

where J1(ηr) and Y1(ηr) are Bessel’s functions.

3 Boundary Conditions

Let us consider no external forces, then the surface of cylindrical shell will be free from initial
stresses and the displacement component at the free surface r= 0 will be remained finite.

The boundary conditions in the case of torsional wave may be written as follows:

srθ =μ

(
dV
dr

− V
r

)
at the surface r= a. (18)

The second part of Bessel function (17) will be removed from the solution [28]. Then,
substitute solution (14) in the boundary condition (18), one gets:

ξ J ′1(ξ) − J1(ξ)= 0, (19)

where ξ = ηa and the prime denotes that, the derivatives with respect to the radius r.

The solution of Eq. (19) gives a multiple roots of ξ . In our problem we will use the first
three roots which are 0, 5.136 and 8.418 [11]. From Eq. (16), we can get:

c2

β2 −
c
β
I −R= 0, (20)

where c is the phase velocity of torsional wave in the pre-stressed cylindrical shell, and
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where δ = γ a, is the damping (dissipation) parameter.

Solving Eq. (20), we can get the phase velocity of torsional wave (c) as follows:

c
β
= 1
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)
, (22)

where

Ω = I2+ 4R, (23)

Eq. (22) gives the phase and damping velocities of torsional wave. The real part represents
the phase velocity and the imaginary part represents the damping velocity. Appearing of the
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parameters δ and λ in Eq. (22) told us that, the phase and damping velocities of torsional wave
influences by the dissipation as well as initial stresses present in the medium.

4 Particular Cases

4.1 Particular Case 1
If the cylindrical shell is non-dissipative medium (i.e., δ = 0), the phase velocity can be defined

from the following relation:

c
β
=
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+λ2

] 1
2

, (24)

Which agree with the result obtained by Dey and Dutta [11].

4.2 Particular Case 2
The existence of the parameter λ in Eq. (21) told us that, the phase velocity of torsional wave

is effected by the initial stress parameter present in the medium. Thus, if the cylindrical shell is
unstressed medium, (i.e., λ= 1), then the phase velocity can be defined from the following relation:

c
β
=
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+ 1

] 1
2

(25)

Which coincide with the result of Kolsky [33].

5 Numerical Results and Discussion

To examine the influences of various parameters on dispersion relation of torsional wave
propagation in a dissipative, incompressible initially stressed cylindrical shell of infinite length, we
have taken ρ = 2.15 g/cm3 to calculate the phase velocity from Eq. (22) for different values of
initial stress and dissipation parameters. The Effects of initial stress and dissipation parameters
are discussed and presented graphically in Figs. 2–4.

Figure 2: Variation of damping velocity vs. wave number (ka) at different values of dissipation
parameter δ
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The phase velocity c/β are computed numerically at different values of dissipation parameter
(δ = 0.05, 0.1 0.15, 0.2). In addition, the phase velocity c/β are computed numerically with
two different values ξ = ηa = 5.136 and 8.418 in two cases: a) λ < 1 (existence of initial stress
parameter), b) λ= 1 (absent of the initial stresses parameter). The dispersion curves have been
calculated with different wave number (ka) and the results are presented graphically in Figs. 2–4.

Figure 3: Variation of phase velocity (c/β) vs. wave number (ka) at ξ = 5.136

Figure 4: Variation of phase velocity (c/β) vs. wave number (ka) at ξ = 8.418

Fig. 2 shows the variation of damping vs. wave number (ka) at different dissipation parameter
(δ = 0.05, 0.10, 0.15, 0.20). The dispersion curves reveal clearly that, the change of dissipation
parameter (δ) produces a substantial change in damping velocity of torsional wave.

Fig. 3 shows variation of phase velocity (c/β) vs. wave number (ka) for different values of the
initial stress parameter λ at (ξ = 5.136). The dispersion curves obtained in Fig. 3 show that, the
phase velocity of torsional wave increases as the initial stress parameter increases. This means that,
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the presence of initial compressional stresses, considerably, effects the phase velocity of torsional
wave in a dissipative cylindrical shell.

Fig. 4 gives the variation of phase velocity (c/β) vs. wave number (ka) for the different values
of initial stress parameter λ at (ξ = 8.418). The obtained dispersion curves of in Fig. 4 support
the results obtained and shown in the dispersion curves of Fig. 3.

6 Conclusions

In the present work, the dispersion of torsional wave in a dissipative, incompressible cylin-
drical shell of infinite length incorporating initial stresses effects is investigated. The analysis
of this study reported a novel governing equation of torsional wave propagation in a pre-
stressed dissipative cylindrical shell based on Biot‘s incremental deformation theory. We proposed
a new method for obtaining the phase and damping velocities of torsional wave in a complex
form. Numerical results analyzing the torsional wave propagation incorporating initial stress
effects are discussed and presented in graphs. The dimensionless phase velocity c/β are com-
puted numerically at different values of dissipation parameter (δ = 0.05, 0.1 0.15, 0.2). In
addition, the values of c/β are computed numerically for two different values of the parameter
ξ = ηa = 5.136 and 8.418 in two cases: a) λ < 1 (existence of initial stress parameter), b)
λ = 1 (absent of the initial stresses parameter). The dispersion curves have been plotted for
different value of wave number (ka) and the results presented graphically. The analytical and
numerical solutions reveal that, the dissipation as well as the initial stress parameter have notable
effects on the phase velocities of torsional wave in a pre-stressed dissipative cylindrical shell.

The numerical results also, reveal clearly that, every little change in the dissipation parameter
(δ) produces a substantial change in the damping velocity of torsional wave. In addition, it
can observed that, the phase velocity of torsional wave increases as the initial stress parameter
increases. Finally, numerical results and simulation gave the figures with the change of parameters
initial stress and dissipation module of the component, so the present research on the dispersion
of torsional wave propagation in the dissipative, incompressible cylindrical shell of infinite length
can be useful in modelling and analyzing the particle displacement, engineering mechanics and
many engineering applications.
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