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Abstract: Nowadays, there is a significant need for maintenance free mod-
ern Internet of things (IoT) devices which can monitor an environment.
IoT devices such as these are mobile embedded devices which provide data
to the internet via Low Power Wide Area Network (LPWAN). LPWAN is
a promising communications technology which allows machine to machine
(M2M) communication and is suitable for smallmobile embedded devices. The
paper presents a novel data-driven self-learning (DDSL) controller algorithm
which is dedicated to controlling small mobile maintenance-free embedded
IoT devices. The DDSL algorithm is based on a modified Q-learning algo-
rithm which allows energy efficient data-driven behavior of mobile embedded
IoT devices. The aim of the DDSL algorithm is to dynamically set opera-
tion duty cycles according to the estimation of future collected data values,
leading to effective operation of power-aware systems. The presented novel
solution was tested on a historical data set and compared with a fixed duty
cycle reference algorithm. The root mean square error (RMSE) and mea-
surements parameters considered for the DDSL algorithm were compared to
a reference algorithm and two independent criteria (the performance score
parameter and normalized geometric distance) were used for overall evalua-
tion and comparison. The experiments showed that the novel DDSL method
reaches significantly lower RMSE while the number of transmitted data count
is less than or equal to the fixed duty cycle algorithm. The overall criteria
performance score is 40% higher than the reference algorithm base on static
confirmation settings.
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1 Introduction

The article deals with the design and application of the control algorithm for a prototype
of an efficient Low-Cost, Low-Power, Low Complexity—hereinafter (L-CPC) bidirectional com-
munication system for the reading and configuration of embedded devices. Low Power Wide
Area Networks (LPWANs) and the fifth-generation technology standard for broadband cellular
networks (5G) are promising technologies for the connection of compact monitoring mobile
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embedded devices to the internet using machine to machine (M2M) communications [1–4].
Monitoring mobile devices are usually deployed as remote data collection systems which can
obtain parameters of interest from various application areas (Environmental monitoring, Smart
Homes, Smart Cities, Smart Metering, etc.) [5–13]. This area relates to Internet of things (IoT)
domain, that allows data transmission from mobile embedded devices to internet clouds [14,15].
In IoT application areas which attempt to attain certain positional estimations of targets, the
received signal strength based on the least squares triangulation approach is used [16]. LPWAN
standards and 5G technology are suitable for long-term operational devices equipped with low-
capacity energy storage, or maintenance-free devices possibly equipped with energy harvesting
modules [17,18]. Mobile monitoring devices have many research challenges aimed at ultra-low
power consumption demands [19–22]. To address these constraints, there is a significant need for
smart software control algorithms using machine learning principles for automated and intelligent
device management [23–25].

Generally, reinforcement learning (RL) methods are suitable as easy-to-implement and low
computational power demanding machine learning approach for mobile IoT devices [26–29].
RL belongs to the family of semi-supervised learning approaches [30]. It has an agent which
takes actions from a possible action set and the environment returns a reward feedback [31].
In this contribution, a Q-learning (QL) method which belongs to the RL-based approaches is
implemented. The presented QL Predictive Data-Driven Self-Learning (DDSL) algorithm allows
the design of a control procedure based on the duty-cycle data prediction scenario. The major
advantage of the presented approach is that the controller and its internal policy are not directly
dedicated to a specific application area or the collected data itself; this method uses universal
principles to estimate optimal duty-cycle scenario. Therefore, the DDSL algorithm automatically
builds domain-based knowledge during on-site operation without any pre-deployment learning
procedure.

Several research articles have used various implementations of RL principles, especially QL in
monitoring IoT devices at a network level (see Tab. 1). QL algorithms can be used to iteratively
change the MAC protocol parameters by a defined policy to achieve to a low energy state [32].
The TDMA-based adaptive task scheduling [33] method or two-tier data dissemination schemes
based on Q-learning (TTDD-QL) [34] are energy efficient for wireless sensor networks (WSN).
A cooperative energy-efficient model is presented in the article [35], where clustering, mobile sink
deployment and variable sensing collaboratively improve the network lifetime. Besides routing-
based or cooperative optimization, there are other research challenges which implement the QL
procedure in mobile IoT devices or WSN. Future incoming solar energy can be predicted with
Q-learning solar energy prediction (QL-SEP) [36], which is useful for solar-powered devices.
In [37], an optimal energy management strategy of a portable embedded system based on QL
was proposed to extend system lifetime. The QL algorithm also proved to be a suitable solution
in terms of energy for wireless embedded systems such as sensor nodes and smartphones [38].
A dynamic energy-efficient system based on the QL technique to control the energy management
issue is used in real-time systems in embedded devices [39]. Based on the presented state-of-
the-art review (see Tab. 1), the authors stated that several research works describe the use of
QL to achieve power effective solutions in embedded systems, although research works exploring
data-driven power-aware approaches using QL have not been published yet.

In this article, the application of a novel DDSL control approach for mobile monitoring
IoT devices based on wake-up scheduling (Fig. 1) is presented. The core of the algorithm is
to dynamically set an operation period through a wake-up timer configuration according to the
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correct estimation of future collected data values, which potentially leads to effective operation of
power-aware systems. For evaluation purposes, there were used historical incoming solar irradiance
data from an environmental monitoring device. The presented self-learning algorithm was also
evaluated by a set of various QL expert parameter configurations. Predicted values were compared
to the collected values from sensors to provide input parameters for the learning process. The
testing procedure compares a complete set of collected data and a reduced set with linear inter-
polation. The article’s novelty lies in modification of the QL approach to allow energy efficient
data-driven behavior of embedded IoT devices.

Table 1: Summary of state-of-the-art usage of the QL algorithm in the target application area

Author,
source

Algorithm Description Advantages

Savaglio
et al. [32]

QL-MAC Self-adjusting node
duty-cycle

+ Low energy states
+ Iteratively changing parameters
+ Reduced energy consumption

Wei
et al. [33]

QS-TDMA Task scheduling
algorithm

+ The reliability and real-time
performance of WSNs

Wang
et al. [34]

TTDD-QL Two-tier data
dissemination scheme

+ Reduced energy consumption
+ Extended lifetime of the WSNs

Redhu
et al. [35]

QL Joint mobile sink
scheduling and dynamic
buffer management

+ Improved network lifetime
+ Energy efficient

Kosunalp [36] QL-SEP Prediction algorithm + Useful for solar-powered devices
Mirhoseini
et al. [37]

QL Hybrid energy supply
system

+ Improved system lifetime

Al Islam
et al. [38]

QRTT Prediction algorithm + Useful for wireless embedded
devices
+ Improved performance

Zhang
et al. [39]

DQL-EES Energy-efficient
scheduling

+ Energy efficient
+ Useful for real-time system in
embedded devices

Figure 1: General application principle of a DDSL controller: The mobile device collects and
stores parameters of interest into memory. The DDSL controller sets a data collection duty cycle
and updates the algorithm through data-driven learning
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The remainder of the article is organized as follows: the background section describes power-
aware challenges, the general Q-learning algorithm principle and future value estimation by
polynomial approximation. The experimental section describes a designed controller, reference
algorithm and the evaluation criteria. The experiment summary is elaborated in the results section,
followed by a technical discussion. The final section concludes the article and discusses several
research challenges as future work.

2 Materials and Methods

This section introduces the theoretical background for a general description of the Q-learning
algorithm and mathematical formalization of the applied polynomial approximation.

2.1 Q-Learning Algorithm
QL belongs to a family of reinforcement learning methods which explore an optimal strategy

for a given problem. This semi-supervised model free algorithm was introduced by Watkins [40]
and is formulated as a finite Markov decision process, which is a mathematical formalization of
the underlying decision-making process.

The QL defines an agent which is responsible for the selection of action At from a set of
actions. The agent is learned through its interaction with its environment (Fig. 2). The QL strategy
learns the agent to take the best action which maximizes its long-term reward. The agent regularly
updates its achieved rewards according to the selected action at a specific state.

Figure 2: Block diagram of reinforcement learning formalization: The agent plans actions and
environment provides feedback (current state and reward)

The QL approach also uses a memory-stored array which is called Q-table, and its size is
defined by the number of states S and actions A. The array’s columns represent the quantitative
values of possible actions. The QL algorithm is controlled by the following equation:

Q(St,At)←Q(St,At)+α
[
R+ γ max

a
Q(St+1,a)−Q(St,At)

]
, (1)

where α is a learning rate which controls the convergence speed of the learning process. When
α= 0, the algorithm uses only previous estimates of the reward signal; otherwise α = 1, and the
algorithm applies only new knowledge. Q(St,At) represents an estimated value of the reward in
the Q-table for the current action At and state St. The variable R represents a received reward
signal. A discount rate (γ ) determines whether the agent attempts to maximize the immediate
reward (γ = 0) or to maximize the future cumulative reward (γ = 1).

The learning strategy is also influenced by a constant ε (epsilon-greedy policy), which causes
the selection of a random action instead of the maximal reward action. From the 0 to 1 interval,
ε is selected (e.g., 0.95 means 5% of random actions) [31].
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2.2 Polynomial Approximation
The polynomial approximation interpolates values with a polynomial. The polynomial is a

function which is written in the form:

p(x)= anxn+ an−1xn−1+ · · · + a1x+ ao, (2)

where a0, a1, . . . , an are constants (coefficients of polynomial) and xn are variables. If an �= 0, n
is a degree of polynomial p. The degree of polynomial n is defined by the greatest value of the
exponent.

An approximation is an inaccurate expression of some function. In this paper, the polynomial
coefficients are calculated using the least-squares approximation method by summing squared
values of the deviations; this sum should be minimal (see Eq. (3)),

F =
n∑
i=1

e2i →min, (3)

where ei is deviation of the original value xi from the obtained polynomial p(xi) (see Eq. (4)).

ei = xi− p(xi) (4)

2.3 Dataset
The experiment uses the dataset from an environmental data collection station. The data

include values of incoming solar energy as simulated input from a sensor. The solar energy values
were collected continuously for five years at the Fairview Agricultural Drought Monitoring station
(AGDM) located in Alberta, Canada [41], coordinates at 56.0815◦ latitude, −118.4395◦ longitude,
and 655.00 m elevation. This dataset contains the total incoming solar radiance in W/m2 collected
per five-minute interval.

3 Experiment

The aim of the performed experiment is evaluation whether the DDSL controller is capable
of finding an optimal strategy for dynamic configuration of the data collection period. A conven-
tional QL algorithm was modified to be useful to the proposed experiment for its application in
wake-up embedded devices. The experiment was performed in MATLAB, and a complete solution
is simple to implement to mobile monitoring devices.

3.1 Controller Design
The proposed DDSL controller dynamically sets an operation period according to correct

estimation of the collected data to adjust the operation duty cycle. The DDSL controller follows
the RL model shown on the Fig. 2. The core of the DDSL controller algorithm is the selection
of action A, the subsequent change of environment to state S, and the reward which depends on
the selected action and caused state. The self-learning process of the DDSL controller is based
on the QL approach.

Action A, which represents a period (time slot) Tnext, sets the next wake-up period of the
monitoring device. Selection of the action, which is based on the DDSL controller policy, affects
a change in the environment (Fig. 3). The environment determines the value of Tnext and the
value of x in the time Tnext to the predict the engine block. This block estimates the predicted
future value xnext by a polynomial approximation with variable degree of the polynomial N. The
predicted engine block also calculates the estimation accuracy �, which is difference between the
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predicted value xp and the collected value of x from a sensor. In the Lookup Table (LUT) block,
the � is used to determine the appropriate state S.

Figure 3: Block diagram of the DDSL controller: The Q-learning block selects action A, which
causes the environment feedback (state S and reward R) to control the self-learning process

Based on the current state and performed action, partial rewards (the state reward (RS) and
the action reward (RA)) are estimated. The RS value is positive if the controller changes state from
low to high accuracy, negative if controller changes state from high to low accuracy, and zero if
there is no change. In general, the DDSL approach prefers high accuracy states. This scenario is
described by following equation:

RS = index_of(St)− index_of(St−1). (5)

The index_of() function returns an one-based order of elements in the state vector (higher
index represents higher estimation accuracy). The RA has an assigned value based on the per-
formed action. A slow operation period corresponds to low energy demands. This behavior is
described by the equation:

RA= index_of(A)+ 1. (6)
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In this case the index of() function provides higher value for longer duty cycle. The total
reward R is formulated as sum of RS and RA:

R=RS+RA. (7)

The QL process is affected by a total reward R and current state S with variable configuration
of expert constants (α, ε, γ ). The action A selected by the QL policy is the output of the QL
block.

The DDSL approach is equipped by discounting the learning factor to achieve stability in
the learning process. The discounting progress of the parameter α is shown in the Fig. 4. In each
step of the algorithm, α is discounted by learning discount (LD), especially LD= 0.01%, which
means that α decreases to 50% after the first 24 days (approx. one month) and 10% after the first
80 days (approx. three months).

Figure 4: Learning strategy: α discount process for various initial α0 settings

The conventional QL algorithm presented in the literature [42] is not directly applicable to the
proposed experiment. Therefore, there were designed a modification of the original algorithm. The
difference between the conventional QL and the modified version is shown in following algorithm
descriptions.

The conventional Q-learning algorithm described in [42] is composed of the following
commands:

1: Initialize Q(s,a), for each s ∈ S, a ∈A(s)

2: while true do

3: Choose A from S using policy derived from Q (e.g., epsilon-greedy policy)

4: Take action A

5: Q(S,A)←Q(S,A)+α
[
R+ γ max

a
Q(St+1,a)−Q(S,A)

]

6: S← St+1; A←At+1
7: end while

The modified Q-learning algorithm is composed of the following commands:

1: Initialize Q(s,a), for each s ∈ S, a ∈A(s)

2: while true do
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3: Wake up

4: Observe S(t)

5: Calculate reward R from S(t) and A

6: Q(St−1,A)←Q(St−1,A)+α
[
R+ γ max

a
Q(S(t),a)−Q(St−1,A)

]

7: Choose A from S using policy derived from Q (e.g., epsilon-greedy policy)

8: Start action A

9: Sleep

10: (time)

11: St+1← S(t)

12: end while

In the original QL algorithm, the performed action step is inside the QL algorithm loop, but
from the monitoring device point of view, the performed action itself is a duration of standby or
sleep mode. In the modified scenario, the algorithm performs an action at a different stage than
the original approach. The learning process part is completed based on the past state and current
state because the future action is unknown.

In the conventional QL algorithm, an action is first selected according to the QL policy
and the environment state. The action is performed, and a reward based on the previous state and
actual action is calculated. In the next step, the Q-table is updated by the learning process and a
new state S is observed. However, in the modified QL, the loop also starts by selecting and
performing an action, but then implements a new variable called sleep. This variable represents the
action, the selected sleep time. Then the reward from the previous state and action is calculated
and the Q-table is updated by the learning process itself.

The modified QL algorithm is controlled by the following equation:

Q(St−1,At−1)←Q(St−1,At−1)+α
[
R+ γ max

a
Q(St,a)−Q(St−1,At−1)

]
(8)

where α is a learning rate. Q(St−1,At−1) represents a value of the reward in the Q-table of the
previous action At−1 and previous state St−1. R represents immediate reward.

The polynomial approximation method is used to evaluate the next value xnext of the collected
data. In this experiment, the polynomial coefficients are calculated using MATLAB’s polyfit
function with a least-squares approximation. The input for the polyfit function is a time vector,
a solar irradiance vector, and a degree of the polynomial N. The output of the polyfit func-
tion are coefficients of the polynomial p(x) which fits the input data. The coefficients are in
descending powers and their length is dependent on the value of the degree of the polynomial N,
specificallyN + 1.

In the next step, MATLAB’s polyval function is used to protect negative values in prediction.
The polyval evaluated the polynomial p at each point x (see Eq. (2)). The p is a vector of the
coefficients and the point x is the index value of the action in the specific simulation step. If the
final polyfit evaluation value is greater than or equal to 0, the polyval function result is the xnext
value. Otherwise, a zero value is assigned to xnext.
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3.2 Reference Solution and Evaluation Criteria
To evaluate the DDSL controller approach, a reference algorithm with a linear interpolation

method is used. The original collected data has a 5-min data collection interval. Therefore, the
reference solution is based on an original data set where only 10-, 15-, 20-, 25- and 30-min
intervals are extracted. To fill in the missing data between the extracted samples, the linear
interpolation method was used.

To compare the accuracy of prediction between individual settings of expert constants and
the reference solution, the root mean squared error (RMSE) was calculated by following equation,

RMSE=
√√√√1
n

n∑
i=1

(xi− yi)2, (9)

where n is the size of the data set, yi is the value from the original data set and xi is the evaluated
value from the reference or DDSL data set. The RMSE value is smaller for a more accurate
algorithm. The DDSL controller policy can achieve minimization of the RMSE by the RS reward
component.

The Number of Measurement (NoM) is the second evaluation parameter which follows the
number of the operation period. The algorithm policy is principally designed to minimize NoM
(RA reward component) since this behavior leads to minimal power consumption.

The performance score (PS) is then the overall evaluation parameter, which considers both
above-mentioned parameters (RMSE and the NoM) and is calculated according to the following
equation:

PS= maxRMSEREF−RMSEα,γ

NoMα,γ
, (10)

where maxRMSEREF is the maximal RMSE value of the reference algorithm. The RMSEα,γ and
NoMα,γ are the RMSE and NoM values of the experiment with specific DDSL controller settings.
A higher PS value means that the algorithm setting is more efficient. In general, the PS value
of the reference dataset at the 30-min interval is 0 because RMSEα,γ equals max RMSEREF.
Evaluation parameters NoM and RMSE score opposite sides of the controller’s behavior. These
criteria are designed to find a trade-off between reduced NoM and satisfying RMSE.

Generally, an overall evaluation considers two parameters (RMSE and NoM). Technically,
these parameters oppose each other, and a trade-off between RMSE and NoM should be
considered. To evaluate the DDSL approach, a cartesian distance to zero is used.

The RMSE and NoM parameters are normalized according to the worst case, meaning a
30-min reference algorithm RMSE parameter and a 5-min reference algorithm NoM parameter:

‖RMSE‖ = RMSE
RMSEref 30min

(11)

‖NoM‖ = NoM
NoMref5min

(12)
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An overall cartesian evaluation parameter ‖L‖ is calculated by following formula:

‖L‖ =
√
‖NoM‖2+‖RMSE‖2 (13)

4 Results

This section provides the results of a comprehensive set of experiments which verify the
designed controller with various QL parameters settings and the degree of the polynomial. Each
experiment configuration was repeated ten times to eliminate the effect of the epsilon-greedy
policy. Experiments were performed with the following settings for α0, γ and the degree of the
polynomial:

• α0= {0, 0.1, 0.2, . . ., 1},
• γ = {0, 0.1, 0.2, . . ., 1},
• N = {1, 2, 3, 4, 5}.

Fig. 5 shows an overall comparison of the reference algorithm and the DDSL controller
and the highest PS results for various degrees of the polynomial for the DDSL controller. The
DDSL controller provides approximately 40% higher PS than the best reference algorithm, with
the exception of the degree of polynomial N = 5, which provides only 23% higher PS. The
Tab. 2 provides a numerical summary of the highest PS algorithm settings. The highest PS results
provided the algorithm with low α0 settings and high γ settings, which indicates a slow learning
process and cumulative reward preference. The exception is the algorithm with the degree of
polynomial 3, where the γ setting is lower than others.

Figure 5: Overall comparison of the reference algorithm and DDSL controller for the degree of
the polynomial N = {1, 2, . . . , 5}

Fig. 6 provides a distribution of the algorithm PS with various α0 and γ settings in com-
parison with the reference algorithm. Fig. 6a shows the PS comparison between different settings
of the degree of the polynomial. There can be seen that all degrees of the polynomial settings
achieved higher performance than the best (5 min) reference algorithm. It is also notable that
the highest performance was achieved by algorithms with a degree of polynomial 1 and 2.
Additionally, these configurations of the DDSL algorithm do not demonstrate lower performance
than the 25-min reference algorithm.
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Table 2: Overall comparison of the reference algorithm and Q-learning algorithm

Reference algorithm

α0 γ RMSE NoM PS

5 min - - 0.00 507,745 96
10 min - - 26.72 253,873 87
15 min - - 35.92 169,249 77
20 min - - 41.54 126,937 58
25 min - - 45.99 101,549 29
30 min - - 48.90 84,625 0

Best PS settings of the DDSL algorithm

N = 1 0.2 1.0 23.15 184,962 139
N = 2 0.3 1.0 24.48 173,773 141
N = 3 0.1 0.3 24.74 180,487 134
N = 4 0.2 0.9 21.89 197,751 137
N = 5 0.1 0.7 25.13 201,041 118

Figure 6: Comparison with the reference algorithm. (a) Performance for various settings of α0
and γ for the polynomial function with degree N = {1, 2, . . . , 5}; (b) Location of various settings
of α0 and γ for the polynomial function with degree N = {1, 2, . . . , 5} in cartesian coordinates.
Results below the reference line reach better scores than the reference algorithm

Fig. 6b shows the DDSL controller result in cartesian coordinates. The x-axis represents the
NoM and the y-axis describes the RMSE. This representation provides a reference algorithm
borderline which divides the two-dimensional cartesian coordinate system into two parts. The first
part above the reference algorithm borderline means, that the algorithm achieves worse PS than
the reference approach. The results beneath the reference algorithm borderline return at least
a lower RMSE with the same NoM as the reference algorithm or lower NoM with the same
RMSE as the reference algorithm, respectively. A geometric distance to zero is a crucial evaluation
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parameter. The weights of the x- and y-axis should be considered or normalized to balance the
effect of the RMSE and NoM parameters (parameter ‖L‖).

Fig. 7 shows 3D bar graphs for various α and γ for the degree of polynomial 1 and 2. There
can be observed an increase of PS for α0 = 〈0.1, 0.3〉 and can also be noticed that the area close
to both the limit values of γ (0 and 1) are very satisfactory for the DDSL controller settings.

Figure 7: PS of the Q-learning algorithm with various settings of α0 and γ for the degree of
polynomial (a) N = 1; (b) N = 2

Fig. 8 shows a subset of the bar graphs for various degrees of polynomial for α0 =
{0.1, 0.2, 0.3}. There can be seen that the algorithm with degree of polynomial 1 and 2 provides
the highest PS. The algorithms with the degree of polynomials 3, 4 and 5 provide significantly
lower performance than the algorithms with a degree of polynomial 1 and 2. There can also
be observed that the PS falls slightly when γ decreases. The PS decrease is more significant for
a higher degree of the polynomial (4 and 5). A more dynamic algorithm which prefers instant
rewards and uses a higher degree of polynomial to estimate the future achieves a lower PS than
farsighted algorithms.

Figure 8: PS of the Q-learning algorithm with selected learning rate α0 = {0.1, 0.2, 0.3} and
various γ settings for the degree of polynomial N = {1, 2, . . . , 5}

Fig. 9 represents the PS in a cartesian coordination system for the degree of the polynomial
N = 1 and N = 2. Fig. 9 also distinguishes the α settings and best 5 PS results. There can be



CMC, 2022, vol.70, no.2 2613

seen a different color area for various α0 settings. A high α0 setting (red) area is located close
to minimal NoM and maximal RMSE parameters. It means that the dynamic algorithms with
high α0 settings provide high compression at the cost of increase in the RMSE parameter. The
best algorithm settings are located in the area with the lowest RMSE and fall in the middle of
the NoM. These algorithms provide the best trade-off between the RMSE and NoM parameters.
There can be noted that the highest PS is achieved by low α settings.

Figure 9: Location of various settings of α and γ in cartesian coordinates. (a) N = 1; (b) N = 2

Tab. 3 provides a numerical summary of the performed experiments. It shows only the ten
best cases. The best algorithm reached PS 141 with ‖L‖ = 0.606 at setting N = 2, α0= 0.3 γ = 1.
The algorithm at the lowest ‖L‖ = 0.581 reached PS 139 at setting N = 2, α0 = 0.2 γ = 1. There
can also be noted that the criteria PS and criteria L provide similar top results. The results
correspond in approximately 70% of cases.

Table 3: Algorithm settings α0 = {0.1, 0.2, 0.3} and the degree of polynomial 1 and 2

N = 1 N = 2

α0 γ RMSE NoM Perf. ‖L‖ α0 γ RMSE NoM PS ‖L‖
0.2 1.0 23.15 184962 139 0.597 0.3 1.0 24.48 173773 141 0.606
0.1 0.6 25.76 171190 135 0.625 0.2 1.0 20.24 207092 138 0.581
0.2 0.9 24.90 178212 135 0.618 0.2 0.3 29.81 140577 136 0.670
0.3 1.0 28.26 154979 133 0.654 0.1 0.1 27.69 157967 134 0.646
0.1 0.3 27.99 158891 132 0.652 0.1 0.4 26.36 170567 132 0.635
0.3 0.9 29.91 148714 128 0.678 0.2 0.0 31.72 132334 130 0.699
0.3 0.8 31.74 135589 127 0.702 0.1 0.0 29.07 153865 129 0.667
0.1 0.8 25.70 184075 126 0.638 0.1 0.6 25.97 178273 129 0.637
0.2 0.8 29.87 151770 125 0.680 0.1 0.3 28.08 162190 128 0.657
0.1 0.7 26.96 175725 125 0.651 0.2 0.4 31.24 137799 128 0.694
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5 Discussion

The results return several interesting areas to discuss. The first idea concerns the correct
selection of the degree of polynomial. The presented experiment used a degree of polynomial from
1 to 5. Based on the input solar irradiance data, the DDSL approach provided the best performing
result for the degree of the polynomial 2. The degree of the polynomial 1 also provided better
performance than 3, 4 and 5 in this case. It must be highlighted that selection of the appropriate
degree of the polynomial is directly linked to the type of data collected from the sensors. In our
case, the best performing result was achieved by linear or quadratic approximation represented
by the degree of the polynomial 1 and 2. In the case of a different dataset, correct selection of
the coefficient could lead to higher degree of the polynomial. Regarding the key feature of the
DDSL approach, exploratory studies for suitable degrees of the polynomial should be performed
before mobile monitoring IoT devices are deployed in target application areas. The capability of
the self-learning approach is limited without custom adjustment of the degree of the polynomial
according to the character of the collected data.

The configuration of Q-learning parameters is second area to discuss. Deployment of the
mobile monitoring devices should consider proper selection of the learning rate, discount factor,
and the epsilon-greedy policy. The article’s results showed that the initial learning rate should be
set conservatively from 0.1 to 0.3. Therefore, the DDSL controller accepts new information slowly
and keeps its already obtained knowledge stored in a Q-table. However, in terms of the discount
factor, there is no conclusive result. With a degree of polynomial 1, the experiment showed that
the best results are achieved from high cumulative discount factor approaches (0.8–1). However,
the result which included a degree of polynomial 2 showed that an instant reward policy with
a low discount factor (<0.4) could also lead to the best performance solutions. Therefore, the
discount factor setting is not simply a subject of the input dataset but has a strong connection
to the degree of the polynomial. The epsilon-greedy policy is set to 5% of random actions as
standard in such applications, but the question is whether this leads to the best performance in
long-term deployments where the learning rate is significantly reduced by the learning discount
coefficient. This idea should be evaluated with long-term field testing or extensive simulations on
an extended dataset. In this case however, the study does not provide a general answer for setting
up the initial epsilon-greedy and discount policies.

The final discussion topic concerns the evaluation policy of the presented solution. There were
designed two basic approaches, one which uses a linear ratio between the RMSE and NoM, and
the second which is calculated by the geometrical distance in normalized cartesian space. Both
evaluation methodologies followed the same aim, which was to determine an evaluation coefficient
which targets the tradeoff between low RMSE and low NoM. Both methodologies provide similar
results in an opposing manner, one maximizing the linear ratio and the other minimizing the
normalized distance. In another implementation scenario, the evaluation strategy varied according
to the specific optimization target.

Tab. 4 shows a general comparison of the DDSL controller approach with three QL state-of-
the-art methods. The stated studies [43–45] used data-driven QL approaches to solve their control
requirement in addition to the DDSL controller. The major difference between the individual
approaches is the way the QL algorithm is used, the possible additional methods for control,
and the monitored subject matter. The advantages and limitations mentioned in the table are
derived from these conditions. The proposed DDSL controller offers a unique approach in solving
a data-driven self-learning principle for mobile monitoring embedded devices.
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Table 4: Comparison of the results to state-of-the-art studies

Author, source Algorithm Description Advantages and limitations

Lork et al. [43] QL Data-driven
energy
consumption
control

– Large data pool required
+ Easily transferable
+ Optimal energy consumption

Radac et al. [44] QL Data-driven
position control

+ Superior control performance
+ The feedback linearization of
the feedback control system is
in a wide operating range

Duan et al. [45] Deep QL Data-driven
voltage control

+ Promising performance
+ Effective in making real-time
control decisions

Proposed DDSL controller Modified QL Data-driven
operation duty
cycle control

+ Energy efficient
+ Useful for mobile embedded
devices

6 Conclusion

The article proposed a modified QL-based algorithm which controls an operational cycle
according to the acquired data. The general principle lies in observation of the parameters of
interest when data from sensors contains high information value. This solution leads to the mini-
mization of operational cycles when data changes according to a predictable trend. This solution
offers a unique paradigm in contrast to the classic scenario of an embedded device obtaining data
and then deciding whether the data contains information which should be stored and transmitted
to a cloud. The presented DDSL method principally avoids redundant data acquisition, which
leads to a more energy-efficient operation.

The proposed DDSL algorithm provides better results than the reference algorithm which
operates with a continuous measurement period. The novel approach described in this paper
achieved an approximately 40% higher PS than the reference algorithm. It means that our novel
algorithm reached a lower RMSE at the same NoM as the reference algorithm, or a lower NoM
at the same RMSE.

The presented solution opens several research opportunities. The first challenge includes
application of the proposed method in another data domain. The next research challenge might
be modification of the learning model. It is also possible to use statistical parameters as a
reward policy to replace the polynomial function. In this article, the authors examined the general
principle of the DDSL approach, which performs well on the presented mobile monitoring embed-
ded devices, however future modification of the DDSL approach could lead to more effective
domain-customized solutions.
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