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Abstract: The incident rate of the Gastrointestinal-Disease (GD) in humans is
gradually rising due to a variety of reasons and the Endoscopic/Colonoscopic-
Image (EI/CI) supported evaluation of the GD is an approved practice.
Extraction and evaluation of the suspicious section of the EI/CI is essen-
tial to diagnose the disease and its severity. The proposed research aims to
implement a joint thresholding and segmentation framework to extract the
Gastric-Polyp (GP) with better accuracy. The proposed GP detection system
consist; (i) Enhancement of GP region using Aquila-Optimization-Algorithm
supported tri-level thresholding with entropy (Fuzzy/Shannon/Kapur) and
between-class-variance (Otsu) technique, (ii) Automated (Watershed/Markov-
Random-Field) and semi-automated (Chan-Vese/Level-Set/Active-Contour)
segmentationof GP fragment, and (iii) Performance evaluation and validation
of the proposed scheme. The experimental investigation was performed using
four benchmark EI dataset (CVC-ClinicDB, ETIS-Larib, EndoCV2020 and
Kvasir). The similarity measures, such as Jaccard, Dice, accuracy, precision,
sensitivity and specificity are computed to confirm the clinical significance of
the proposed work. The outcome of this research confirms that the fuzzy-
entropy thresholding combined with Chan-Vese helps to achieve a better
similarity measures compared to the alternative schemes considered in this
research.

Keywords: Endoscopic/colonoscopic-image; gastric polyp; aquila-optimization-
algorithm; fuzzy entropy; chan-vese segmentation

1 Introduction

In humans, the occurrence rate of Gastrointestinal-Disease (GD) is gradually rising due
to various causes and appropriate diagnosis is essential to identify and cure the disease. The
preliminary clinical level detection of the GD involves in collecting the images of the interior
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lining of digestive tract using upper/capsule endoscopy or colonoscopic technique [1]. The image
collection procedure is to be done in a controlled environment with the help of a gastroenterolo-
gist. After collecting the essential images, a systematic examination practice is essential to identify
the nature and severity of the GD. Gastric-Polyp (GP) is one of the common abnormalities
found in the digestive tract; mainly identified as the grown tissue mass on the lining of stomach.
Based on the region and the nature, the GP are categorized as the cancerous and non-cancerous
and these abnormalities can be found only during the endoscopy/colonoscopy examination, when
the patient is admitted with gastrointestinal problem [2]. Due to its importance, a considerable
number of GP detection procedures are proposed and implemented by the researches to examine
the endoscopy/colonoscopy images. The earlier research works involves in the implementation
of; (i) Conventional segmentation, (ii) Convolutional-Neural-Network (CNN) based segmentation,
and (iii) Classification methods based on the machine-learning and deep-learning approaches. The
main task considered in the earlier works are to segment/localize the GP region from the RGB
scaled clinical/benchmark test image of a chosen dimension [3].

This research proposes a joint thresholding and segmentation technique to extract the GP
section from the RGB scale images with better similarity measures (SM). This disease detec-
tion pipeline consists the following phases; (i) Image enhancement using a tri-level thresholding,
(ii) Segmentation of the GP section from enhanced image and (iii) Comparison of extracted region
with Ground-Truth (GT) and validation based on attained SM.

The initial phase implements an image enhancement scheme based on the tri-level threshold-
ing using a chosen monitoring function. In this work, the optimal thresholding was selected using
the Aquila-Optimization-Algorithm (AOA) proposed by Abualigah et al. [4]. The aim of the AOA
is to enhance the test image by identifying the optimal thresholds in the RGB scaled image by
maximizing the objective value based on the chosen thresholding scheme (entropy/between-class-
variance). A novel objective value is developed by including the maximization of image quality
measures, such as Peak Signal-to-Noise Ratio (PSNR) and Structural-Similarity-Index-Measure
(SSIM) along with the thresholding scheme. This phase also presents an appraisal of thresholding
schemes, such as Fuzzy, Shannon’s, Kapur’s and Otsu’s, which are considered to enhance quality
of the test images using the AOA.

The second phase implements a semi/fully-automated segmentation technique to extract the
GP section from the enhanced CI. Initially, the segmentation of the GP is performed using the
automated methods, such as Watershed-Segmentation (WS) and Markov-Random-Field (MRF)
approaches. Later, the semi-automated procedures, such as Chan-Vese (CV), Level-Set (DRLS),
and Active-Contour (AC) are employed and the extracted sections are evaluated separately along
with the GT image. This comparison helps to get the SM, such as the Jaccard, Dice, Accuracy,
Precision, Sensitivity and Specificity and based on these values, the performance of the joint
thresholding and segmentation procedure is confirmed. The clinical significance of the proposed
image examination scheme is confirmed using clinical grade CIs collected from the commonly
adopted image datasets, like CVC-ClinicDB (CVC) [5], ETIS-Larib (ETIS) [6], EndoCV2020
(ENDO) [7] and Kvasir-Seg (Kvasir) [8]. All these works are implemented using MATLAB soft-
ware and the outcome of the present study confirms that the GP detection framework which
employed the AOA and Fuzzy thresholding along with CV segmentation helped to get better SM
on all the four CI datasets compared with other approaches implemented in this work.

The main contribution of this research work includes;

(i) Enhancement of the exploitation phase of AOA with Brownian-Motion
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(ii) Implementation of a novel objective function to enhance the thresholding outcome
(iii) Presenting a detailed performance assessment of various combination of thresholding and

segmentation techniques using the computed SM

2 Context

Detection of GD is one of the significant work in which the assessment of EI/CI is necessary
to identify the disease and its severity. The earlier research works implemented a considerable
number of traditional and CNN segmentation technique to extract the GP section with better
similarity measures. Most of these methods considered the datasets adopted in this research work.
In [7], authors presented a CNN supported artifact detection and localization. In [8] authors
implemented ResUNet++ with the Conditional-Random-Field (CRF) which offered better values
of Jaccard (80.80%) and Dice (81.29%) on Kvasir and enhanced Jaccard (88.98%) and Dice
(92.03%) on CVC dataset. Authors in [9] proposed an automatic GP segmentation based on HOG
feature map and saliency enhancement, in [10] authors implemented a joint thresholding and seg-
mentation of GP employed bran-storm-optimization supported Kapur’s thresholding to enhance
the image. In [11] authors proposed a CNN supported semantic-segmentation methodology to
localize the GP from the CI, in [12] authors implemented CNN supported A-DenseUNet to
extract and examine the GP fragment of CVC and Kvasir separately. Authors in [13] proposed
MED-Net to separately evaluates CVC and ETIS datasets. The MED-Net is validated with few
existing CNN schemes in the literature and the MED-Net provided a mean precision of 93.82%
for ETIS and mean dice of 91.3% on CVC. Further, a detailed review on the CI/EI examination
is discussed in [3]. Most of the earlier research works implements CNN supported schemes and
the computation effort required is large compared to the traditional (thresholding and segmen-
tation) schemes. Hence, in the proposed research, AOA based thresholding and semi/automated
segmentation is presented using the freely accessible image datasets.

3 Methodology

Implementation of a clinically significant GP detection framework is necessary and in the
proposed work, joint thresholding and segmentation supported scheme is proposed to examine
the RGB scaled EI/CI. This section presents the framework and the methodologies adopted to
construct the proposed disease detection scheme.

3.1 Gastric-Polyp Detection Framework
Fig. 1 depicts the framework proposed in this research work. After collecting the necessary CI

test images, every image and the GT are resized to 224×224×3 pixels to get a unique dimension.
Initially, the AOA supported tri-level thresholding is implemented with a chosen thresholding
scheme to enhance GP segment. The function of the AOA is to continuously vary the R, G, and B
thresholds, till the essential enhancement is achieved. After the enhancement, the necessary section
(GP) is then extracted by employing the chosen semi/fully-automated segmentation methodology.
Finally, the extracted GP is compared with its related GT and the essential SM is compared.
Similar procedure is repeated for all the images considered in this research and the mean±
standard deviation (Mean± SD) attained for each dataset is independently evaluated to confirm
the significance of the proposed GP detection framework.
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Figure 1: Disease detection framework with AOA based joint thresholding and segmentation

3.2 Endoscopic-Image Database
The performance of the developed disease detection system needs to be checked and con-

firmed using clinical images. In most of the cases, the clinical images are not available for
testing purpose and hence a clinical grade benchmark image datasets are widely adopted by
the researchers. This research work considered the openly available benchmark CI to test the
performance of the proposed GP detection framework.

Dataset Description

CVC This dataset is created by collecting image frames from colonoscopy videos. It
consists 612 RGB scaled images collected from 29 sequence and necessary GT is
provided for every image. This dataset and other related information can be found
in [5].

ETIS This dataset is created using the colonoscopy video frames and is one of the
commonly considered CI along with the CVC. This database consist 196 RGB
scaled images along with the binary GT and the related information on this dataset
can be accessed from [6].
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Dataset Description

ENDO This dataset consists Endoscopic Images (EI) with varied disease conditions, in
which 127 images are dedicated for the GP detection. This database is created to
test the performance of the algorithm framework to detect and localize the artifacts
in RGB scaled EI. The necessary information on this dataset can be found from [7].

Kvasir This dataset consist EIs collected from the hospitals and verified by the experts.
This dataset sets includes a large collection of the EIs ranging from normal to
various GD and in this work, the EIs dedicated for the GP detection alone
considered for the experimental investigation. The considered images are available
along with the GT images and the complete information about the GD and EI can
be accessed from [8].

The number of images existing in the dataset and the images considered in this research work
is presented in Tab. 1 and the sample test images of each dataset is depicted in Fig. 2. From these
images, it can be observed that the extraction of the GP from the CI and EI is a tedious task
and a perfectly developed image processing scheme is essential to extract the suspicious section
from the considered test images.

Table 1: Complete information about test images considered in this research work

Dataset Number of images Image collection Dimension Ground truth Openly existing

Available Considered

CVC 612 612 Colonoscopy 224× 224× 3 Yes Yes
ETIS 196 196 Colonoscopy 224× 224× 3 Yes Yes
ENDO 386 127 Endoscopy 224× 224× 3 Yes Yes
Kvasir 1000 300 Endoscopy 224× 224× 3 Yes Yes

(a) (b) (c) (d)

Figure 2: Sample test images collected from dataset (a) CVC (b) ETIS (c) ENDO (d) Kvasir

3.3 Image Thresholding
Image thresholding is a proven pre-processing procedure widely used to enhance the informa-

tion in grey-scale and RGB-scale images based on the chosen threshold level. The earlier works
on the image thresholding with various techniques can be found in [14]. Manual identification of
optimal thresholds during the multi-threshold operation is a tedious task and hence the heuristic
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algorithm supported thresholding is widely adopted by the researchers. The earlier works on the
medical image thresholding and segmentation proposed for a class of benchmark images can be
found in [15,16]. In the proposed research, enhancement of the test image with tri-level threshold
is achieved using the AOA.

3.3.1 Aquila-Optimization-Algorithm
The AOA is proposed in 2021 by Abualigah et al. [4] by mimicking the hunting strategy of

the Golden-Eagle (Aquila) in a chosen terrain. The Aquila is having a strong physical strength
with sturdy feet and best talon to hunt the prey of varied sizes (rabbit, hare, squirrel, deer, etc).
Hence, it is commonly known as one of the most popular birds of prey. In the proposed research,
the mathematical model of AOA is considered to adjust the R, G and B thresholds of the test
image.

In order to achieve better result with minimal run, the Lévy-Flight (Lf ) search strategy
existing in the traditional AOA is replaced with the Brownian-Motion (Bm) strategy (only in
exploitation stage) and the attained result is confirmed by computing the cost-faction. The main
task of this research is to get the enhanced image using optimal threshold value. The traditional
AOA considered four search (hunt) strategies to identify the optimal solution (prey) for the
chosen problem these tactics are clearly discussed in this section with appropriate mathematical
expressions.

Let, in the considered optimization task, N specifies number of agents (Aquila) and D denotes
the search dimension of the problem. The distribution of agents in a search terrain can be defined
as in Eq. (1);

Xi, j =

⎡
⎢⎢⎢⎢⎣

x1, 1 x1, 2 . . . x1,d

x2, 1 x2, 2 . . . x2,d

. . . . . . . . . . . .

xn, 1 xn, 2 . . . xn,d

⎤
⎥⎥⎥⎥⎦ (1)

where, X is the current result for the agents for i= 1, 2, . . . , n and j= 1, 2, . . . , d. Let us assume
that, every attained solution for Xi, j depends on the assigned values of Upper-Bound (Ub) and
Lower-Bound (Lb) of the controller parameters to be optimized and this procedure can be
mathematically expressed as in Eq. (2).

Xi, j =� ∗ (Ubj−Lbj)+Lbj (2)

where, � is the random value (0, 1).

The four search (hunt) strategies of the AOA have a balanced exploration and exploita-
tion operation with a perfectly chosen search strategy to achieve a finest result for the chosen
optimization problem.

Stretched exploration (X1): This is the initial phase of AOA in which the Aquila is allowed
to explore the entire search terrain by high soar with the vertical stoop. Every agent in this phase
is allowed to identify the prey and this operation is depicted mathematically as in Eq. (3) and the
pictorial depiction of this process is in Fig. 3a;

X1(t+ 1)=Xbest(t) ∗
(
1− t

T

)
+ (Xm(t)−Xbest(t) ∗�) (3)
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where X1(t+1) is the update position of the chosen agent based on the initial value X(1), Xbest(t)
is the identified best prey during the tth iteration, Xm(t) is the mean value of the locations for the

present solution and
1− t
T

is the control parameter for the exploration task (t= current iteration

and T = Itermax is maximum iteration). The attained mean of the location can be found using the
value depicted in Eq. (4);

Xm(t)= 1
N

N∑
i=1

Xi(t), ∀ j= 1, 2, . . . ,D (4)

Pointed exploration (X2): During this process, the prey is identified and circled by the Aquila
from the high soar till the right time for the attack is identified. This procedure is called the
contour flight with squat glide hit. In this phase, the exploration of the right area for the attach
is decided as narrow as possible and this process is depicted mathematically as in Eq. (5) and the
pictorial depiction of this process is in Fig. 3b;

X2(t+ 1)=Xbest(t) ∗Lf +XR(t)+ (y−x) ∗� (5)

where X2(t+ 1) is the result attained with the current process and XR(t) is the random solution
considered from the agents [1, N] during ith iteration. The other related mathematical expressions
are presented in Eqs. (6) and (7);

Lf = 0.01 ∗
( � ∗ σ

|�|1/β
)

(6)

σ =

⎛
⎜⎝ �(1+β) ∗Sin e

(
πβ
2

)

�
(
1+β
2

)
∗β ∗ 2

(
β−1
2

)
⎞
⎟⎠ (7)

In this phase, the β is chosen as 1.5 and other values, which helps to get the spiral search is
given in Eqs. (8)–(12).

y= r ∗Cos(θ) (8)

x= r ∗Sin(θ) (9)

r= r1+U ∗D1 (10)

θ =−ω ∗D1+ θ1 (11)

θ1 = 3 ∗π

2
(12)

where r1 takes a value of [1, 20], U is fixed as 0.00565, D1 is a value from initial to final search
dimension (D), and ω is assigned as 0.005 [4]. The spiral shaped search produced in this phase is
depicted in Fig. 3 and this scheme is also presented in Figure of stage 3.
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(a) (b) (c) (d)

Figure 3: Various search phases of AOA (a) AOA Phase 1 (b) AOA Phase 2 (c) AOA Phase 3 (d)
AOA Phase 4

Stretched exploitation (X3): In this phase, the Aquila specifies the pray, and attacks the prey
with rapid landing. This procedure is depicted mathematically as in Eq. (13) and the pictorial
depiction of this process is in Fig. 3c;

X3(t+ 1)= (Xbest(t)−Xm(t)) ∗α −�+ ((Ub−Lb) ∗�+Lb) ∗ δ (13)

where X3(t+1) is updated position of the agent, α and δ are the exploitation guiding parameters
assigned with a value of 0.1.

Pointed exploitation (X4): In this stage, the Aquila moves closer to the prey and attacks the
pray based on the stochastic progress and this is the final stage of the Aquila (agent) which grabs
the prey (Xbest). In this stage, the approaching towards the Xbest(t) must be steady and hence, in
this proposed work, this process is guided with Bm and its mathematical expression is depicted in
Eq. (14).

X4(t+ 1)=Q(t) ∗Xbest(t)− (G1 ∗X(t) ∗�)−G2 ∗Bm+� ∗G1 (14)

where X4(t+ 1) is the final position of the agent which is close to the prey.

The other related values of Eq. (14) are depicted in Eqs. (15)–(17) and the pictorial represen-
tation of this process is depicted in Fig. 3d.

Q(t)= t

(
2∗�()−1
(1−T)2

)
(15)

G1 = 2 ∗�()− 1 (16)

G2 = 2 ∗
(
1− t

T

)
(17)

The other related information on the AOA is clearly presented in [4].

3.3.2 Thresholding Schemes
Tri-level thresholding is widely employed by the researchers to enhance the suspicious section

in the medical images. Tri-level thresholding is employed in this scheme to segregate the pixels
of the RGB scaled test images into three groups, such as suspicious segment, normal region and
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background. This work employed the entropy function and Otsu to enhance the test image. Fuzzy-
entropy: Normally, the concept of the entropy is related to the measure of the vagueness in the
image. Entropy supported image enhancement task considers the improvement of the vagueness
(suspicious section) by altering the pixel levels. The Fuzzy-Entropy (Fuzzy) is one of the measures
normally considered in image thresholding task to enhance the section to be examined [15,16].

Shannon’s-entropy: Entropy based thresholding helps to find the optimal image Th till its
value is maximized. The earlier works related to Shannon’s can be found in [17]. The earlier search
on medical images confirms that the Shannon’s technique offers better result than other methods
and the complete information regarding this entropy can be found in [18].

Kapur’s-entropy: This entropy is one of the widely adopted thresholding function to enhance
the traditional as well as medical grade images [19]. The earlier works on Kapur’s confirms that
this method helps to get better result on a class of gray as well as RGB images and the necessary
information regarding this entropy can be accessed from [18].

Otsu: Compared to the entropy function, Otsu’s between-class-variance is widely adopted
to enhance the traditional digital photographs and the complete information and the related
mathematical expression can be found in [20].

3.4 Segmentation Schemes
Segmentation and classification are the two commonly adopted methods during the medical

image processing. The segmentation technique is widely adopted to extract the suspicious section
from the raw/enhanced medical images of a chosen dimension. Mining the essential segment from
the enhance image is quite easy and hence, in this work, the chosen segmentation approach is
implemented to extract the GP section from the enhanced RGB image. Based on the operator
involvement, it is classified as semi/fully automated technique.

3.4.1 Fully-Automated Segmentation
In this scheme, the implemented algorithm can mine the suspicious section from the medical

image without the operator’s assistance. In this work, the techniques, such as WS and MRF are
employed for the automated mining of GP from thresholded CI and EI. The WS involves in a
series of operations, such as edge detection, watershed fill, morphological dilation, enhancement
and extraction. The earlier works clearly presents the details of WS [21]. The MRF based
segmentation involves in MRF enhancement and morphology based segmentation. This technique
will segregate the given image into three sections, such as suspicious section, normal segment and
background and the details on this scheme can be found in [18].

3.4.2 Semi-Automated Segmentation
In this, operator’s help is necessary to initiate the algorithm and then this technique automati-

cally explores the necessary pixel groups based on the iteration level and finally stops and provides
the binary image as the outcome. This work considered the methods, like CV [22], DRLS [23,24]
and AC [25] to extract the GP and every approach needs an initial bounding box, which is to
be assigned by the operator. Every bounding box is associated with a flexible line which alters
its orientation to explore the pixel group to be extracted. The essential information regarding the
semi-automated segmentation can be found in [15,18].
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3.5 Implementation
The proposed disease detection framework consist a tri-level threshold followed by the seg-

mentation and validation. During this process, the following values are assigned for the AOA,
number of agents = 30, search dimension = 3, number of iterations (Itermax) = 2500, Lb = 0,
Ub = 255, and stopping criteria = maximized objective value (
max) or Itermax. The objective
function proposed in this research is shown in Eq. (18);


max =w1 ∗Emax+w2 ∗PSNR+w3 ∗SSIM (18)

where, Emax= maximized entropy and, w1, w2, w3 are weights for the parameters. The following
values are considered as the weights w1 = 0.5, w2 = 0.25 and w3 = 0.25. The mathematical
expression for PSNR and SSIM are found in [15]. Initially the chosen test image is enhanced by
the AOA assisted thresholding process. During this process, the algorithm explores the R, G and
B pixel distributions in the test image till the objective value of the AOA reaches a maximal level.
Fig. 4 depicts the sample test image of CVC (Fig. 4a) along with its GT (Fig. 4b) and histogram
(Fig. 4c). The AOA explores the histogram till it finds 
max. After enhancing the test image, a
chosen segmentation technique is then employed to extract the GP section and then a comparison
of the extracted GP (binary image) and GT is performed to compute the necessary SM. Based
on the values of the SM, the performance of the considered scheme is verified.

(a) (b)

(c)

Figure 4: Sample test image of CVC database (a) Image (b) GT (c) Histogram

3.6 Performance Evaluation
The performance of the developed disease detection system must be confirmed to measure

the clinical significance of the proposed technique. In the literature, well known image SM are
computed to verify the performance of the proposed scheme and the measures considered in this
work can be found in Fig. 5. The experimental investigation is implemented using a workstation
of Intel i5 2.5 GHz processor with 16 GB RAM and 2 GB VRAM set with MATLAB®.
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Figure 5: Computation of similarity measures using positive and negative pixels

4 Results and Discussions

This section presents the outcome attained during the experimental work and its discussions.
Initially, the AOA and Fuzzy based image enhancement is implemented using the CVC dataset and
the enhanced GP section is mined using the chosen semi/fully-automated segmentation scheme.

Fig. 6 shows the result attained with the WS scheme in which Fig 7a depicts the enhanced test
image with AOA, Figs. 6b–6e depicts the outcome of edge detection, watershed fill, morphological
dilation and localized GP section, respectively. The localized pixels are extracted as the binary
GP section and the final phase of the WS algorithm. The main advantage of the WS is, it is
an automated scheme and before the initiation only the disc size (disc = 20) is to be assigned.
The extracted binary image is then separately stored for further analysis. Followed by the WS, the
MRF scheme is then implemented and the extracted GP section is then stored.

In order to test the performance of the semi-automated segmentation on the chosen image
database, the methods, such as CV, DRLS and AC are separately tested on every test image. Fig. 7
depicts the segmentation outcome of the CV technique. Initially, based on the GP section to be
extracted, a bounding-box (BB) is to be initiated and the BB is allowed to converge towards the
pixel groups of the GP. This process continues till the contour encircles all the possible pixels of
the GP and finally, the pixels inside the converged contour is extracted and presented as a binary
image. Figs 7a–7d shows the results attained for Fuzzy + CV, Shannon + CV, Kapur + CV and
Otsu + CV respectively. Similar BB is initiated in DRLS and AC and the attained results are
stored separately for the AOA enhancement with Fuzzy, Shannon, Kapur and Otsu as depicted
in Fig. 8.

Fig. 8 depicts the binary GP images of the adopted thresholding and segmentation procedure.
After getting the essential GP fragment; it is then compared with the associated GT and the
necessary SM are computed. Tab. 2 shows the computed SM and from this table, it can be noted
that the entropy supported scheme provides the expected result compared to the Otsu enhanced
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images. The overall performance of the proposed scheme is then verified using a Glyph-Plot as
in Fig. 9 with six SM and the attained pattern with bigger area is considered as the superior
result [25]. From this plot, it is confirmed that the Kaput+CV (K+CV) offers the better result
compared to other techniques. Similarly, the overall result by the Otsu+WS (O+WS) is poor and
this confirms that the Otsu’s thresholding is unsuitable to examine the CI and EI considered in
this research work.

Figure 6: Result attained with AOA thresholding and WS (a) Threshold (b) Edges (c) Fill (d)
Dilation (e) Localization

(a) (b) (c) (d)

Figure 7: Result obtained with AOA thresholding and CV segmentation (a) Fuzzy + CV (b)
Shannon + CV (c) Kapur + CV (d) Otsu + CV
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Figure 8: The extracted GP segments of sample test image

Table 2: Result attained for the sample test image

Methodology Pixel level
information

Similarity measures

Threshold Segment TP FN TN FP Jaccard Dice Accuracy Precision Sensitivity Specificity

Fuzzy WS 2500 22 46565 1089 0.6923 0.8182 0.9779 0.6966 0.9913 0.9771
Shannon 2328 11 46576 1261 0.6467 0.7854 0.9746 0.6486 0.9953 0.9736
Kapur 2607 126 46461 982 0.7017 0.8247 0.9779 0.7264 0.9539 0.9793
Otsu 2216 9 46578 1373 0.6159 0.7623 0.9725 0.6174 0.9960 0.9714
Fuzzy MRF 2838 91 46496 751 0.7712 0.8708 0.9832 0.7907 0.9689 0.9841
Shannon 2766 107 46480 823 0.7484 0.8561 0.9815 0.7707 0.9628 0.9826
Kapur 2695 112 46475 894 0.7282 0.8427 0.9800 0.7509 0.9601 0.9811
Otsu 2733 74 46513 856 0.7461 0.8546 0.9815 0.7615 0.9736 0.9819
Fuzzy CV 2872 88 46499 716 0.7813 0.8772 0.9840 0.8004 0.9703 0.9848
Shannon 2697 18 46569 892 0.7477 0.8556 0.9819 0.7515 0.9934 0.9812
Kapur 3079 193 46392 510 0.8141 0.8975 0.9860 0.8579 0.9410 0.9891
Otsu 2974 169 46410 615 0.7914 0.8835 0.9844 0.8286 0.9462 0.9869
Fuzzy DRLS 2802 98 46489 787 0.7600 0.8636 0.9824 0.7807 0.9662 0.9834
Shannon 2665 118 46469 924 0.7189 0.8365 0.9792 0.7425 0.9576 0.9805
Kapur 2633 78 46509 956 0.7180 0.8359 0.9794 0.7336 0.9712 0.9799
Otsu 2666 50 46537 923 0.7326 0.8457 0.9806 0.7428 0.9816 0.9806
Fuzzy AC 2687 57 46530 902 0.7370 0.8486 0.9809 0.7487 0.9792 0.9810
Shannon 2594 78 46509 995 0.7074 0.8286 0.9786 0.7228 0.9708 0.9791
Kapur 2761 109 46478 828 0.7466 0.8549 0.9813 0.7693 0.9620 0.9825
Otsu 2677 27 46560 912 0.7403 0.8508 0.9813 0.7459 0.9900 0.9808
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Figure 9: The Glyph-plot of the similarity measures attained with sample image

The proposed joint thresholding and segmentation scheme provided the expected result on the
sample test image. Later, every image of the considered database, such as CVC, ETIS, ENDO, and
Kvasir are separately examined and the results are presented. Tab. 3 presents the SM (mean±SD)
attained for the CVC dataset. During this study, all the 612 images are separately examined using
every thresholding and segmentation scheme and the final results are presented for the evaluation.
From this table, it can be confirmed that the SMs, such as Jaccard, Dice, accuracy, precision and
specificity attained with Fuzzy + CV (F + CV) is superior compared to the alternatives. Further,
Fuzzy + WS helped to achieve a better sensitivity of >98%. This confirms that, for the CVC, the
AOA combined with Fuzzy provides the enhanced GP segment compared to other thresholding
functions. Also, the semi-automated CV scheme outperforms the segmentation outcome of WS,
MRF, DRLS and AC. Similar experimental investigation is then proposed on the datasets, like
ETIS (196 images), ENDO (127 images) and Kvasir (300 images) and the mean of SM are
depicted in Tabs. 4–6 respectively. From these results, it can be noted that the overall result by
F + CV is better compared to the alternative methods, irrespective of the image complexity, the
proposed F + CV helped to get better values of Jaccard, Dice, accuracy and precision in every
dataset considered in this research work.
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Table 3: Similarity measures attained for CVC dataset with implemented scheme

Technique Jaccard Dice Accuracy Precision Sensitivity Specificity

Fuzzy WS 79.18± 3.71 88.48± 2.26 96.06± 1.75 79.14± 4.54 98.80± 0.63 97.04± 1.15
MRF 79.60± 2.25 89.55± 3.02 96.48± 1.82 78.61± 3.05 98.15± 0.58 96.83± 2.04
CV 83.24± 3.04 90.38± 1.94 97.85± 1.16 86.38± 2.74 97.25± 1.08 98.29± 0.36
DRLS 78.32± 2.84 86.80± 3.14 95.27± 2.38 78.61± 2.18 96.24± 2.07 96.46± 0.94
AC 79.48± 2.14 86.04± 2.72 96.07± 1.85 79.22± 3.92 95.89± 1.55 97.18± 1.11

Shannon WS 71.83± 2.84 82.92± 3.05 96.14± 1.39 79.14± 4.54 98.77± 0.63 97.04± 1.15
MRF 73.82± 1.86 83.16± 2.26 96.41± 2.17 78.52± 4.04 97.92± 0.44 96.54± 1.66
CV 75.85± 4.16 84.14± 2.25 96.34± 1.84 80.18± 1.52 98.04± 1.13 97.36± 0.68
DRLS 76.07± 2.14 83.36± 2.84 96.46± 1.58 79.32± 1.46 96.61± 1.84 96.28± 1.04
AC 74.26± 3.32 82.86± 1.84 96.44± 2.04 80.17± 2.24 97.02± 1.07 98.27± 0.48

Kapur WS 73.41± 4.94 81.94± 2.47 95.28± 3.08 80.36± 3.16 96.43± 2.16 97.38± 1.02
MRF 74.28± 2.16 82.35± 1.82 96.11± 2.62 81.10± 2.59 95.84± 1.55 96.68± 0.86
CV 76.18± 3.24 84.18± 2.44 96.06± 1.16 84.23± 1.28 96.16± 0.94 97.24± 0.47
DRLS 75.26± 2.25 83.53± 1.26 96.41± 0.84 83.71± 2.42 95.58± 1.16 96.11± 1.04
AC 75.18± 1.48 84.04± 1.52 96.16± 1.13 86.46± 1.75 95.68± 2.21 96.51± 0.84

Otsu WS 71.14± 2.81 81.26± 2.06 95.33± 0.89 82.84± 2.14 93.33± 1.68 94.27± 1.01
MRF 73.26± 1.46 82.13± 1.84 94.76± 1.10 84.76± 3.05 94.06± 0.97 95.02± 0.88
CV 72.68± 2.03 83.56± 2.16 93.77± 2.04 83.14± 3.17 92.11± 1.53 95.30± 0.47
DRLS 71.83± 1.67 82.18± 1.42 94.14± 1.55 84.08± 2.28 93.17± 1.22 96.06± 0.13
AC 72.25± 1.16 82.32± 1.58 92.47± 3.14 83.54± 2.77 93.10± 1.43 96.15± 1.02

Table 4: Similarity measures attained for ETIS dataset with implemented scheme

Technique Jaccard Dice Accuracy Precision Sensitivity Specificity

Fuzzy WS 80.33± 2.94 86.67± 2.18 95.22± 1.86 81.33± 2.84 96.31± 1.13 96.14± 1.21
MRF 82.86± 1.15 87.33± 1.36 94.28± 2.15 83.71± 1.42 96.13± 1.77 95.83± 2.04
CV 83.18± 1.16 89.31± 1.47 97.43± 0.53 89.18± 2.52 96.28± 1.26 98.08± 0.86
DRLS 81.42± 1.82 86.84± 2.05 95.18± 0.82 82.72± 1.36 95.04± 1.15 95.18± 1.22
AC 81.06± 2.11 88.12± 0.83 94.77± 1.26 83.06± 0.94 95.56± 2.06 94.16± 1.05

Shannon WS 73.26± 2.06 82.54± 2.14 94.18± 3.71 83.42± 1.11 94.07± 1.46 95.21± 1.22
MRF 74.05± 1.33 83.26± 1.82 95.55± 1.46 84.00± 2.62 94.85± 1.15 96.04± 0.75
CV 75.23± 2.06 84.50± 2.17 95.88± 0.84 86.57± 1.18 95.93± 1.11 96.73± 1.58
DRLS 73.85± 1.83 83.02± 1.52 94.73± 2.01 85.04± 0.82 94.55± 0.67 96.17± 1.52
AC 73.77± 2.72 82.18± 2.01 94.14± 3.02 83.78± 1.15 95.21± 0.53 95.64± 1.05

Kapur WS 74.26± 0.77 83.84± 2.27 94.73± 1.57 85.74± 1.93 93.97± 1.46 95.82± 1.33
MRF 75.18± 1.24 82.97± 1.53 95.11± 2.03 84.59± 3.04 94.15± 2.32 94.74± 2.06
CV 75.27± 1.18 84.11± 1.38 93.26± 1.94 85.16± 0.65 97.12± 2.21 95.77± 1.93
DRLS 73.37± 1.63 84.27± 1.04 94.18± 1.73 84.28± 1.11 94.02± 1.88 95.36± 0.58
AC 74.26± 0.77 83.84± 2.27 94.73± 1.57 85.74± 1.93 93.97± 1.46 95.82± 1.33

Otsu WS 72.57± 2.93 83.03± 2.14 93.36± 1.18 84.41± 2.53 93.75± 1.65 94.18± 1.07
MRF 73.18± 2.11 84.27± 1.04 94.18± 1.73 84.28± 1.11 94.02± 1.88 95.36± 0.58
CV 74.25± 0.49 83.62± 2.18 93.92± 3.10 85.07± 1.52 93.76± 1.16 94.44± 1.25
DRLS 72.56± 2.18 84.11± 0.85 95.11± 0.49 83.73± 1.03 95.61± 0.48 94.74± 1.04
AC 72.73± 1.47 83.93± 1.58 94.27± 2.16 84.61± 0.53 94.59± 1.13 95.61± 1.19
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Table 5: Similarity measures attained for ENDO dataset with implemented scheme

Technique Jaccard Dice Accuracy Precision Sensitivity Specificity

Fuzzy WS 79.39± 1.57 87.26± 1.66 96.08± 2.26 89.14± 1.21 96.94± 1.61 96.84± 0.55
MRF 81.36± 2.11 86.38± 2.27 96.58± 1.36 90.24± 1.17 97.30± 1.21 96.57± 1.42
CV 82.28± 2.16 88.92± 2.05 97.11± 0.12 91.28± 1.04 97.11± 0.84 97.03± 0.27
DRLS 81.12± 1.53 85.71± 1.88 96.14± 2.13 91.07± 0.55 97.28± 1.04 96.31± 0.93
AC 79.38± 2.20 87.14± 0.48 95.24± 1.37 90.53± 2.07 96.52± 2.14 95.77± 1.73

Shannon WS 76.14± 1.17 85.28± 1.53 95.28± 1.82 86.15± 2.05 96.14± 1.02 96.38± 1.15
MRF 75.72± 2.16 84.17± 2.06 96.14± 1.72 86.18± 1.17 96.05± 2.70 97.61± 1.11
CV 76.19± 1.13 84.67± 1.46 96.23± 1.05 87.13± 0.77 96.17± 2.03 96.22± 0.64
DRLS 76.15± 2.32 86.17± 0.63 96.29± 1.16 86.18± 1.63 95.04± 1.32 97.08± 0.76
AC 75.36± 1.14 85.77± 1.59 96.10± 0.38 86.13± 2.74 96.00± 1.14 97.13± 0.37

Kapur WS 76.16± 1.05 84.31± 1.73 96.18± 2.04 85.18± 1.04 95.72± 0.62 97.10± 1.53
MRF 74.52± 2.06 83.28± 2.11 95.73± 1.48 84.16± 2.22 94.83± 0.48 96.21± 1.16
CV 76.28± 2.12 85.75± 2.06 96.71± 2.01 84.62± 1.16 95.37± 0.59 97.31± 1.04
DRLS 74.38± 2.05 84.17± 1.43 96.09± 1.64 85.18± 2.75 93.77± 0.64 96.13± 1.77
AC 75.35± 1.42 84.07± 1.42 95.58± 2.01 84.61± 1.73 96.72± 1.01 95.55± 0.26

Otsu WS 77.15± 1.36 85.27± 1.83 95.51± 2.22 88.13± 1.74 98.24± 0.15 96.18± 0.16
MRF 76.27± 1.53 85.12± 2.11 95.28± 0.64 87.15± 2.24 96.25± 1.03 95.77± 1.04
CV 77.74± 1.28 86.84± 1.66 96.18± 2.27 89.31± 0.85 96.18± 2.06 96.62± 1.16
DRLS 77.14± 1.35 85.83± 1.74 96.31± 1.63 88.58± 1.61 96.21± 1.11 96.15± 0.83
AC 76.88± 1.36 85.68± 2.17 95.99± 1.05 88.73± 1.62 95.26± 0.77 96.20± 1.37

Table 6: Similarity measures attained for Kvasir dataset with implemented scheme

Technique Jaccard Dice Accuracy Precision Sensitivity Specificity

Fuzzy WS 79.18± 1.36 86.22± 1.24 97.84± 1.06 88.17± 1.35 97.06± 0.54 98.25± 0.71
MRF 80.62± 1.15 86.72± 2.06 96.55± 2.14 89.18± 1.84 96.33± 1.06 98.14± 0.34
CV 83.31± 2.05 88.66± 1.81 98.25± 1.02 91.26± 1.30 97.50± 1.35 98.66± 0.04
DRLS 80.61± 1.53 87.12± 1.15 96.36± 1.14 88.64± 2.04 96.84± 1.52 98.32± 0.16
AC 81.27± 2.61 86.71± 0.46 97.04± 0.36 89.04 ± 1.58 95.15± 2.05 96.94± 1.17

Shannon WS 78.05± 2.17 85.11± 3.10 94.73± 1.38 90.25± 1.83 95.17± 1.33 95.14± 2.05
MRF 79.15± 1.16 84.78± 2.14 95.06± 1.22 91.16± 0.25 96.06± 0.38 94.62± 1.95
CV 79.35± 1.37 85.28± 1.16 95.04± 0.48 92.10± 1.11 95.75± 1.07 95.91± 0/63
DRLS 77.25± 1.32 83.71± 1.06 94.33± 2.15 91.14± 2.03 94.72± 1.06 95.72± 1.37
AC 77.38± 1.71 82.94± 2.72 94.11± 1.83 91.72± 1.06 94.82± 2.14 94.38± 1.52

Kapur WS 78.73± 1.95 86.26± 1.64 96.24± 1.28 90.72± 1.22 96.38± 0.84 96.32± 1.56
MRF 79.26± 2.04 85.61± 1.54 94.72± 1.61 90.67± 1.03 95.73± 1.08 96.14± 1.42
CV 80.14± 1.36 86.72± 1, 32 98.14± 0.92 90.57± 0.78 96.47± 1.13 97.36± 1.17
DRLS 77.26± 1.72 85.62± 1.38 94.15± 2.05 88.16± 2.32 94.72± 1.06 95.26± 1.81
AC 77.71± 2.50 85.38± 1.46 94.71± 1.53 88.63± 1.25 94.13± 1.62 94.93± 0.36

Otsu WS 76.81± 3.10 84.31± 2.17 93.88± 1.35 89.28± 1.04 93.55± 1.41 94.62± 1.07
MRF 77.24± 1.73 84.82± 1.83 94.04± 1.71 88.81± 2.52 94.72± 0.48 95.36± 1.32
CV 78.53± 1.19 85.07± 1.22 96.16± 0.72 89.72± 1.42 95.66± 1.05 96.18± 0.93
DRLS 75.63± 2.05 83.28± 1.82 94.38± 1.31 84.72± 1.24 93.18± 0.72 92.15± 3.06
AC 75.77± 1.26 84.11± 1.59 93.90± 1.44 84.51± 2.05 93.11± 1.04 93.36± 1.82
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After computing the essential SM from every dataset, a comparative assessment is executed
to verify the GP detection performance of the F+CV on the CI and EI as shown in Fig. 10.
From this figure, it can be observed that the Jaccard, Dice, accuracy and precision provided by
the F+CV is better on EI compared to the CI. The outcome of this research work confirms that
the proposed AOA supported joint thresholding and segmentation is clinically significant and in
future this scheme can be considered to evaluate the GP segment in the clinically collected EI
and CI. Further, the performance of the AOA is to be confirmed with other heuristic methods
existing in the literature.

Figure 10: Performance evaluation of Fuzzy + CV on considered image datasets

5 Conclusions

The assessment of the suspicious section in CI and EI is essential to identify the nature and
the severity of the Gastrointestinal-Disease (GD). In this research, AOA based joint thresholding
and segmentation is implemented to extract and evaluate the abnormal section from the test
image. In this research, initially a tri-level thresholding is implemented to enhance the test image
using a chosen threshold function. After the enhancement, the GP section is then extracted with
the chosen segmentation technique. In this work a detailed comparative study on thresholding
functions, such as Fuzzy, Shannon’s, Kapur’s and Otsu’s is initially presented and later the per-
formance of the segmentation techniques, such as WS, MRF, CV, DRLS and AC is presented.
The experimental investigation of this research confirms that the Fuzzy thresholding combined
with the CV (Fuzzy+CV) helped to provide a better SM on the considered benchmark CI and EI
datasets. From this research, it is confirmed that the AOA supported scheme provides a clinically
significant result with better values of Jaccard, Dice, accuracy and precision and in future, it can
be considered to examine the clinically collected CI and EI.
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