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Abstract: Cancer is the second deadliest human disease worldwide with high
mortality rate. Rehabilitation and treatment of this disease requires precise
and automatic assessment of effective drug response and control system.
Prediction of treated and untreated cancerous cell line is one of the most chal-
lenging problems for precise and targeted drug delivery and response. A novel
approach is proposed for prediction of drug treated and untreated cancer
cell line automatically by employing modified Deep neural networks. Human
hepatocellular carcinoma (HepG2) cells are exposed to anticancer drug func-
tionalized CFO@BTO nanoparticles developed by our lab. Prediction models
are developed by modifying ResNet101 and exploiting the transfer learning
concept. Last three layers of ResNet101 are re-trained for the identification
of drug treated cancer cells. Transfer learning approach in an appropriate
choice especially when there is limited amount of annotated data. The pro-
posed technique is validated on acquired 203 fluorescent microscopy images of
human HepG2 cells treated with drug functionalized cobalt ferrite@barium
titanate (CFO@BTO) magnetoelectric nanoparticles in vitro. The developed
approach achieved high prediction with accuracy of 97.5% and sensitivity of
100% and outperformed other approaches. The high performance reveals the
effectiveness of the approach. It is scalable and fully automatic prediction
approach which can be extended for other similar cell diseases such as lung,
brain tumor and breast cancer.
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1 Introduction

Cancer is the second most chronic disease causing the human deaths worldwide. It is estimated
that 9.6 million deaths occur due to cancer disease only in the year 2018 [1]. The most prevalent
cancers are lung and breast cancers in males and females respectively with 2.09 million cases
each [2,3]. Cancer cases are expected to increase by coming years, as the global population
is expected to become 7.5 billion from which 15 million new cases and 12 million deaths are
anticipated [4]. In South Asian developing countries, cancer risk is exponentially elevated with 25%
mortality rate [5,6]. Liver cancer is fourth leading cause of cancer deaths worldwide with number
0.782 million annually. It is common in adults and is closely associated with viral hepatitis B
and C. In developing countries, the death ratio is around 70% due to the unavailability of proper
healthcare facilities. High diagnosis and treatment cost lead to late-stage detection which increases
chance of mortality. Early, cost-effective and precise detection of liver cancer can save precious
human lives.

Owing to increasing mortality rates worldwide, cancer research is now rapidly expanding and
focused on searching new therapeutic entities such as nanoparticles based drugs that can selectively
target tumor tissues and minimize side effects of conventional treatments [7,8]. Magnetoelectric
nanoparticles have wide variety of application in the biomedical field. The nanoparticles have
ability to become an agent for diagnosis and therapy. Owing to their very small sizes, magne-
toelectric nanoparticles such as cobalt ferrite@barium titanate (CFO@BTO) functionalized with
anticancer drugs. It penetrates cancer cells efficiently and selectively and release their cargo (drug)
at tumor sites with the help of external magnetic field stimulation [9–11]. Microscopic images of
these particles can provide valuable information for rehabilitation and treatment purposes.

Heterogeneous nature of cancer cells limit therapeutic efficacy and outcome of anticancer
agents [12]. This implicates continual screening of new therapeutic leads in vitro which cause
selective apoptosis of cancer cells and spare healthy tissues [13]. Apoptosis/programmed cell death
is a cellular phenomenon by which irreparable cells are disposed of. Images obtained for several
morphological alterations in cell such as cellular shrinkage, condensation of the nucleus and
formation of membrane bound apoptotic bodies can be detectable under microscope [14,15].
However, it is challenging to analyze the huge microscopic image data manually with sufficient
precision. To overcome this, an automated and accurate prediction system is inevitable, particu-
larly, for in vitro cytotoxicity nano-formulated drug screening. In this regard, a novel approach is
proposed which uses Deep Neural Networks (DNN) models to analyze images for prediction of
HepG2 drug treated and untreated cancer cell automatically.

Recently, DNN emerged as one of the highly useful areas of machine learning and is
being successfully applied for object recognition, natural language processing, speech recognition
systems, etc. Particularly, it gained significant popularity among researchers to solve real world
challenging problems such as medical disease diagnosis, drug induced liver diseases and analysis
of chemical compound structures [16–20]. Baskin et al. used machine learning based model to
analyze the complex toxicongenmics data [21]. DNN composed of several layers (convolution,
pooling, fully connected and classification layers) connected through synaptic weights to perform
the prediction tasks. DNN gradually improved performance by extracting image features by
employing various kernel sizes [22].

The main challenge in the utilization of DNN based approaches for prediction of cancer cell
images is the requirement of large amount of annotated data. Owing to the low prevalence of
cancer disease, the availability of annotated data is a big scarcity. The annotation of data is very
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challenging and time-consuming process [19,22,23]. To address this, an excellent idea of using
existing models which are developed for a particular task may be applied for a new problem of
other domain. This idea is better known as transfer learning (TL) concept. TL is very effective
especially when there is relatively small amount of annotated data. This is very common in medial
domain such as liver cancer data. Harrison et al. proposed a DNN based lipid-nanoparticle model
for drug delivery response. Their approach is based on CNN and performed well by utilizing
extracted features from content images and fed to LSTM model for drug delivery prediction [24].

Kensert et al. explored various CNN models by employing TL for classification of cell images.
They have observed the morphological variations using microscopic cell images. The proposed
model was able to predict different cell morphologies accurately [25].

Zhang et al. reported the use of DNN models for analysis of biological images by employing
TL approach [26]. Phan et al. used TL approach for classification of mitosis datasets and obtained
high performance on the standard dataset [27]. Bayramoglu and Heikkilä et al. make a comparison
of DNN-TL approach with the DNN models trained from scratch. They have observed that the
TL approach offers better performance compared to the model trained on biomedical images from
scratch [28]. Rifaioglu et al. proposed DNN based approach for the prediction of drug interaction
using compound chemical images [29]. Chang et al. reported CDRscan DNN based model for the
prediction of drug response on compound molecular structure data. Their approach outperformed
compared to the conventional machine learning approaches [30].

DNN has ability to exploit and extract abundant information from patches of microscopic
cancer cell images which can be used for drug delivery response assessments. The proposed
approach provides a complete study cycle from drug development, in vitro delivery, and acquisition
of fluorescent microscopic images followed by the development of drug response prediction using
DNN by employing TL concept. Main contributions are given as follows:

1) Development of functionalized CFO@BTO drug for treatment of HepG2 cancer cells.
2) In vitro experiments for precise drug delivery.
3) Acquisition of fluorescent microscopic images for evaluation of developed Deep learning

model.
4) Development of efficient DNN-TL based prediction models for human HepG2 cancer cells

drug delivery response assessment.

Rest of the paper is organized as follows. Material used in experiments and DNN based
methods are elaborated in Section 2. Results of the proposed approach are explained in Sec-
tion 3, whereas, discussion is presented in Section 4. Conclusions and future recommendations are
presented in Section 5.

2 Material and Methods

2.1 Materials
2.1.1 Drug Development and Delivery

The nanocomposite (CFO@BTO) was synthesized using sono-chemical method in multiple
steps. In first step, spherical cobalt ferrite (CFO) nanoparticles were prepared by 0.05 M solution
(100 mL) of iron nitrate Fe(NO3)3 * 9H2O and cobalt nitrate Co(NO3)2 * 6H2O with molar
ratio Fe:Co (2:1) in deionized water. The solution was heated at 700C with addition of 5 M
NaOH for one hour. After that the formed precipitates were washed and etched using 0.2 M
HNO3. In the second step, piezoelectric barium titanate (BTO) shell around CFO nanoparticles
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was formed using 0.1 M solutions of Ba (NO3) and Titanium isopropoxide in 30 mL water and
ethanol, respectively. The precursor solution was heated at 70◦C and sonicated for four hours with
addition of 5 M NaOH and etched CFO solutions. In the third step, prepared nanocomposite was
treated with surfactant (oleic acid) to achieve colloidal stability in chloroform [31], which is prime
requisite for biological studies. The hydrophobic phase of dispersed nanoparticles in chloroform
was converted into hydrophilic phase by coating with synthesized 0.8 M polyisobutylene alt malic
anhydride (PMA) polymer [32]. The polymer coated nanoparticles were further used for drug
attachment after purification with centrifugal filters. Doxorubicin (DOX) and methotrexate (MTX)
drugs were attached using optimized 0.096 M 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC) concentration, the sample was incubated with EDC for one hour followed by addition
of 0.5 M DOX and MTX respectively with further incubation for one hour. The centrifugal
filters were used to remove the unbound drug from sample and drug encapsulation/drug loading
efficiency was estimated using following equations.

Drug encapsulation efficiency= absorbance of drug used− abosrbance of waste
absorbance of drug used

× 100 (1)

Drug loading capacity = entraped drug
nanoparticles weight

× 100 (2)

The drug encapsulation efficiency (80% and 82.4%) and drug loading capacity (43.5% &
47.0%) was confirmed for DOX and MTX, respectively. The functionalized nanoparticles were
further used for in vitro cytotoxicity studies where attached drug DOX/MTX was released in
controlled manner (by magnetoelectric features) using 5 mT external A.C. magnetic field [32].
Acquired treated and untreated sample images are shown in Fig. 1. The basic study was given
in [32]. Drug treated and untreated images are acquired for the development of Deep learning
based drug delivery and response prediction models.

2.1.2 HepG2 Fluorescent Microscopic Images
A total of 203 fluorescent microscopic images of human HepG2 cells were acquired before

and after treatment of functionalized CFO@BTO nano carriers. The treated images are obtained
at 5 µg/mL dose for 4 h by applying magnetic field of 5mT for 20 min. Out of 203 images,
123 are untreated and 80 are treated. For training and testing of Deep learning models, the
dataset was split into the ratio of 75%:25%. For model development and experimentation, Intel
Xeon E-2246G, 3.6 GHz processor equipped with NVIDIA GeForce RTX-2080 GPU and Matlab
2018(a) were used.

2.2 Methods
The framework of the proposed prediction system using Deep learning for in vitro HepG2

drug delivery of cobalt ferrite@barium titanate (CFO@BTO) magnetoelectric and nanoparticles
is shown in Fig. 2. The system composed of different phases. In first phase, nano-drug carriers
were developed and in phase-II, the develop drug was deliver to the HepG2 cells. The cell
fluorescent images of drug treated and untreated are acquired using fluorescent microscopic images
in phase-III. These acquired images are assessed manually by the experts to see if the drug has any
impairment of HepG2 cells. The detail on drug development and delivery is provided in material
Section 2.1. It is very difficult to assess these images manually as the process is cumbersome and
prone to human error. In this regard, it is vital to develop an automated system which precisely
predicts the delivery and outcome of therapeutic agents. To the best of our knowledge, TL-DNN
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Figure 1: Sample fluorescent microscopic images (200X magnification, scale bar) of HepG2 cells
in vitro (a) cells treated with drug functionalized CFO@BTO NPs and (b) untreated cells
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has not been explored for this type of problem. In this context, a novel approach is developed
based on Deep neural networks. Finally, in phase-IV, the prediction model based on modified
ResNet101 TL is developed. Each component of phase-IV is explained subsequently. For model
testing, an unseen data is provided and evaluated its effectiveness.

Figure 2: The proposed prediction system based on Deep learning for in vitro drug delivery
response prediction of functionalized CFO@BTO magneto electric nanoparticles in HepG2 cells

2.2.1 Pre-Processing
The important phase of the proposed approach is the classification of input images (obtained

from phase-III) for the assessment of drug delivery. For this purpose, we have developed an
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effective classification approach using Deep transfer learning. Modified ResNet101 Deep learning
model is employed for HepG2 drug treated cancer cells prediction. TL is an effective way of using
existing model weights for new classification problem especially when we have relatively small and
unbalanced datasets due to limited availability of experimental data. In this regard, last layers
are modified and perform training by freezing weights of other layers. In TL, it is vital to align
the input images size with the network input layers. We resize the given images into 224× 224 to
make them compatible with the ResNet101 input dimension. The entire dataset is randomly split
into 75:25 ratio for model training and testing, respectively.

2.2.2 Deep Learning (Convolutional Neural Networks)
Owing to high precision and scalability, CNN gained attention of researchers and being

widely used for enormous applications of real life such as object recognition, natural language
processing and disease diagnosis. The complex problems such as non-linear classification can
be successfully solved using CNN. It performs various operations at various stages such as
convolution and pooling, to extract most important features used for drug treated disease cells
classification [33]. These various layers are stacked and extract useful features of the given input
image followed by softmax classification layers.

One of the most brilliant concepts used in CNN is TL. As CNN required huge amount of
training data, hence, it is convenient to use learned weights of CNN model which are funda-
mentally trained for other problems and re-train some of its layers for new drug treated cancer
cells prediction problem. Usually, the fully connected (FC) layers are replaced according to new
problem classes. In this research, ResNet101 CNN model used which was originally trained on
state-of-the-art ImageNet dataset for 1000 classes [34]. The last FC layers of the trained ResNet101
are modified for new binary HepG2 cancer drug treated cells prediction problem.

In vitro HepG2 drug delivery response prediction is one of the complex problems which is
solved by the TL-CNN approach. For this purpose, an automated system has been developed
that can be assessed for the efficacy of drug used to eradicate cancer cells. The graphical rep-
resentation of the developed TL-ResNet101 for prediction of in vitro HepG2 drug treated and
untreated cancer cells are shown in Fig. 3. The components of CNN are explained in subsequent
sub-sections.

2.2.3 Convolutional Layers
The coevolution layers of CNN play a vital role for feature extraction and it behaves different

at the beginning and last layers. The initial layers used to extract low level features, whereas
the last convolutional layers extract high level features such as edges etc. Fig. 3 shows different
operation of ResNet101 architecture having several layers with different convolutional function
and kernel sizes. The convolutional layers are followed by pooling and FC layers for final class
prediction. Each convolution layer used activation function to learn and optimize the weights for
accurate prediction. Obtained microscopic images of HepG2 drug treated cells with CFO@BTO
are passed to the CNN to assess effective of drug response prediction. CNN explored hidden
patterns present in images at various convolutional layers and extract useful information for
classification. The cascading nature of network helps to learn the weights in sequential manners
using maximum network input and generate the output map for treated cancer liver cell response
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prediction. Following expressions are used to attain the output map of the neural networks:

Mn
x =

Mn−1
x −Kn

x

Snx+ 1
+ 1

Mn
y =

Mn−1
y −Kn

y

Sny + 1
+ 1

(3)

where, maps of the input Mx and outputs My are and with equal sizes M, respectively. Ker-
nel sizes are Kx and Ky having stride and layers index S and n, respectively. Moreover, the
convolutional layers have included pooling layers are represented in Fig. 2.

Figure 3: The cross-section of TL-ResNet101 architecture used for in vitro HepG2 drug treated
and untreated cancer cell prediction

2.2.4 Pooling Layers
The objective of pooling layers is to reduce input size by down sampling to make compu-

tationally optimal and input translation invariant. Mostly, max pooling is used because object
identification requires size, shape and morphology [35,36]. The output of max pool operation is
achieved by the following expression:

yi = max
1≤j≤M×M

(xj), xj ∈Xi (4)

where X= {X0,X1, . . . ,Xn} is composed of local regions X0,X1, . . . ,Xn of input. For example, the
ith sub-image Xi = (x1,x2, . . . ,xM×M) each sub-image having the size of M. Pooling operation in
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CNN finds the most discriminate features of liver cancer cell images to identify the drug deliver
to the cells. In this research, we have used 2× 2 pooling kernel with stride S= 2.

2.2.5 Loss Function
The loss function (LF) is used to assess actual values and networks predicted output values in

feed-forward manner. Cross entropy loss function is employed for model training. The multi-class
loss function is modified as given in the following expression:

LF =− 1
N

N∑

i=1

zi · log(p(zi))+ (1− zi) · log(1− p(zi)) (5)

For current binary class problem, the loss function is represented as follows:

LFBinary=−zi · log(p(zi))+ (1− zi) · log(1− p(zi)) (6)

where, p(z) is the probability of the model’s predicated class z.

2.2.6 FC Layers
In ResNet101 CNN model, the role of FC layers is to find the probabilities of classes using

activation function on the obtained optimal features provided by the ‘avg pool’ layer. The output
neurons of the networks are varied from problem to problem. For current binary class problem
there are two output neurons. Finally, softmax activation function is applied at output neurons
to attain the model predicted class of treated/untreated sample. Expression for softmax activation
function is given in Eq. (7).

sof tmax(Ŷ i) =
exp(yi)

∑2
j=1 exp(yj)

(7)

where, Ŷ is the input vector to the softmax activation function, y is the elements of the input
vector.

2.2.7 Transfer Learning (TL)
TL is a popular approach applied in CNN when annotated data is relatively small. It has been

successfully used for the prediction of modality, colon polyps, skin cancer, HBV, lung nodules
etc. [22,37–39]. TL utilized the weights of pre-trained models which are trained on standard
ImageNet dataset and retrained after modifications for entirely new problem. Fundamentally,
in TL most of the network layer’s weights are frozen and re-trained the existing networks for
some of the last layers followed by hyper parameter tunings [27,40–42]. In this work, challenging
problem of in vitro HepG2 drug treated cancer cells response predictions using TL approach by
modifying pre-trained ResNet101 DNN model is solved. The last FC, softmax and classification
layers modified and retrain for the current binary class problem instead of actual 1000 classes. The
newly trained layers specified the high abstraction for object representation of drug treated cancer
cells. For optimal results, the hyper parameters of data augmentation, batch size and learning
rates are tuned for values of (−30, 30), 20, 0.001 respectively.

The residual learning concept used by ResNet101 is to obtain better generalization as shown
in Fig. 4. This concept makes ResNet101 more appropriate to avoid over fitting and achieve
generalization compared to sequential DNN models such as AlexNet and VGG net for prediction
problems [34,42–44]. In Fig. 4, the input and activation functions are x and F(x) respectively.
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When activation function returned 0, the residual learning process bypasses the current block and
assigned y= x followed by Relu activation function.

Figure 4: The residual learning flow of ResNet architecture

2.2.8 Performance Evaluation
The standard training and testing evaluation measures are used to assess the efficacy of the

proposed approach. These measures are being widely used for models evaluation. We have assessed
the proposed approach based on the following criteria.

Accuracy= TP+TN
P+N

(8)

Senstivity (or recall)= TP
P

(9)

Specificity= TN
N

(10)

FScore = 2× precision× senstivity
precision+ senstivity

(11)

Precision= TP
TP+FP

(12)

MCC = TP×TN −FP×FN√
(P×N)(TP+FN)(TN+FP)

(13)

where, TP, TN, P and N are, true positive, true negative, total positives and total negatives,
respectively. Similarly, FP and FN are false positives, and false negatives, respectively. Moreover,
Kappa statistics, ROC curves are also computed to assess the usefulness of the approach.
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3 Results

Extensive experiments are performed to assess the performance of the developed approach.
This research used a total of 203 microscopic fluorescent images of HepG2 cells received drug
of functionalized CFO@BTO nanocarriers. The images were acquired at 5 µg/ml dose for 4 h by
applying magnetic field of 5mT for 20 min. Samples successfully received drug are 80 out of 203
known as treated and rest of the sample images were obtained before the drug delivery known as
untreated samples.

As mentioned in Sec. 2.2.8, the approach is evaluated using various evaluation criteria. Fig. 5
shows the performance evaluation in terms of accuracy, sensitivity, specificity, precision, F-score,
MCC and Kappa index. These measures provided the high performance above 93% which indicate
that the developed approach is effective for drug response prediction.

Figure 5: Performance evaluation of the proposed approach

The developed ResNet101 based TL approach is compared, in terms of ROC curves and
AUC, with ResNet18 and InceptionV3 models. These comparisons are depicted in Fig. 6. It is
clearly observed that the proposed approach is convincing in terms of both ROC and AUC. The
developed approach offered 96.4% AUC which is higher than its competitors.

Tendency of the training and testing loss of the proposed approach is shown in Fig. 7. The
training and testing accuracy curves are also shown in Fig. 8. Both of these figures highlighted
learning behavior of the developed approach on training and unseen data. Performance com-
parison of the proposed approach and other state-of-the-art techniques are given in Tab. 1. The
ANOVA (analysis of variance) statistical test is applied to assess the significance difference of the
developed and other approaches (ResNet18 and InceptionV3) and is given in Tab. 2. The ANOVA
test shows that there is significant difference (rejecting the Null Hypothesis) among the average
performance of the developed and other approaches. This aspect is supported and validated by
the Fig. 6 and Tab. 1.
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Figure 6: ROC curves of the proposed and other models

Figure 7: Training and testing loss trend of the proposed model

4 Discussion

Caner is the second deadliest disease worldwide with very high mortality rate. One of the
most challenging tasks is to deliver drug precisely and observe the response of the cancerous cells
at nanoscale while saving normal ones. Effective drug discovery, particularly, for cancer disease
such as HepG2 is another challenging area. In our lab, CFO@BTO nano-drug carriers have been
developed and delivered to HepG2 cells [32]. Extensive in vitro experiments have been performed
to assess the effectiveness and response of the drug loaded by CFO@BTO nano-carriers on liver
cancer cells. The fluorescent microscopic images of CFO@BTO drug treated and untreated cells
were obtained to evaluate efficacy of nano-drug carriers. It is very cumbersome to assess such
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microscopic images manually. To overcome this challenge, a new approach based on Deep learning
is developed which precisely predicts drug response of the treated cells automatically.

Figure 8: Training and testing performance of the proposed model in terms of accuracy

Table 1: Performance comparison of the proposed and other approaches

Performance measures ResNet18 InceptionV3 Proposed approach

Accuracy 0.875 0.926 0.975
Sensitivity 0.884 0.931 1.00
Specificity 0.857 0.916 0.929
Precision 0.920 0.964 0.964
F-Score 0.902 0.947 0.982
MCC 0.73 0.829 0.946

Table 2: ANOVA statistical test of various classifiers

DF Sum of square Mean square F-Value Prob. > F

Model 2 6759.25 3379.62 110.24 <0
Error 480 14714.40 30.65
Total 482 21473.66

CNN has been successfully used to solve many real-world challenging problems. Usually,
training of machine learning models on relatively small dataset provides low prediction per-
formance due to over fitting and poor generalization. For improved performance, various data
oversampling techniques are used to generate more training samples. In medical domain, acquiring
of large amount of annotated data is difficult due to experimental limitations. In this study, CNN
approach in conjunction with TL concept is employed. Usually, CNN requires huge amount of
annotated data and high computational power for model development. The small amount of
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annotated data of in vitro HepG2 cancer cells is acquired. At the given data scale, training of
new CNN model from scratch is infeasible. In this scenario, it is very beneficial to use the existing
pre-trained CNN models by employing TL concept to solve in vitro HepG2 cell drug response
prediction problem. The TL concept was utilized to re-train FC layers of ResNet101 architecture
to predict the in vitro drug delivery to HepG2 cell line using microscopic images. The proposed
solution has significance if it embedded with the imaging device and might be able to assess the
drug effectiveness automatically.

Fig. 1 shows samples of fluorescent microscopic images of HepG2 treated with developed
CFO@BTO nanoparticle drug. It has been observed from these images that drug treated samples
have a very minute variation which can be easily skip by manual assessment. These minute change
in the morphology of cell structures induced by the drug is successfully captured by the developed
approach.

The received nanomaterial based developed drug CFO@BTO by in vitro HepG2 cancer cell
treatment response is predicted by the developed approach with an accuracy of 97.5% (Tab. 1).
Moreover, the performance comparison of the developed approach is made with other CNN
models. It is observed that the developed approach attained 7% and 5% improved accuracy
over InceptionV3 and ResNet18 respectively. The proposed approach has capability to locate
inappropriate and certain minute variations precisely. Owing to this characteristic, it attained
higher performance compared to other state-of-the-art approaches. Moreover, TL-ResNet101 has
residual learning ability with more depth of the network. These characteristics of the developed
approach helped to learn low as well as high level features to predict drug response precisely.

It is vital for a diagnosis system to identify the positive cases accurately. The false negative
cases in medical domain are significant and have impact on treatment and rehabilitation process.
The developed approach offers sensitivity of 100% which is supporting for identification of drug
treated cells and 7% higher than the competitors as indicated in Tab. 1. Other measures such as
specificity, precision, F-score, MCC and Kappa index are also high compared to the other models.

The learning performance process of the developed approach can be validated by Fig. 8. It is
observed that during model development, training and testing performances of the approach are
consistent. After execution of 160 epochs, the model becomes stable and stop the training process.
Similar behavior is also observed from Fig. 7 (loss function).

Statistical tests are one of the important aspects of model training and evaluation. The devel-
oped and other two state-of-the-art model’s average performances were evaluated using ANOVA
statistical test. It is evident from Tab. 1 that ANOVA has rejected the null hypothesis of similar
average performance behavior as validated by Tab. 2.

In summary, the dataset used in this research is developed by our lab from drug develop-
ment to fluorescent image acquisition followed by development of Deep learning based drug
response prediction system for HepG2 in vitro drug treated and untreated cancer cells. Finally, a
performance comparison of various s techniques and observed outperformance of the developed
approach. This system can be deployed for the prediction of drug delivery response to cancerous
cells. The developed framework is not limited to predict drug functionalized CFO@BTO treated
cells. However, it can be modified for other similar problems such as lungs, brain tumor, and
breast cancer. On the other hand, the developed approach has following limitations: (i) availability
of annotated dataset, and (ii) high computational power requirement. It is very challenging to
develop a real patient’s labeled dataset to train a machine learning model. The developed computer
software code is available and can be shared for validation and further enhancement.
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5 Conclusion

It is vital to identify the HepG2 cancer in its early stage for better treatment and rehabili-
tation process. In vitro experiments were performed on HepG2 cells which were exposed to novel
anticancer drug functionalized CFO@BTO nanoparticles developed. The microscopic fluorescent
images were obtained to predict the drug delivery response at nanoscale. A new, an efficient and
automatic response prediction system using ResNet101 and TL concept was developed. The model
effectively predicts the drug response of those cells where drug has successfully delivered. The
proposed approach has achieved 97.5%, 100%, 98.2% values of accuracy, sensitivity, and F-scores,
respectively. Further, comparison with other state-of-the-art approaches was performed. It has
been observed that the developed system outperformed InsecptionV3 and ResNet18. The enhanced
performance of 7% and 5% of the developed model in terms of accuracy and sensitivity has
been observed. The developed Deep learning based framework may consider for a new prediction
strategy and can be extended for the assessment of other in vitro drug delivery response prediction
system. Moreover, the developed system can be deployed as web applications for the drug response
prediction.
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