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Abstract: In issues like hearing impairment, speech therapy and hearing aids
play a major role in reducing the impairment. Removal of noise signals from
speech signals is a key task in hearing aids as well as in speech therapy. During
the transmission of speech signals, several noise components contaminate
the actual speech components. This paper addresses a new adaptive speech
enhancement (ASE) method based on a modified version of singular spec-
trum analysis (MSSA). The MSSA generates a reference signal for ASE and
makes the ASE is free from feeding reference component. The MSSA adopts
three key steps for generating the reference from the contaminated speech
only. These are decomposition, grouping and reconstruction. The generated
reference is taken as a reference for variable size adaptive learning algorithms.
In this work two categories of adaptive learning algorithms are used. They
are step variable adaptive learning (SVAL) algorithm and time variable step
size adaptive learning (TVAL). Further, sign regressor function is applied
to adaptive learning algorithms to reduce the computational complexity of
the proposed adaptive learning algorithms. The performance measures of the
proposed schemes are calculated in terms of signal to noise ratio improvement
(SNRI), excess mean square error (EMSE) and misadjustment (MSD). For
cockpit noise these measures are found to be 29.2850, –27.6060 and 0.0758 dB
respectively during the experiments using SVAL algorithm. By considering the
reduced number of multiplications the sign regressor version of SVAL based
ASE method is found to better then the counter parts.

Keywords: Adaptive algorithm; speech enhancement; singular spectrum
analysis; reference free noise canceller; variable step size

1 Introduction

Adaptive speech enhancement plays a key role in speech therapy as well as in hearing aids.
In speech therapy the presence of noise degrades the quality of the speech and hence the
therapy may not be faithful. Further, ambiguities due to noise leads improper identification of
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audio signals and lead to unsatisfactory results in speech recognition. Hence, facilitating a high-
resolution speech signal is highly desirable in speech therapy applications. In the literature several
contributions are made in this aspect. In Laufer et al. [1], Bayesian hierarchical model approach
is used for speech enhancement. This method relies on the Gaussian prior of the speech signal
and gamma hyper. Spectra mapping [2] is used in throat microphone to avoid acoustic noises.
Low band and high band spectral structures between acoustic microphone and throat microphone
speech are considered in this analysis. A dynamic filter structure is proposed for speech enhance-
ment, it performs instantaneously based on noisy speech signal. Enhancement of speech signal
is done by using two gain functions, i.e., estimation of noise power spectrum and estimation of
noisy speech spectrum signal. Variances of this power estimation signal degrades quality of speech
signal, so the proposed method estimates noisy power spectrum signals based on adaptive time
segmentation. Further demonstration of adaptive segmentation was done based on decision-based
speech enhancement and maximum likelihood are proposed in [3,4]. Convolution neural networks
(CNN) are used for speech enhancement by utilizing data from various modules. Audio visual
deep CNN [5] network is proposed for speech enhancement by utilizing audio and visual stream
frame networks. The reconstruction of audio and visual signals is done at the output of the
system. Compressive sensing [6] is used for speech enhancement and is performed in frequency
domain. A new adaptive beam-forming algorithm was suggested to avoid noisy car environments
to improve speech recognition. It contains speech and noise signals in constrained sections as noise
adaptive beam-former and speech adaptive beam-former. Later performance investigation was
done using delay and sum beam-forming to decrease the word error rate in identification of speech
signal. Also auto regression-based gaussian distribution and Laplacian distribution is used for
enhancing speech signal are described in [7–12]. The proposed Laplacian prior estimators minimize
unnecessary noise signals in desired speech signals. By deriving minimum mean square error and
reducing distortion in speech signals with the use of linear bilateral Laplacian gain estimator and
non-linear bilateral gain estimators. Main aim of speech enhancement algorithm [13] is to improve
intelligibility and quality of noisy speech signal by using spectral or temporal modifications.
Maximum speech signal enhancement is done using magnitude spectrum. In Mowlaee et al. [14],
magnitude and phase spectra are changed in order to enhance noisy speech signals using multi-
level speech enhancement algorithm. Double spectrum consists of modulation transforms further
pitch synchronization is used for enhancement of single channel speech signal [15]. Frame wise
context modeling is also considered with adaptive filter coefficient frame wise tracking, so that
robust performance is obtained in non-stationary noisy condition of speech signals [16]. For
speech enhancement, semi supervised multi channels with non-negative matrix factorization [17–
19] is used to reduce noisy signals along with constraint variants called as independent low matrix
analysis. Unsupervised speech enhancement low power spectral densities are considered in Ming
et al. [20]. Various adaptive learning algorithms are presented in [21–25]. Adaptive low rank
matrix decomposition is often used for signal enhancement and enhanced efficiency in terms of
speech quality. In these contributions mainly two aspects are not addressed. They are reference
generation from the noisy speech signal and reduction of computational complexity of the speech
enhancement algorithm.

In order to address this limitation, in this manuscript both the aspects of reference generation
form the noisy speech and reduction of computational complexity are considered. These two are
key entities for the development of system on chip realizations. A modified singular spectrum
analysis (MSSA) with modified grouping step is used for reference generation from the noisy
speech signal. This is fed to ASE module, which is driven by an adaptive learning algorithm. In
our experiments we have used SVAL and TVAL methods. These algorithms are combined with
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sign regressor function. This function minimizes the computational complexity of the algorithm
by an amount equal to the tap length of the filter. The methodology of MSSA for reference
generation and adaptive learning algorithms for speech enhancement process are discussed in
Section 2. The experimental results are illustrated and presented in Section 3.

2 Hybrid Adaptive Algorithm for Speech Enhancement

In real time applications, removal of noise from the desired signal is considered as inverse
problem. It means artifacts are removed from contaminated signal. In this work, it is proposed to
eliminate the noise signal from the contaminated speech waves. For this a modified SSA (MSSA)
algorithm is used for the generation of reference signal. In an adaptive speech enhancer reference
signal is a key element. The reference generated from MSSA is fed to the adaptive learning
algorithm. The learning algorithm trains the weight coefficients and trains the weight coefficients,
in such a way the reference and contamination in the actual speech signal are correlates with each
other. Then both the correlated components get cancel with each other. The MSSA extracts an
embedded feature matrix from the speech signal. This matrix is a delayed version and the matrix
elements are grouped by using k-means algorithm. Then for each cluster group, Eigen values and
eigen vectors are computed using singular value decomposition. For estimating noise components
in speech signal, minimum description length concept is considered. It will give dimension length
of each eigen vector for estimating speech signal. But to estimate dimension length of each eigen
vector, magnitude difference between eigen values is maintained for representing enhanced speech
signal and noise signal. As Magnitude of noisy speech signal is high, MSSA has better perfor-
mance in removing noisy speech signal efficiently. These four steps are followed in MSSA [26]:
they are Embedding, Decomposition, Grouping and Reconstruction. Let us consider contaminated
speech signal and it is represented as

r(i)= s(i)+ n(i) (1)

where ‘s’ is a desired signal, ‘n’ is noise component signal, ‘i’ is number of samples. In first step,
sampled data vector of single channel ‘i’, r= [r(1), r(2), . . . , r(I)] maps to multivariate matrix R as

R=

⎡
⎢⎢⎢⎣
r (1) r (2) . . . r (T)

r (2) r (3) . . . r (T + 1)
...

r(K)

...
r(K + 1)

...
r(I)

⎤
⎥⎥⎥⎦ (2)

where ‘K’ is window length T = I–K + 1, window length ‘K’ is selected based on criteria K >
fs/f, here f and fs are signal frequency and sample frequency of a signal of interest respectively.
Trajectory matrices of desired speech signal are s(i) and n(i) respectively, then measured signal
trajectory matrix r(i)= s(i)+ n(i) is represented as R = S + N, where matrix ‘N’ is estimated by
using trajectory matrix ‘R’. In next step, singular value decomposition is performed on trajectory
matrix R = V

∑
W , where V and W are left and right orthogonal matrices respectively and its

column elements contains eigen vectors of matrix D,
∑

is a rectangular diagonal matrix, its
elements are eigen values with squared roots. Golub and Reinsh algorithms generally perform
singular value decomposition on rectangular matrix with K × T dimension and it involves
o(K2T + KT2 + T3). By using eigen value decomposition and covariance matrix, singular value
decomposition is performed on trajectory matrix as H = BBT , then the covariance matrix ‘H’,
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eigen values and eigen vectors are represented as ð1,ð2, . . . ,ðK and 91,92, . . . ,9K ≥ 0, so that right
orthogonal matrix W of tth eigen vector is represented as

wk =BT
9t√
ðt

(3)

where, t = 1,2, . . ., K. Measured signal R for tth component trajectory matrix is expressed as

Bt =
√

ðt9t9t
T (4)

By substituting Eq. (3) in Eq. (4), tth trajectory matrix Bt is represents as

Bt = 9t9t
TB (5)

9t9tT term in Eq. (5) forms a tth component subspace element in single vector B, then Eq. (2)
trajectory matrix is decomposing into K elements so that R= R1 +R2 + . . .RK was obtained. In
grouping step, basic SSAs trajectory matrix Bt with elements t = {1, 2, . . ., K} splits into ‘J’
groups, here J value is considered as two because in measuring speech signal enhanced speech
signal is obtained from combination of desired signal and artifact signal. But in general, SSA
grouping step is performed based on eigen value magnitudes of trajectory matrix. For example,
initially in grouping trajectory matrices high energy signal magnitudes with large own values are
considered, then corresponding trajectory matrices with recognized arguments are added to get a
trajectory matrix of high energy signal. For trajectory matrix automatic grouping and minimum
description length is considered to get desired signal. In case of noisy speech signal reduction this
grouping criterion does not work well as artifact signal varies with time signal. So, a new grouping
criterion is considered, based on eigen vectors local mobility. For given signal, eigen vectors are
represented with frequency components then in grouping step local mobility of every eigen vector
is exploited. To define tth eigen vector local mobility 9t = [9t(1),9t(2), . . . ,9t(K)], defined difference
signal d(i) as d(i)= 9t(i)−9t(i− 1), i= 1, 2, . . . ,K. Then for eigen vector 9t, local mobility mk is
represented as

mk =
F1

F0
(6)

where F1 =
√∑K−1

i=1 d(i)
K−1 ,F0 =

√∑K
i=1 9t(i)
K , here F1 represents average of difference signal and it

increases as 9t frequency increases. To determine threshold value, investigated local mobility for
sinusoidal frequency then its maximum frequency component and local mobility value is also
fixed. By projecting data matrix R, estimated trajectory matrix with eigen vectors 9t is obtained
as N̂ = 9191

TR. Finally, reconstruction step for MSSA is obtained by estimating trajectory matrix
with signal of interest as N̂ and it maps to single channel signal. Now for example, trajectory
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matrix âtg with ‘t’ rows and ‘g’ columns then reconstruction step for single channel noisy signal

n̂(i) is mathematically expressed from estimated trajectory matrix N̂ as

n̂(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
i

i∑
t=1

n̂t,i−t+1 for 1≥ i<K

1
K

K∑
t=1

n̂t,i−t+1 for K ≥ i≤T

1
I − i+ 1

I−T+1∑
t=i−T+1

n̂t,i−t+1 for T < i≤ I

(7)

Step Variable Size Adaptive Learning Algorithm with Modified Singular Spectrum Analysis Based
Reference Generation

Once the reference signal is generated by the MSSA based decomposition it is fed to the noise
canceller. The learning algorithm trains the weight coefficients, such that the reference and noise
component present in the actual speech correlates with each other and there by cancel with each
other [27]. The block diagram of proposed MSSA based adaptive speech enhancer is shown in
Fig. 1. Based on steepest descent algorithm, least mean square (LMS) algorithm weight update
equation is estimated to get error free speech signal.

Figure 1: Block diagram of adaptive noise canceller using MSSA based reference generation

Output of FIR filter is

r(i)= aT (i)c(i) (8)

Error n(i) is defined as difference between desired response and actual response

n(i)= s(i)− r(i) (9)

Then the weight update equation becomes

a(i+ 1)= a(i)+ωn(i)c(i) (10)

where n(i) is error in adaptive filter, s(i) is desired output, c(i) is filter input and ω is step size
for updating weight vector.
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Normalized adaptive algorithm weight update equation is given as

a(i+ 1)= a(i)+ ω

K + c2(i)
ωn(i)c(i) (11)

Here ‘K’ is constant

In non-stationary environment, estimating variability and convergence time are main parame-
ters, they are controlled by minimum cost function and vary with time and step size parameter. If
the step size is smaller, a lot of iterations are required and there will be less residual noise. Hence,
an optimized step value has to be chosen [27]. Similar to constant step size adaptive learning
algorithm, in Ram et al. [28] an adaptive step size algorithm is proposed. Flowchart for speech
enhancement process using SVAL algorithm with MSSA based reference generation is shown in
Fig. 2.

Figure 2: Flowchart of adaptive speech enhancement using modified singular spectrum analysis-
based reference generation

For this a Step size ω is updated with the following equation and it is expressed as

ω(i+ 1)=ω(i)+ σn(i)θH(i)c(i) (12)

θH is a gradient vector and it is defined as ratio of partial derivative of weight update vector at
each sample with respect to step size at each sample.

θH(i)= ∂a(i)
∂ω(i)

(13)
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Here σ is a small positive constant and it will control step size parameter updating. In
practice, LMS is exponentially convergent, whereas sign algorithms are linearly convergence.
Therefore, signed algorithms makes convergence slower when initial weight updating equation is
far from optimum [29]. For minimizing computational complexity, the variable step algorithms are
combined with signum function. The resultant mathematical recursions are written as,

a(i+ 1)= a(i)+ωn(i)signc(i) (14)

a(i+ 1)= a(i)+ ω

K + c2(i)
ωn(i)signc(i) (15)

Finally, exact speech signal ŝ(i) is extracted by subtracting estimated noisy signal from the
calculated speech signal r(i) and it is expressed as

ŝ(i)= r(i)− n̂(i)= s(i)+ n(i)− n̂(i) (16)

a(i+ 1)= a(i)+ωs(i)nr(i− l) (17)

Here nr noise reference signal, it is obtained by passing through reference generator, ‘J’ is filter
order with length l = 0, 1, 2, . . ., J.

3 Experimental Results and Analysis

In our experiments, noise cancellation from speech signals is done using modified singular
spectrum analysis with adaptive step size algorithm. Singular spectrum analysis is a technique to
extract the reference signal from the contaminated speech signal. As a result, the enhancement
process does not require any prior knowledge on types of speech and noise signal. In order
to circumvent these issues adaptive algorithm is recommended for speech enhancement along
with singular spectrum analysis. It uses prior information about noise and speech types, then
it will map to functions of clear speech and noise type features. For this entire process, the
reference signal generated by the MSSA is taken in to consideration. By the proposed method,
speech intelligibility is enhanced when it trains to specific scenarios. Performance of MSSA based
adaptive algorithms is investigated in terms of intelligibility and objective measures. General SSA
method shows improvement in objective measures, but it has failed in intelligibility test of speech
signals across SNR regions. The MSSA with adaptive step size learning algorithm can overcome
this drawback. Auto regressor coefficients of speech and noise signals parameters are considerably
less when compared to the proposed algorithm. If weight parameters are trained smaller then it
is possible to train these parameters for enhancement process. This results improvement in single
channel intelligibility test signals. Diverse type of real noises is considered in our experiment’s
namely: cockpit noise, elevator noise, random noise and high voltage murmuring. As described in
Section 2, the enhancement process is carried in two steps. First one is reference generation using
MSSA and noise removal using adaptive learning algorithm.

The computational complexity is reduced in the proposed algorithm by applying sign regressor
function to weight update equation. For the comparison of performance measures, adaptive
noise cancellation due to LMS, TVAL, SRTVAL, SVAL and SRSVAL algorithms are considered.
Performance measures are calculated in terms of signal to noise ratio improvement (SNRI), mis-
adjustement (MSD) and excess mean square error (EMSE). The speech enhancement experiments
are performed for ten times and average values are tabulated in Tabs. 1–3. Simulations are carried
using MATLAB tool, window size of adaptive filter is considered as ten, step size is 0.01. Elimi-
nation of the noise process initially done by adding additive Gaussian noise, then simulations of
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polluted speech signals are performed by the proposed procedure, with zero mean and variance of
0.02 in white Gaussian noise. Real noises and synthetic noises are considered in the experiments.
Random noise was shaped in accordance with threshold value estimations using spectral masking.
The five speech samples labeled as Wave-1, Wave-2, Wave-3, Wave-4, Wave-5 and are contaminated
with different types of noises. By using estimated thresholds and adaptive learning process, noise
components are removed. The enhancement results of wave 1 contaminated with cockpit noise
are shown in Fig. 3, due to space constraint only one signal is shown, the performance measures
of all signals are tabulated. After achieving constant impulse response output, impulse response
is considered for the next half of the samples and the results are observed. On observation, the
before and after results in variations of impulse response feedback path exhibit faster convergence
for proposed MSSA based SRSVAL algorithm as sign regressor function is used in comparison
to MSSA-SVAL algorithm. Comparisons of various performance measures are also graphically
shown in Figs. 4–6. The key benefit of the proposed implementation is that the reference produced
from the noisy speech signal itself is the MSSA mechanism. The adaptive algorithm-related sign
regressor operation minimizes the number of multiplications required for the filtering operation to
be performed. The SVAL algorithm filters the speech signal with better convergence and filtering
ability. It’s been observed in our work that the proposed MSSA based sign regressor version of
SVAL is found to be a better candidate for speech enhancement applications and suitable for
immediate applications like mobile communications, speech, hearing aids and noise cancelers in
defense, space applications.

Table 1: SNRI (dB) comparison of various algorithms in speech signal enhancement process

Sl. No. Noise type Sample LMS TVAL SRTVAL SVAL SRSVAL

1. Cockpit noise Wave-1 9.7763 25.0063 23.1543 29.0338 26.8487
Wave-2 9.8754 25.3824 23.5371 29.4270 26.3564
Wave-3 9.4367 25.3722 23.8944 29.1031 26.0918
Wave-4 9.8754 25.2598 23.4842 29.5335 26.9735
Wave-5 9.5431 25.7682 23.4735 29.3276 26.8373
Average 9.7013 25.3577 23.5087 29.2850 26.6215

2. Crane noise Wave-1 8.2598 24.8275 22.7436 28.6454 27.9953
Wave-2 8.6543 24.4124 22.4735 28.3345 27.3563
Wave-3 8.4321 24.3523 22.7391 28.4376 27.3720
Wave-4 8.2309 24.6841 22.3627 28.4957 27.8268
Wave-5 8.6520 24.7605 22.8635 28.4534 27.5472
Average 8.4452 24.6073 22.6364 28.4733 27.6195

3. High voltage murmuring noise Wave-1 7.7605 22.9652 21.9163 25.6786 23.1735
Wave-2 7.4532 22.4395 21.3854 25.4653 23.9334
Wave-3 7.6521 22.9008 21.5635 25.0345 23.5735
Wave-4 7.6532 22.2137 21.4893 25.7454 23.6562
Wave-5 7.6530 22.0559 21.4636 25.1554 23.4967
Average 7.6344 22.5150 21.5636 25.4158 23.5666

(Continued)
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Table 1: Continued

Sl. No. Noise type Sample LMS TVAL SRTVAL SVAL SRSVAL

4. Battle field noise Wave-1 9.6511 24.6511 22.1036 27.1634 25.2325
Wave-2 9.2873 24.3438 22.8452 27.5365 25.4734
Wave-3 9.5432 24.7617 22.8735 27.4628 25.0634
Wave-4 9.2098 24.3782 22.0332 27.3453 25.3469
Wave-5 9.3462 24.4083 22.6281 27.5259 25.1769
Average 9.4075 24.5086 22.4967 27.4067 25.2586

5. Random noise Wave-1 11.3722 23.7486 22.8767 26.5067 24.5186
Wave-2 11.7632 23.4492 22.4633 26.5454 24.3574
Wave-3 11.3298 24.4643 22.3878 26.4534 24.2443
Wave-4 11.3762 24.4673 22.4484 26.6353 24.0763
Wave-5 11.3872 24.5063 22.5836 26.1542 24.8635
Average 11.4457 24.1271 22.5519 26.4590 24.4120

Table 2: EMSE (dB) comparison of various methods in speech signal enhancement process

Sl. No. Noise type Sample LMS TVAL SRTVAL SVAL SRSVAL

1. Cockpit noise Wave-1 –12.829 –24.9537 –22.4732 –27.8237 –25.2841
Wave-2 –12.098 –24.1484 –22.3782 –27.2846 –25.1879
Wave-3 –12.876 –24.9373 –22.5365 –27.6438 –25.2937
Wave-4 –12.459 –24.4937 –22.6036 –27.8453 –25.4739
Wave-5 –12.986 –24.8372 –22.3395 –27.4329 –25.3367
Average –12.6496 –24.6740 –22.4662 –27.6060 –25.3152

2. Crane noise Wave-1 −10.988 –22.8362 –21.9465 –26.8573 –24.3692
Wave-2 −10.543 –22.0913 –21.4201 –26.0235 –24.1052
Wave-3 −10.763 –22.2373 –21.8452 –26.7541 –24.6383
Wave-4 −10.963 –22.1383 –21.7733 –26.3753 –24.4273
Wave-5 −10.724 –22.3737 –21.0387 –26.8653 –24.6172
Average −10.7962 –22.3353 –21.6047 –26.5751 –24.4314

3. High voltage murmuring noise Wave-1 −9.984 –23.1839 –25.7309 –28.2479 –27.3367
Wave-2 −9.254 –23.4844 –25.4737 –28.2254 –27.5963
Wave-3 −9.987 –23.4635 –25.4932 –28.4394 –27.1243
Wave-4 −9.239 –23.6338 –25.3978 –28.1302 –27.4639
Wave-5 −9.654 –23.0358 –25.4262 –28.4274 –27.4163
Average −9.6236 –23.3602 –25.5043 –28.2940 –27.3875

4. Battle field noise Wave-1 −10.8287 –24.2832 –21.6273 –29.4926 –27.9732
Wave-2 −10.2371 –24.4383 –21.4214 –29.3849 –27.3074
Wave-3 −10.3565 –24.4603 –21.0353 –29.1947 –27.4239
Wave-4 −10.0989 –24.3257 –21.3426 –29.1456 –27.7547
Wave-5 −10.9870 –24.8173 –21.6367 –29.5748 –27.4834
Average −10.5016 –24.4694 –21.4126 –29.3585 –27.5885

(Continued)
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Table 2: Continued

Sl. No. Noise type Sample LMS TVAL SRTVAL SVAL SRSVAL

5. Random noise Wave-1 –12.2407 –23.9363 –22.6285 –29.9362 –24.8834
Wave-2 –12.9870 –23.7603 –22.4516 –29.6529 –24.6539
Wave-3 –12.8757 –23.6037 –22.4683 –29.2074 –24.3964
Wave-4 –12.9854 –23.1249 –22.7538 –29.0902 –24.3035
Wave-5 –12.7643 –23.7085 –22.0668 –29.4912 –24.9804
Average –12.7706 –23.6267 –22.4738 –29.4755 –24.6435

Table 3: MSD comparison of various methods in speech signal enhancement process

Sl. No. Noise type Sample LMS TVAL SRTVAL SVAL SRSVAL

1. Cockpit noise Wave-1 0.1352 0.0821 0.0920 0.0742 0.0641
Wave-2 0.1398 0.0857 0.0935 0.0783 0.0611
Wave-3 0.1340 0.0824 0.0948 0.0781 0.0629
Wave-4 0.1362 0.0807 0.0982 0.0750 0.0678
Wave-5 0.1387 0.0896 0.0923 0.0735 0.0646
Average 0.1367 0.0841 0.0941 0.0758 0.0641

2. Crane noise Wave-1 0.2264 0.2703 0.2503 0.2251 0.2021
Wave-2 0.2237 0.2700 0.2559 0.2287 0.2027
Wave-3 0.2209 0.2761 0.2558 0.2248 0.2009
Wave-4 0.2298 0.2756 0.2529 0.2264 0.2079
Wave-5 0.2283 0.2787 0.2539 0.2461 0.2027
Average 0.2258 0.2741 0.2537 0.2302 0.2032

3. High voltage murmuring noise Wave-1 0.2930 0.2361 0.2417 0.2110 0.2247
Wave-2 0.2987 0.2358 0.2465 0.2120 0.2257
Wave-3 0.2974 0.2396 0.2476 0.2107 0.2202
Wave-4 0.2983 0.2322 0.2470 0.2135 0.2236
Wave-5 0.2973 0.2343 0.2464 0.2160 0.2291
Average 0.2969 0.2356 0.2458 0.2126 0.2246

4. Battle field noise Wave-1 0.1590 0.0851 0.1478 0.0695 0.0967
Wave-2 0.1563 0.0814 0.1456 0.0688 0.0978
Wave-3 0.1582 0.0830 0.1433 0.0697 0.0994
Wave-4 0.1598 0.0881 0.1430 0.0674 0.0972
Wave-5 0.1509 0.0866 0.1423 0.0624 0.0902
Average 0.1568 0.0848 0.1444 0.0675 0.0962

5. Random noise Wave-1 0.1092 0.0750 0.0947 0.0684 0.0813
Wave-2 0.1063 0.0749 0.0997 0.0686 0.0898
Wave-3 0.1084 0.0797 0.0994 0.0665 0.0877
Wave-4 0.1093 0.0718 0.0906 0.0606 0.0877
Wave-5 0.1072 0.0739 0.0980 0.0663 0.0835
Average 0.1080 0.0750 0.0964 0.0660 0.0860
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Figure 3: Speech enhancement using modified SSA based reference free ANC, (a). Speech signal
contaminated with cockpit noise corresponds to the wave “adaptive noise cancellation”, (b).
Enhanced signal with TVLAL ANC, (c). Enhanced signal with SRTVAL ANC, (d). Enhanced
signal with SVAL ANC, (e). Enhanced signal with SRSVAL ANC. (X-axis number of samples,
Y-axis amplitude of the signal)

Figure 4: Performance measure comparison of SNRI (dB) for various adaptive algorithms
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Figure 5: Performance measure comparison of EMSE (dB) for various adaptive algorithm

Figure 6: Performance measure comparison of MSD (no units) for various adaptive algorithms

4 Conclusion

In general, speech signals are contaminated with the background noise and results ambiguities
in speech recognition. In order to avoid those noises, a modified SSA based variable step size
driven adaptive learning algorithms are proposed. The new grouping technique improves the
performance of MSSA in the process of reference generation. The step variable adaptive learn-
ing process eliminates the noise components very effectively. The combination of sign regressor
function reduces the number of multiplications involved in the process of noise cancellation. The
performance measures are calculated, averaged for ten experiments and are tabulated in Tabs. 1–
3. Several real time noises like cockpit noise, crane noise, high voltage murmuring noise, battle
field noise and random noise are considered in the experiments. Between TVAL and SVAL, the
performance of SVAL is found to be better than the counterpart. By considering the performance
measures like SNRI, EMSE, MSD and computational complexity, it is found that sign regressor
version of SVAL is better than the other learning methods. Hence, SRSVAL based adaptive speech
enhancement unit is well suited for real time realization as system on chip or lab on chip.
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