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Abstract: In recent years, the infrastructure of Wireless Internet of Sensor
Networks (WIoSNs) has been more complicated owing to developments in
the internet and devices’ connectivity. To effectively prepare, control, hold and
optimize wireless sensor networks, a better assessment needs to be conducted.
The field of artificial intelligence has made a great deal of progress with deep
learning systems and these techniques have been used for data analysis. This
study investigates the methodology of Real Time Sequential Deep Extreme
Learning Machine (RTS-DELM) implemented to wireless Internet of Things
(IoT) enabled sensor networks for the detection of any intrusion activity. Data
fusion is awell-knownmethodology that can be beneficial for the improvement
of data accuracy, as well as for the maximizing of wireless sensor networks
lifespan. We also suggested an approach that not only makes the casting of
parallel data fusion network but also render their computationsmore effective.
By using the Real Time Sequential Deep Extreme Learning Machine (RTS-
DELM) methodology, an excessive degree of reliability with a minimal error
rate of any intrusion activity in wireless sensor networks is accomplished. Sim-
ulation results show that wireless sensor networks are optimized effectively to
monitor and detect any malicious or intrusion activity through this proposed
approach. Eventually, threats and a more general outlook are explored.

Keywords: Wireless internet of sensor networks; machine learning; deep
extreme learning machine; artificial intelligence; data fusion

1 Introduction

Today’s network environments have become more and more heterogeneous, and we now must
configure network flow and monitor a larger variety of devices [1]. But due to the strict require-
ment of conventional centralized networks, learning methods are difficult to be applied and used
in the management and governance of wireless sensor networks. There are numerous integrated
devices in wireless sensor networks, such as low-cost sensors, a microphone to get multimedia
information from the area, such as video streams, audio streams, and scalar sensor data. In
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general, a production network uses many devices, runs several protocols, and supports several
applications [2]. Data transmission has been growing exponentially in the world recently with the
rapid evolution of smart devices and network technologies (for example, cloud computing and
virtualization of networks) [3]. In the case of wireless networks, several different kinds of cellular
transmitting methods have been implemented for a certain spectrum, a transmission capacity,
with certain hardware, and the transmission technologies. These approaches expand upon existing
efforts by including much more accountability in networks [4]. Cognitive and machine learning
integration methods are used to widen the scope of automation, provide guidance, and use it
to apply expertise in an internet-based framework [5]. The main reason is that the conventional
network networks are fundamentally distributed when only small parts of the network can be
accessed and managed by every node such as a router or switch. It is extraordinarily difficult to
navigate the whole network by learning from nodes that have a slight, minimal impact on the vast
network [6]. Fortunately, current advances in the field of wireless sensor networks will facilitate
learning complexity.

Initially, Wireless Sensor Networks (WSNs) that gather the dispersed information, and edge
computing enables the effectiveness of conventional sensor networks [7]. Wireless multimedia
sensor networks are a new type of network integrating video, audio, images, and other multimedia
processing functions that are based on conventional Wireless Sensor Networks (WSNs) [8,9].
Wireless Sensor Networks (WSNs) interpret different media data through multimedia sensor nodes
in their surroundings. These data may be sent via a singular and a multi-hop relay to the selected
nodes. Compilation nodes interpret and evaluate the collected data and send the review and
intervention reports for detailed and efficient environmental monitoring to the network owner.
Wireless Sensor Networks (WSNs) are adapted and applied to conventional Wireless Sensor
Networks (WSNs) and used frequently for defense and climate protection, intelligent transport
and residences, etc. Wireless Sensor Networks (WSNs) are a standard technology that is inspired
by the Wireless Sensor Networks (WSNs) and edge computing combination. Internet of Things
(IoT) will be the most powerful method to render communities safer [10]. To render Internet of
Things (IoT) smart, several innovations and techniques of computing are often used in Internet
of Things (IoT) [11].

Earlier studies on neural networks hypothesized that cognitive agents used the best resources
available to achieve improve performance [12–14]. The primary principle in this research project
is the optimization of Wireless Sensor Networks (WSNs) to apply complex mechanisms for
tracking a network malicious activity or protocol violations. This article summarizes wireless
sensor networks and smart network challenges and then describes a cohesive structure for improv-
ing wireless sensor networks. The Real-Time Deep Extreme Learning Machine (RTS-DELM)
approach would be used to make wireless sensor networks more stable and perform better. Safe
and effective architectures pervade smart cities, incorporating sophisticated management systems
and demand-responsive policies [15].

Wireless Sensor Networks (WSNs) provide a separation of the control and data planes. The
Networking operating system, which acts as a technically centralized controller, manages the
network infrastructure in Wireless Sensor Networks (WSNs). Wireless Sensor Networks (WSNs)
must flexibly administer the network. Moreover, by collecting and tracking network status and
initialization data in addition to packet and flow size data, the centralized controller has an overall
assessment of the network.

For these purposes, it is necessary and effective to incorporate Wireless Sensor Networks
(WSNs) machine learning techniques. To begin, consider the recent advancements in computer
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technology, including Graphics Processing Unit (GPU) and the Tensor Processing Unit (TPU),
which offer a good chance of using exciting machine learning strategies in the field of net-
working [16,17]. Second, information is the fundamental need of the learning algorithms of
data-driven machines. The main Wireless Sensor Networks (WSNs) have a worldwide network
view and gather different network details to simplify applications for machine learning algorithms.
Thirdly, machine learning techniques can include Wireless Sensor Networks (WSNs) expertise
based on data collection, network configuration, and effective network service delivery based
on empirical and legitimate network details. Finally, using machine-learning algorithms, Wireless
Sensor Networks (WSNs) technology enables the application of advanced system integration (for
example, setup and resource allocation) in real-time on the network [18]. In this article, we discuss
the better approach for the production and implementation of machine training in Wireless Sensor
Networks (WSNs). The study focuses on machine learning strategies for enhanced performance,
intelligence, safety, and reliability of the Wireless Sensor Networks (WSNs) and offers a brief
overview of future research recommendations with sufficient scope and breadth in the associated
areas. A roadmap is provided for our methodology in Fig. 1.

The Real-Time Deep Extreme Learning Machine (RTS-DELM) is capable of automating
data analytics processes and generating real-time analytics. The datasets being evaluated by the
Real-Time Deep Extreme Learning Machine (RTS-DELM) system will be evaluated in Wireless
Sensor Networks (WSNs), which eliminates all imperfections. Networks need stable data. We
would disregard any data-related challenges in the Real-Time Deep Extreme Learning Machine
(RTS-DELM) system. It will include a specific mechanism to track and anticipate potential fraud
and other illegal activity. In this paper, a real-time deep extreme learning machine-based model is
investigated for the intelligent prediction of intrusion detection in wireless sensor networks, which
attain the utmost precision. In the training and testing of intrusion detection in Wireless Sensor
Networks (WSNs) optimization with real-time deep extreme learning machine, a fused dataset
(NSL-KDD and KDD CUP 99) with 47840 data samples are analyzed, so that every instance
has specific and varied features. The analysis and contrast with the best techniques are therefore
performed in the same area.

In complex networks, the use of data fusion methods can be a benefit due to the huge number
of messages shared, as a data fusion task can combine many messages invaluable and accurate
data for the final consumer. In this article, we introduce a method for data fusion in networks that
naturally scales to large numbers of nodes. In the latest research literature, numerous methods and
concepts are used for data fusion. Two of the most widely used classifications are “data fusion”
and “information fusion”. In our study, we concentrate only on data reported from sensors, and
not on data generated from any other inputs. In a data fusion strategy, sensors are used in tandem
to increase the accuracy of decisions.

Finally, this article is structured into the following parts. Section 2 concisely explains the
literature. Section 3 describes the methodology for carrying out a thorough assessment. Section 4
describes the Real-Time Deep Extreme Learning Machine (RTS-DELM) method. Section 5 of the
paper addresses the simulation and the output effects of the Real-Time Deep Extreme Learning
Machine (RTS-DELM) method. Section 6 consists of the explanation and conclusions.
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Figure 1: Proposed model for data fusion technique for analysis of intrusion detection for wireless
internet of sensor networks using Real-Time Deep Extreme Learning Machine (RTS-DELM)
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2 Related Work

In Wireless Sensor Networks (WSNs), the data rate, energy usage, and transmission gap are
typically influenced by the deployed system resulting in high rates of ambiguity. The Type-2 fuzzy
logic system (T2FLS) approach of Transmission power allocation (TPA) will easily accomplish
an alignment among latency and energy consumption and can enhance the network existence
of Wireless Sensor Networks (WSNs). Ahmed et al. [19] gives a detailed overview of the roles
of high-accuracy intrusion detection machine learning methods. Nguyen et al. [20] proposed
systematic coverage of the essence and role of various methods of detecting malware. Bkassiny
et al. [21] have learned several complex topics in cognitive radio networks and explored differ-
ent machine learning-based methodologies. The numerous problems that exist in wireless sensor
networks have now been researched in [22]. Wang et al. [23] explores emerging approaches for
designing various networks in artificial intelligence. Buczak et al. [24] carried out an in-depth anal-
ysis of data mining and intrusion detection methodologies and their concerns. Klaine et al. [25]
researched and explained a valuable identification and association of machine-learning frameworks
with interpretations of wireless services. Fadlullah et al. [26] examines the potential of machine
learning techniques to further strengthen network management. Related to Ahmed et al. [19],
Hodo et al. [27] concentrate also on the machine learning-based Intrusion detection system (IDS).
Zhou et al. [28] utilizes machine intelligence and cognitive radio techniques to enhance the overall
network output. Chen et al. [29] has conducted studies with regards to networks that include
topics like networking, virtual assistance, and edge computing to figure out their best approach.

Reducing energy use and increasing the efficiency of Multi-Radio Wireless Sensor Net-
works (WSNs) is essential. PSO-based optimization energy-consumption task scheduling seeks out
the best possible solution to certain issues of enhancement and might significantly enhance a
multi-radio node power consumption and extend the lifespan of the network [30,31]. Building
a Cognitive internet of things (CIoT) architecture is a research effort extended to use in developing
cognitive solutions for the Internet of things (IoT) devices [32]. Vlacheas et al. [33] suggested a
cognitive control scheme whereby autonomous objects could take on more human-like features
and roles. Eckert et al. [34] estimates that by the year 2050, three-quarters of the global population
will live in cities. The smart idea is seen as a means to achieve warmth in life. The Smart City
project uses a range of innovations to make the lives of city residents simpler. Smart cities enhance
the climate, as well as provide people with preferred services [35]. Urban and industrial ecosystems
can be successfully built by the correct use of information and its delivery [36]. The Internet
of Things (IoT) involves several different types of gadgets, as well as cars, smartphones, and
enables the communication and transfer of data between them and applications, controls, cam-
eras, appliances, and other objects, and also between people’s possessions and the organization’s
networks [37]. Data mining methods should be prepared to capture information and knowledge
as well as machine learning techniques should be capable of gathering data to support and study
the various forms of data loss [38–42]. More recent work emphasizes the role of opportunistic
networking in successful organizations [43,44].

Wireless Sensor Networks (WSNs) have been effective in a variety of organizations, the
splitting of the control plane and data plane is apt to introduce a slew of risks and uncertainties
to the Wireless Sensor Networks (WSNs) infrastructure [45]. Therefore, Wireless Sensor Networks
(WSNs) can be sensitive to various attacks on the network, including volumetric ones, SYN
floods, specific service breaches, and Denial of service (DoS) attacks. These occurrences will push
security concerns into the layers of Wireless Sensor Networks (WSNs). There are numerous safety
mechanisms used for detecting and mitigating DoS attacks on the SDN network, as discussed
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in [46]. These approaches are dependent on the selection of packet flow features. The monitoring
packages for harmful activity are bigger than the previously established limit or decision-making
limit [47]. Steady information development and the huge numbers of packets that can be handled
in real-time are the key disadvantages.

The main contributions of the work are following:

(a) The primary objective is to minimize the miss rate and improve the accuracy of intrusion
detection in wireless internet of sensor networks.

(b) For a better approximation of intrusion detection empowered with fused data in wireless
sensor networks, a new variant of DEML named Real-Time Deep Extreme Learning
Machine (RTS-DELM) has been proposed.

(c) Finally, Simulation results have shown that the suggested fused data based Real-Time
Deep Extreme Learning Machine (RTS-DELM) framework is better as compare to other
algorithms in terms of accuracy and miss rate such as support vector machine [48], self-
organization map [49], artificial neural network-based intrusion detection system [50], dis-
criminative multinomial naïve bayes [51] and Generative adversarial networks (GANs) [52].

3 Proposed System Model

The multiphase WIoSNs architecture is a high-level definition describing three key planes: the
multimedia processing core, the data plane, and the application layer. The architectural elements
and relationships of each plane are shown in Fig. 1. The multimedia processing hub is the lowest
layer of WIoSNs architecture and is also denoted as the infrastructure plane. This plane consists
of sensor devices including video, audio, and scalar sensors. Those multimedia processing hubs
are responsible for the delivery, drop, and modification of media on the data plane. The data
plane is connected through a storage hub, with which the sensors store the data and send data for
processing to the proposed framework. The data plan is the core of WIoSNs that can configure
network infrastructure, dynamically alter security laws, and make network management flexible
and adaptive. A logically central data plane that governs the interaction among transmitting units
and applications is the key component of the data network. The data plane is the master node
where all data gathers into a storage hub and then multiple datasets are sent to the next plane
that performs the data fusion operation. Then fused dataset was sent to the application layer.

In this manner, the NSL-KDD [53] and KDD CUP 99 [48] data set were used for the data
fusion technique to test the performance of the proposed system. In the fused data collection,
each data defines a specific link corresponding to a series of TCP packets that flow inside a
predetermined protocol among the source and destination IP addresses. This data set includes 41
per record number of features. Such characteristics comprise six discrete fields and 35 continuous
fields. The performance of four variants of a back-propagation training algorithm on the pre-
diction of defect-prone software modules, followed by the selection of a highly effective training
algorithm by using a fuzzy layer, is analyzed and compared using the proposed framework.

4 Real-Time Deep Extreme Learning Machine (RTS-DELM)

An ANN is an interconnected set of units called neurons. Fig. 2 shows different numbers
of hidden layers, several hidden neurons, and various kinds of activation functions in Real-Time
Deep Extreme Learning Machine (RTS-DELM) to obtain the perfect Real-Time Deep Extreme
Learning Machine (RTS-DELM) system for optimizing wireless sensor networks. The suggested
architecture is composed of three layers: the data collection layer, the pre-processing layer, and the
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implementation layer. A different aspect of the application layer includes two modes of prediction,
and the second mode of application serves to examine the results of the current model’s predic-
tions. Sensor data is used to collect data for exploratory experiments. After collecting sensor data,
it was distributed data acquisition layer. In the pre-processing layer, various information clean-up
processes and verification approaches are used to eliminate anomalies from the individual data.
The Real-Time Deep Extreme Learning Machine (RTS-DELM) was used to optimize wireless
sensor networks to avoid disruptive or invasive behavior.

The Real-Time Deep Extreme Learning Machine (RTS-DELM) approach can be applied to
several WSN applications. To preserve the required detection precision, a huge proportion of
sensor measurements are normally necessary. Real-Time Deep Extreme Learning Machine (RTS-
DELM) mitigates various network access issues by deploying integrated network routing and
security features. Considering that 80% of the network’s energy is used when transmitting and
receiving data, data reduction and function abstraction techniques may minimize processing time
and bring durability to neural networks. The overuse of compression techniques will cause a rise
in energy costs. Real-Time Deep Extreme Learning Machine (RTS-DELM) allows more effective
data compression within Wireless Sensor Networks (WSNs). As a consequence, wireless sensor
networks need real-time networking solutions such as security, scheduling, monitoring, clustering
nodes, aggregation of data, and fault diagnosis. The Real-Time Deep Extreme Learning Machine
(RTS-DELM) architecture lets wireless sensor networks seamlessly respond to their surroundings’
dynamic behavior.

The Real-Time Deep Extreme Learning Machine (RTS-DELM) [54] can be employed in many
applications and domains to predict health issues, calculates the level of energy usage, inventories
services, and stipulates transport operations [55–57]. The standard ANN system involves trials
and error, slow learning, and constant overwriting [58]. An extreme learning machine design is
implemented by Huang et al. [59]. The Real-Time Deep Extreme Learning Machine (RTS-DELM)
can be used to categorize and regress dedicate in various sense as it is simple to understand
and efficient at the pace of sophistication of frameworks. A feed-forward neural network is
typically learning only in one direction, but in our process, the back-propagation technique is
also employed, which involves using the input to adjust the network’s weights such that it can
attain the greatest accuracy while incurring the lowest possible error. The Real-Time Deep Extreme
Learning Machine (RTS-DELM) model includes the input layer, multiple secret layers, and at
least one output layer. If the system has been conditioned, this framework is transferred to the
cloud for online usage, then it was used for validation services this way across the cloud during
the validation process. The Real-Time Deep Extreme Learning Machine (RTS-DELM) extended
version of the DELM description is demonstrated in the hierarchical context in Fig. 2.

In the evaluation layer, the Mean square error (MSE) was reviewed for the optimization of
wireless sensor networks.

Let’s say there are several concealed complex basic Feedforward sequential neural networks
with n amount of hidden layer neurons and a training dataset of Y records (�i, fi) in which
�i ∈ §d and fi ∈ §c. The implementation of several hidden layer feed-forward neural networks
results in the observed outcome is;

fi =
n∑
j=1

ßjç (

h

j�i+ h

j) i ∈ [1,Y ] (1)
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Figure 2: A systemic model of a Deep Extreme Learning Machine (DELM) [55]

Here h

j and åj are learning variables, ßj is jth output node weight and ç: § → § is the

activation function.

A perfect relation of several secret layers feed-forward neural network with reduced error
demonstrates that with distinct intervals h

j and aj there occur ßj such that;

fi =
n∑
j=1

ßjç(pj�i+ åj) i ∈ [1,Y ] (2)

Which can be represented as

Ûß= F (3)

where,

Û=

⎡
⎢⎢⎢⎣

ç( h

1�1+ å1)
...
...

ç( h

1�N + å1)

. . .

ç( h

n�1+ ån)
...
...

ç( h

n�N + ån)

⎤
⎥⎥⎥⎦ (4)

And

ß= (ßT1 . . . ßTn )T , F= (fT1 . . . fTY )T (5)

When the number of observations above hidden layer neurons, the output value weights can
be approximated by utilizing the method below

ß=Û−1F (6)

And Û
−1

is the inverse of Û matrix. Real-Time Deep Extreme Learning Machine (RTS-
DELM) is consequently, a computationally effective method of investigation.
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Backpropagation includes weighting configurations, forward adjustments, backward error
updates, and distinguishability upgrading. These functions are all used in designing the neural
network;

W = 1
2

∑
j

( tz − rz)2 (7)

where tz and rz represents the desired output & calculated output respectively. Eq. (7) specifies a
backpropagation error, which is designed by dividing the square amount of the necessary result
by 2. The correction is appropriate to compensate for the usual errors. The updated weight values
are indicated in the output layer in Eq. (8).

ΔMl=6
x,z ∝− ∂D

∂Ml=6
(8)

where x and z represent the number of neurons and output level respectively. The technique to
enhance the weight and bias among the outcome and the hidden layer is illustrated in Eq. (9).

Ml=6
x,z (t)= Ml=6

x,z (t)+ λΔMl=6
x,z (9)

Eq. (10) displays how updating the weight and bias between the input and the hidden layer.

Ml
x,n(t)=Ml

x,n(t+ 1)+ λΔMl
x,z (10)

5 Results and Discussion

In this article, the Real-Time Deep Extreme Learning Machine (RTS-DELM) approach was
implemented to the fused data [48,53]. The results were arbitrarily allocated to either the training
collection (80% of the data means 118813 records) or the test/validation set (20% of the data
means 29703 records). The information has been analyzed in anticipation of its planned use to
assure that there are no mistakes. Real-Time Deep Extreme Learning Machine (RTS-DELM)
sought to determine whether their devices had been infected by ransomware and cyber threats.
We then analyzed a variety of neurons, including the stimulation of secret layers, different forms
of active functions. In this experimental testing, we can evaluate the output of Real-Time Deep
Extreme Learning Machine (RTS-DELM) to see if this approach is efficient. To estimate the
performance of the Real-Time Deep Extreme Learning Machine (RTS-DELM) algorithm, we have
employed numerous statistical measurements explaining the output in Eqs. (11) & (12).

Miss rate=
∑1

b=0(Fb/Vz�=b)∑1
b=0(Tb)

Where, z= 0, 1 (11)

Accuracy=
∑1

b=0(Fb/Vb)∑1
b=0(Fb)

(12)

In Eqs. (11) and (12), F & V symbolizes the predictive output of WIoSNs and the actual
output respectively. F0 & V0 represents that the forecast outcome is normal that no attack is
detected in the real output. F1 & V1 signifies the malicious activity is detected in estimated output
and actual output respectively. Fb/Vb symbolizes predictive and actual results are similar. Similarly,
Fb/Vz�=b symbolizes error, in which predictive and actual results are changing.



3408 CMC, 2022, vol.70, no.2

Results of all datasets are extracted by each of the following training functions: Tab. 1
exhibited the suggested Real-Time Deep Extreme Learning Machine (RTS-DELM) based wireless
sensor networks framework for prediction of intrusion detection during training level. Total
118813 records are utilized throughout the training which is then split into 61642, 57171 records
of normal and attack correspondingly. It is witnessed that 59819 attack records of normal groups,
having no real attack, are correctly forecasted by forecasting algorithm and 1823 attack records
are inaccurately forecasted by this process. Comparably, a total of 58630 records is acquired in
the circumstance of attack establish, in which 55240 records are accurately forecasted as an attack
establish and 1931 records are inaccurately forecasted as a normal establish while attack exists
there.

Table 1: Training of the Real-Time Deep Extreme Learning Machine (RTS-DELM) based decen-
tralized wireless sensor networked device architecture for the estimation of intrusion with the fused
dataset

Proposed Real-Time Deep Extreme Learning Machine (RTS-DELM) based Wireless Sensor
Networks (WSNs) framework

(80% of data used during training)

Total no. of records (N = 118813) Outcome (Output) (F0, F1)

Input Predictable outcome F0 (Normal) F1 (Attack)
(V0, V1)
V0 = 61642 59819 1823
Normal
V1 = 57171 1931 55240
Attack

Tab. 2 exhibited the suggested Real-Time Deep Extreme Learning Machine (RTS-DELM)
based wireless sensor networks framework for prediction of intrusion detection during validation
level. Total 29703 records are utilized throughout the training which is then split into 15411, 14292
records of normal and attack correspondingly. It is seen that 14569 records of normal class mean
in which no attack discovered are accurately forecasted and 842 records are inaccurately forecasted
as an attack establish while there is no actual attack. In the situation of assault, of the 14292
records obtained, 13227 were correctly forecasted as an invasion establishment, while 1065 were
misleadingly forecasted as a regular establish while the attack occurred.

Tab. 3 exhibited the suggested Real-Time Deep Extreme Learning Machine (RTS-DELM)
based wireless sensor networks framework assessment in the mean of accuracy and miss rate
throughout training and validation level. It demonstrated that the suggested RTS-DELM based
wireless sensor networks system during training gives 96.84% and 3.16% accuracy and miss rate
collectively. And during validation, the proposed Real-Time Deep Extreme Learning Machine
(RTS-DELM) based wireless sensor networks system gives 93.58% and 6.42% accuracy and miss
rate collectively.
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Table 2: Validation of the Real-Time Deep Extreme Learning Machine (RTS-DELM) based
decentralized wireless sensor networked device architecture for the estimation of intrusion with
the fused dataset

Proposed Real-Time Deep Extreme Learning Machine (RTS-DELM) based WIoSNs framework

(20% of data used during validation)

Total no. of records (N = 29703) Outcome (Output) (F0, F1)

Input Predictable outcome F0 (Normal) F1 (Attack)
(V0, V1)
V0 = 15411 14569 842
Normal
V1 = 14292 1065 13227
Attack

Table 3: Performance evaluation of proposed Real-Time Deep Extreme Learning Machine (RTS-
DELM) based decentralized wireless sensor networked device architecture for the estimation of
intrusion with fused dataset during validation and training

Accuracy Miss rate Sensitivty Specificty

Training 96.22% 3.16% 0.97 0.96
Validation 92.73% 6.42% 0.94 0.92

We compared the reliability of our method with the other published algorithms. As seen in
Tab. 4, with a smaller error rate, the proposed framework attains extensively enhanced accuracy.
The suggested Real-Time Deep Extreme Learning Machine (RTS-DELM) framework is better as
compare to other algorithms in terms of accuracy such as Support vector machine (SVM) [48],
self-organization map [49], artificial neural network-based intrusion detection system [50], dis-
criminative multinomial naïve bayes [51] and Generative adversarial networks (GANs) [52]. The
increased precision attained by the proposed Real-Time Deep Extreme Learning Machine (RTS-
DELM) method attains improved efficiency on the fused dataset compared to the NSL-KDD
dataset. In comparison to other deep learning methods, the precision of the SVM [48] is much
less. In [51], using a mixture of discriminative multinomial naïve bayes and random estimates,
the researchers obtained a score of approximately 80%. In [49], the authors suggested Self-
Organization Map and, in this method, the investigators achieved 75.5% accuracy. In [50], the
authors suggested an artificial neural network-based intrusion detection system, and, in this
method, the researchers achieved 81.2% precision. In [52], the researchers proposed GANs and in
this method, the investigators achieved 86.5% precision. The Real-Time Deep Extreme Learning
Machine (RTS-DELM) system has an accuracy of 93.58 percent which is higher than previous
attempts showing its effectiveness. The proposed Real-Time Deep Extreme Learning Machine
(RTS-DELM) paradigm offers a substantially improved value than other strategies. The suggested
Real-Time Deep Extreme Learning Machine (RTS-DELM) paradigm provides a plausible answer
to the aforementioned dilemma.
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Table 4: Comparison results of the proposed data fusion technique of wireless sensor networks
based on real-time sequential deep extreme learning machine with literature

Method Accuracy rate

Support Vector Machine [48] 69.5%
SOM [49] 75.5%
Artificial Neural Network-based Intrusion
Detection System [50]

81.2%

DMNB [51] 81.5%
Generative Adversarial Networks [52] 86.5%
Real-Time Deep Extreme Learning Machine
(RTS-DELM) with Data Fusion Approach
(Proposed)

93.58%

6 Conclusions

A system of fused data for wireless network intrusion detection has been developed to
improve prediction accuracy. Different methodological techniques have been used to evaluate
the feasibility of this specific proposal. These experiments indicate that the Real-Time Deep
Extreme Learning Machine (RTS-DELM) process is far more successful than other approaches.
The proposed Real-Time Deep Extreme Learning Machine (RTS-DELM) method is leading to
its effectiveness. The suggested application demonstrated an accuracy level of 96.84% and 93.58%
on testing. Additionally, it is known that using a simplified algorithm is less costly and faster to
execute. In the presented analysis, ELM is used to outline the benefits of machine learning and
a deep network. We are confident of the initial outcomes and intend to broaden this study in
the future by testing further datasets. The limitation of the proposed system is the computational
complexity due to the increasing number of hidden layers. Future research shall seek to more
precisely define and measure the parameters. The learning algorithm will be retrained more
regularly to boost the efficiency of different configurations.
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