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Abstract: There is a paradigm shift happening in automotive industry towards
electric vehicles as environment and sustainability issues gained momentum in
the recent years among potential users. Connected and Autonomous Electric
Vehicle (CAEV) technologies are fascinating the automakers and inducing
them to manufacture connected autonomous vehicles with self-driving fea-
tures such as autopilot and self-parking. Therefore, Traffic Flow Prediction
(TFP) is identified as a major issue in CAEV technologies which needs to
be addressed with the help of Deep Learning (DL) techniques. In this view,
the current research paper presents an artificial intelligence-based parallel
autoencoder for TFP, abbreviated as AIPAE-TFP model in CAEV. The pre-
sented model involves two major processes namely, feature engineering and
TFP. In feature engineering process, there are multiple stages involved such
as feature construction, feature selection, and feature extraction. In addition
to the above, a Support Vector Data Description (SVDD) model is also
used in the filtration of anomaly points and smoothen the raw data. Finally,
AIPAE model is applied to determine the predictive values of traffic flow. In
order to illustrate the proficiency of the model’s predictive outcomes, a set
of simulations was performed and the results were investigated under distinct
aspects. The experimentation outcomes verified the effectual performance of
the proposed AIPAE-TFP model over other methods.

Keywords: Autonomous electric vehicle; traffic flow predictive; automation
industry; connected vehicles; seep learning

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.020197


3334 CMC, 2022, vol.70, no.2

1 Introduction

The progressive development of Autonomous Vehicles (AV) in the recent years has attracted
the maximum attention from a number of developers working under different applications.
Connected AV (CAV) is a standard and new model which is capable of altering the previous
transportation systems, thanks to its advanced transmission and sensing abilities, improved travel
suitability and its deployment of low-carbon mobility business models [1]. In general, CAVs are
electric tools and are effective in the mitigation of carbon production. CA Electric Vehicle (CAEV)
is considered to represent a significant portion of the existing revolutions that support low-carbon
mobility. In this approach, four main drivers such as automated driving, electric powertrains, sys-
tem connectivity, and distributed mobility are capable of providing compelling transition towards
low-carbon facilities. Hence, one can achieve the simulation outcome in reducing the greenhouse
gas (GHG) discharged during transportation. These modifications provide multiple opportuni-
ties to reduce carbon production and promising outcomes in terms of sustainability. The basic
infrastructure of CAEV is depicted in Fig. 1 [2].

Figure 1: The structure of CAEV model

CAEVs are capable of functioning with maximum vehicle efficacy, when they are charged with
power derived from renewable energy sources. This, in turn reduces the emissions and dependency
on fossil fuels. Connected Vehicles (CVs), AVs, and Electric Vehicles (EVs), referred altogether
as CAEVs, are complex and automated systems [3]. Among these, CV is a vehicle operated by
communicating with nearby vehicles, structures, and objects; however, it is neither automatic nor
electrically-processed. Secondly, AV is a vehicle which is extensively applied and is suitable for
automatic driving without any human contribution. Finally, EV is a type of vehicle operated with
available energy preserved in the batteries.

In general, CAEV belongs to EV which is suitable for predicting the environment and direct-
ing with or without any human intervention. CAEV detects the environment by applying diverse
sensing tools like radar, Light Detection, and Ranging (LiDAR), image sensors, 3D cameras,
and so on. Followed by, CAEV is comprised of five major elements. Then, perception system is
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utilized in the forecasting of atmosphere and relevant objects. Localization and mapping models
are deployed in vehicles so that the vehicles are enabled to know the recent location. Driving
policy showcases the decision-making ability of CAEV under different scenarios like efficiency
negotiation, paving way for vehicles and trespassers, and overtaking transports. In communica-
tion network, CAVs are connected with surrounding platforms like vehicle-to-vehicle connectivity
(V2V), structure with Vehicle to Infrastructure (V2I) and Internet: Vehicle to anything (V2X), by
wireless communication networks. The storage battery is composed of chargers and power banks
in the vehicle. Typically, the State of Charge (SoC) level estimates the volume of charge enclosed
in a battery.

1.1 Overview of Traffic Flow Prediction (TFP)
Smart models must be developed after taking the improved traffic flow into consideration

for traffic flow observation and management. Here, traffic flow is considered to be a degree of
vehicles that exceeds specific road segment per unit time based on a reference point. Also, Global
Positioning System (GPS) providers such as Google Map predicts the flow of traffic and vehicle
speed using Machine Learning (ML) models. To depict this notion in mathematical form, Traffic
Flow Prediction (TFP) is assumed as Xti which implies the determined traffic flow value at tth

time interval and ith observation. Under the application of applied set Xti, i = 1, 2,. . ., m and
t = 1, 2, 3,. . ., T, TFP problems are comprised of traffic flow detection from (t + ), which is called
a prediction horizon. According to the study conducted earlier [4], TFP is defined as a regression
problem, applied in time-series data, from traffic systems. It increases the traffic management by
appropriate exploitation and traffic demands on existing road structure. Vehicle route planning,
fuel mitigation, and congestion control have been applied in TFP data-based models to collect the
previous data flow from different sources (sensors, GPS) and the accumulated data is employed in
detection process. Thus, traffic flow data is periodical and the patterns differ from operational days
and weekends [5]. Based on the comparison, it is reported that poor climatic condition influences
the flow of traffic and results in congestion issues. Various studies have applied shallow TFP
models to generate considerable outcomes, while shallow technologies are complex in finding the
relations between big data sets. Besides, Deep Learning (DL) is a well-known and reputed model
used in traffic prediction and the identification of dependencies in high dimension dataset.

1.2 Deep Learning
In Data Mining (DM) application, DL is an effective approach that initializes the data model

through Multi-Layer Perceptron (MLP) structure of human brain [6]. DL resembles the empirical
function in a few functions such as image processing, text, audio, and alternate unstructured data.
Restricted Boltzmann Machine (RBM) is assumed to be a common method of DL structure.
Having been identified with difference from Conventional Neural Network (CNN) approaches,
RBM merges with feature learning portion as per the traditional MLP. Feature learning portion
mimics the performance of human brain and classifies the data signals. Further, a certain process
is used in the enhancement of partial connection of convolution layer as well as dimension layer,
prior to Fully Connected (FC) network layer [7]. Thus, the classical shallow NN projections have
evolved from feature mapping while the characters are randomly selected. RBM projections are
initialized from signal to feature and then to the value. Thus, the data features are freely selected
by the system.
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1.3 Paper Contribution
The contribution of the paper is stated herewith. The current research paper introduces a

novel artificial intelligence-based parallel autoencoder for TFP abbreviated as AIPAE-TFP model
in CAEV. The presented model comprises of two distinct procedures namely, feature engineering
and TFP. Feature engineering process incorporates few steps such as feature construction, feature
selection, and feature extraction. Moreover, Support Vector Data Description (SVDD) model is
utilized to filter the anomaly points and smoothen the raw data. At last, AIPAE model is applied
in the determination of predictive values of traffic flow. To demonstrate the outcomes of TFP
process, a brief simulation analysis was conducted and the results were determined under different
metrics.

2 Literature Review

In order to have an appropriate working model for AV, there is a large number of studies
required in addition to planning, and cooperation of tasks. This together results in the generation
of numerous processing models for task implementation. For example, the AVs are placed in
dynamic and ever-changing atmosphere. Multiple approaches [8,9] are used in the implementation
of localization process. Path planning mechanism [10] parameterizes the motion primitives and
optimizes them into non-linear programming mechanisms. The developers in the literature [11]
made use of neural inverse Reinforcement Learning (RL) to direct the AV. In the study conducted
by Levin [12], navigation is considered as an optimal management issue since it attempts to
overcome the problems based on the distance travelled while generating the path of AV with
optimization-related attributes. In this scenario, the parking issues have been addressed in different
studies using numerous models [13] that conclude the solution for parking in an accurate location
that consumes the maximum time. When AVs are applied in common transportation, the schedul-
ing, routing, and admission management technologies are applied in order to ensure appropriate
decision-making and manage the traffic flow to eliminate congestion in a cost-effective manner. A
linear program was applied in resolving the scheduling issues [14] and admission control problem
depending on Genetic Algorithm (GA). Followed by, the researchers in the literature [15] applied
the family module to schedule AV fleets. The study conducted earlier [16] employed game theory
models in decision making and congestion elimination processes.

Parametric methods are used to identify traffic flow time series. Some of the models are as
follows; Auto Regressive scheme (AR), AR Moving Average (ARMA), Support Vector Regression
machine (SVR), AR Integrated Moving Average (ARIMA), and so forth. Among these, AR
is utilized in the computation of traffic flow prediction [17]. ARIMA is applied in traffic flow
analysis based on periodic difference [18]. Based on SVR, a two-cycle time series of short-term
traffic flow predictive methods is presented [19]. A unified AR method, with alternate prediction
schemes, is presented in the improvement of prediction function [20]. Thus, parametric schemes
are employed in certain traffic data conditions whereas a change in climatic condition affects the
accuracy of prediction process. Nonparametric frameworks are employed in big data training and
the model structure is computed with no model parameters. Moreover, NN is defined as a typical
approach in nonparametric framework. NNs are defined as numerical approaches that enable
shared data processing and reflect the behavioral features of animal NN. It is applied extensively
in the prediction of traffic flow.

Chokshi et al. [21] relied on NNs to estimate the flow of traffic in urban region in the
study conducted earlier. Based on the NN model, Artificial Neural Network (ANN) scheme
was used for prediction and management of traffic flow. A prediction mechanism was presented
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as a combination of ANN and Root-Mean-Square Error (RMSE) method. Additionally, Back
Propagation (BP) NN applies the error BP model to train the multilayer feedforward information.
In this study, the model prediction accuracy was maximum than NNs and ANN. It used Radial
Basis Function (RBF) technology to analyze the chaotic features in the prediction of traffic flow.

In the literature [22], a TFP model was presented for urban roadways based on Long Short
Term Memory (LSTM) and sparse autoencoder (SAE). The hybrid TFP model performed well
on non-linear traffic flow data and efficiently enhanced the predictive accuracy. Further, the
model also offered a multi-scale perspective for transportation and traffic forecasting. In the
study conducted earlier [23], a new parallel auto-encoder framework (Para-AF) was presented
for Structural Health Monitoring (SHM). The presented Para-AF model distinctly processed the
frequency signals and mode shapes for feature selection using dimension reduction. Then, the
model integrated the features together in relationship learning for regression. In current study,
a novel TFP model for CAEV, inspired from the studies conducted earlier [22,23] is presented.
Though the existing works have focused on TFP, there is a need still exists to improve the
performance and reduce the computation time. Therefore, in the present work, SVDD model is
utilized in the filtration of anomaly points and smoothen the raw data. In addition, AIPAE model
is applied to determine the predictive values of traffic flow.

3 The Proposed Traffic Flow Prediction Model for CAEV

The overall working principle of the presented AIPAE-TFP model is shown in Fig. 2. As
depicted, the input data undergoes filtration of anomaly data points using SVDD model and the
actual data is smoothened with the help of difference-based stationary. Followed by, the AIPAE
model is applied in efficient prediction of traffic flow.

3.1 Feature Engineering Process
Construction, selection, and extraction of features are the three major phases of feature engi-

neering process. Initially, feature construction is defined as a process in which the required features
are extracted from complicated and actual datasets. It is essential to monitor the distribution and
features of actual dataset, and select a reliable way to convert the actual data as accessible features.
In case of feature construction, a rule is established for selecting the type of road sections in
complete road networks [22]. As a consequence, a selection strategy is deployed for the main road
section. Initially, the separation point is removed from road networks. Followed by, the isolation
point is placed either at top or bottom of the roads.

Further, it is not applicable to connect with one another since it implies a limited impact on
road system. Besides, the connection points from the road network are removed. The junction of
a city is highly complex with the inclusion of flyovers, roundabouts, and so on. Additionally, the
junctions are highly prone to traffic management restrictions, for instance, speed limitations, where
the general features are not represented on road. Finally, the data derived from different sources
are unified whereas one-way road section has several lanes with numerous sensors; all these data
are concatenated together which results in the reduction of voluminous data [22].
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Figure 2: The block diagram of AIPAE-TFP model

Here, the main aim of FS is to extract anomalous features. Then, SVDD is presented with iso-
lation forest approach to identify the anomalous points. SVDD is one of the occasional classifiers
that applies high-dimensional hypersphere in the classification of boundary over data sample and
prominently reduces the boundary till finding the unwanted points. Hence, the objective function
can be determined as given herewith.

Minf (R, a, ξi)=R2+C
N∑
i=1

ξi, (1)

s.t. (xi− a)T (xi− a)≤R2+ ξiξi ≥ 0, (2)

where a implies the intermediate point of a sample, depicts the radius from boundary of middle
point. C and F illustrate the regularized bias and loss functions. Basically, Lagrange operator
is applied to convert the problem into a dual problem and is resolved with the help of kernel
function as well as convex optimization model. Here, nonlinear kernel function RBF is depicted
as follows

y= e
(x−μ)2

2σ2 , (3)

μ and σ imply the expectation and variance, correspondingly. The flow of anomalous
prediction is defined in the following points:
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(1) Based on the size of data sample, the outliers groups are fixed i.e., outliers_fraction =
{o1, . . . , on}, where n indicates the count of parameter groups.

(2) Apply SVDD and isolation forest methodologies to predict the unwanted points.
(3) Predict the anomalous points using determined outliers_ fraction.
(4) Extract the abnormal points.

Feature extraction decides to identify the best sub-distribution of sample data set by few
processes such as coordinate axis conversion, dimension conversion, and so on. In periodic time
series prediction domains, difference-based stationary is developed to smoothen the original data.
Then, the first-order difference is considered as a sample as given herewith.

Δf (xk)= f
(
xk+1

)− f (xk) (4)

A novel data set is deployed by difference. An accurate difference provides the time intervals
applied for training the DL method, which enhances the function of model. Based on the survey,
Augmented Dickey-Fuller (ADF) test samples the empty hypothesis, as the unit root is projected
in time series sample.

3.2 Traffic Flow Prediction Process
Traditional sequential models (AutoDNet and Sparse Activation Function (SAF)) that facili-

tates the model shapes and frequencies are often identified as different from the usual ones. Thus,
the modal information is isolated as multiple subsets depending on physical value and magnitude
scale which are induced for newly-developed system [23].

To predict the damage or failure in the proposed method, two main components are applied
and are defined in the following section.

1) Dimensionality reduction component is used for:
i) The extraction of scale-invariant, associated, and noise-robust features so as to reduce
the modal data
ii) The extraction of scale-invariant, associated, and noise-robust features in order to reduce
the frequency data;

2) Relationship learning component is applied in
iii) Learning about the relationship between extracted features and the simulation result

3.2.1 Parallel Sparse Dimensionality Reduction
The key objective of this module is to compute the predefined processes along with dimen-

sionality reduction from the actual input. Hence, the raw input is classified into numerous subsets
as given below:

Natural frequencies : qr = [
qr1, q

r
2, . . . , qri

]T (5)

Mode shapes :mq1r = [
m1

q1r . . .mj
q1r

]T , . . . , mqir = [
m1

qir . . .mj
qir

]T (6)

where qr denotes the natural frequencies input subset, qri indicates the ith (i= 1, . . . , n) frequency
in rth sample and mqir refers to mode shape variables subset that corresponds to ith frequency. A
mode shape subset is composed of j count of parameters. Next, the function corir is applied to
represent actual input vector in generic development.

Every subset of input data is induced within Stacked Sparse Auto-Encoder (SSAE) method
along with Deep Neural Network (DNN) structure so as to reduce the dimension simultaneously.
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In the newly-developed parallel structure, 1st hidden layer of SSAE learns the local distribution
from input subset. The encoding layers of stacked deep AE are applied in dimensionality reduc-
tion as shown in Fig. 3 [23]. Based on the problem complexity, ‘deep architecture’ is expanded to
match the problem complexity.

Figure 3: The structure of AIPAE model

3.2.2 Sparse Auto-Encoder
AE model is trained to redevelop the input into output. However, when AE is applied to

copy the input to output, it becomes unfit for feature extraction. Further, SAE is an extended
version of AE in which the training condition is contributed in sparsity penalty term, on hidden
neurons that have evolved from sparse coding, in conjunction with reconstruction error. Since
AE regularization is sparse, it has to respond the exclusive statistical features of training dataset.
Instead, it is considered as an identity function. Therefore, the purpose of training SAE is to
extract the useful features.

A brief deployment of sparsity penalty term is discussed herewith. Assume aj
(
x(i)

)
as the

activation of hidden neuron j if a network is provided as ith input x(i). Next, the activation of
hidden neuron j is averaged across completely-trained datasets:

ρ̂j = 1
m

m∑
i=1

[
aj

(
x(i)

)]
(7)

where m defines the count of samples and is expressed as [23]:

ρ̂j ≈ ρ (8)

where ρ refers to a sparsity attribute which requires pre-defined measurement as small value. Here,
the average activation of a hidden neuron j is 0. Moreover, the hidden neurons are often ‘inactive’.
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This can be accomplished with the help of additional penalty term for optimization objective
function, which penalizes ρ̂j, when the derivatives are obtained from ρ as given below:

KL
(
ρ || ρ̂j

) = ρlog
ρ

ρ̂j
+ (1−ρ) log

(1−ρ)(
1− ρ̂j

) (9)

where KL(·) indicates the Kullback–Leibler (KL) divergence: a value of similarity from two
distributions ρ and ρ̂j. Besides, the ρ̂j diverges from ρ whereas KL divergence gets enhanced
monotonically. Therefore, the sparsity penalty term is depicted as provided herewith.

Jsparse
(
W , b

)
=

r∑
j=1

KL
(
ρ || ρ̂j

)
(10)

where r refers to the count of neurons in hidden layer and index j is summarized in hidden
neurons from the system.

3.2.3 SAF and Cost Function
In SAF process, SAE is applied to decrease the computing dimensionality by learning a

sparse depiction of modal data. This can be accomplished in hidden representations. Rectified
Linear Unit (ReLUs), otherwise called as encoder activation function, is used across the alternative
non-sparse activation functions. In this manner, ReLU controls the sparsity indirectly through
model representation. From the newly developed approach, SAE is employed and dimensionality
reduction component explores the merits of this approach in comparison with SAF. Hence, the
reconstruction cost function of pth layer is calculated as given herewith [23].

Jpcost
(
W , b

)
= JpMSE

(
W , b

)
+λJpweight

(
W , b

)
++βJpsparse

(
W , b

)
(11)

where

JpMSE

(
W , b

)
=

N∑
τ=1

∥∥∥hrp−1− gp
(
fp

(
h
r
p−1

))∥∥∥
2

2
(12)

Jpweight

(
W ,b

)
= 1

2

p∑
l=p

sl∑
i=1

sl+1∑
j=1

(
w(l)
ji

)2
(13)

Eq. (11) implies the overall cost function with Mean Squared Error (MSE) loss term as
well as weight decay regularization term. Here, W implies the weight matrix and b denotes
the bias vector. The optimization of W and b is carried out using MSE as a loss function in
Eq. (12), where p= {1,…, k} with k is assumed to be the count of hidden layers in dimensionality
reduction, N depicts the overall count of training samples, fp signifies the encoder process for

pth layer in which ReLU is applied to impose the sparsity on hidden representation. But, the
usage of strong sparsity affects the performance, as it limits the efficiency of the model. Thus, a
sparse regularization term is illustrated in Eq. (10) and is included in Eq. (11). Here, β denotes
the hyper-parameter that manages the trade-off from reconstruction loss and use the constraints
on solution. gp refers to the decoder process for pth layer and fix it as linear activation function

g(x)= x to reconstruct the real values of input to output. Further, h
r
p−1 represents the compressed
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hidden feature vector considered from (p− 1)th layer from rth sample with h
r
0 = corir . Eq. (13)

defines a L2-weight decay regularization term, in which wlji illustrates the element in weight matrix

W and sl mimics the count of hidden neurons in layer l. In Eq. (11) a hyper-parameter λ is
applied to penalize the weight decay term. The unsupervised layer-wise pre-training, relied on
SAE, is computed for every layer simultaneously. The sparse hidden illustration of pre-trained
AE is assumed as the input for upcoming layer. Consequently, the features derived from kth layer
of a block is combined as a novel input vector cnewr and is injected into nonlinear relationship
learning element.

4 Experimental Validation

4.1 Result Analysis
The current section validates the predictive performance of the presented AIPAE-TFP model

in terms of precision, recall, and accuracy. The parameter setting, used in the study, is as follows;
batch size: 128, learning rate: 0.001, epoch count: 500, and momentum: 0.2. In addition, the
prediction results were analyzed under varying volumes and speed indexes. Tab. 1 portrays the
predictive results of AIPAE-TFP model in terms of precision under different volumes and speed
indexes. The table values portray that the AIPAE-TFP model accomplished the maximum output
whereas the SVM model secured the minimum output. At the same time, though few other models
such as LSTM, Bi-LSTM, and DBN produced manageable outcomes, the values were not higher
than the proposed AIPAE-TFP model.

Table 1: Result analysis of existing model against the proposed model in terms of precision

Index Minutes SVM LSTM Bi-LSTM DBN AIPAE-TFP

Volume 5 0.829 0.831 0.837 0.848 0.899
10 0.861 0.863 0.878 0.900 0.929
15 0.902 0.900 0.907 0.913 0.941
20 0.911 0.907 0.918 0.925 0.962
25 0.923 0.923 0.933 0.938 0.981

Speed 5 0.931 0.930 0.940 0.944 0.953
10 0.939 0.938 0.945 0.948 0.962
15 0.946 0.945 0.953 0.961 0.974
20 0.950 0.950 0.955 0.967 0.979
25 0.957 0.952 0.959 0.974 0.987

When examining the precision value on volume index for 5 min, the AIPAE-TFP model
achieved a high precision of 0.899, whereas the SVM, LSTM, Bi-LSTM, and DBN models
achieved low precision values such as 0.829, 0.831, 0.837, and 0.848 respectively. In case of 25 min
time, the AIPAE-TFP model accomplished an effective precision of 0.981, whereas the SVM,
LSTM, Bi-LSTM, and DBN models achieved ineffective precision values such as 0.923, 0.923,
0.933, and 0.938 respectively. On the other hand, during the investigation of precision value under
5 min speed index, the AIPAE-TFP model produced a significant precision of 0.953, whereas the
SVM, LSTM, Bi-LSTM, and DBN models achieved low precision values such as 0.931, 0.930,
0.940, and 0.944 respectively. Likewise, for 25 min, the AIPAE-TFP model gained a considerable
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precision of 0.987, whereas the other models such as SVM, LSTM, Bi-LSTM, and DBN models
accomplished unsuccessful precision values such as 0.957, 0.952, 0.959, and 0.974 respectively.

Tab. 2 implies the predictive results for AIPAE-TFP model by means of recall under volume
and speed indexes. The table values depict that the AIPAE-TFP model produced a maximum
output whereas the SVM model exhibited the least output. At the same time, though the LSTM,
Bi-LSTM, and DBN models offered manageable results, the values were not higher than AIPAE-
TFP model. When examining the recall value on volume index for 5 min, the AIPAE-TFP
method reached a high recall of 0.942, whereas the SVM, LSTM, Bi-LSTM, and DBN models
accomplished the least recall values such as 0.828, 0.834, 0.833, and 0.846 respectively. Likewise,
in case of 25 min, the AIPAE-TFP model accomplished an effective recall of 0.982, while the
other methods such as SVM, LSTM, Bi-LSTM, and DBN attained ineffective recall values such
as 0.916, 0.928, 0.964, and 0.964 respectively. In this scenario, when examining the recall value
under the speed index of 5 min, the AIPAE-TFP model produced a significant recall of 0.954
whereas the SVM, LSTM, Bi-LSTM, and DBN models achieved low recall values such as 0.921,
0.934, 0.944, and 0.957 correspondingly. Likewise, under the existence of 25 min, the AIPAE-
TFP model gained a considerable recall of 0.988 whereas the SVM, LSTM, Bi-LSTM, and
DBN methodologies produced unsuccessful recall values such as 0.952, 0.955, 0.965, and 0.972
respectively.

Table 2: Results of the analysis of existing models and the proposed model in terms of recall

Index Minutes SVM LSTM Bi-LSTM DBN AIPAE-TFP

Volume 5 0.828 0.834 0.833 0.846 0.942
10 0.845 0.866 0.828 0.898 0.935
15 0.899 0.907 0.943 0.911 0.949
20 0.903 0.912 0.989 0.923 0.991
25 0.916 0.928 0.964 0.964 0.982

Speed 5 0.921 0.934 0.944 0.957 0.954
10 0.934 0.927 0.942 0.969 0.963
15 0.941 0.984 0.942 0.958 0.975
20 0.945 0.953 0.934 0.966 0.980
25 0.952 0.955 0.965 0.972 0.988

Tab. 3 illustrates the prediction outcomes of AIPAE-TFP model with respect to accuracy
under volume and speed indexes. The table values depict that the AIPAE-TFP model demon-
strated the maximum output whereas the SVM model produced a minimum output. At the same
time, though the LSTM, Bi-LSTM, and DBN models offered considerable outcomes, the values
were not higher than AIPAE-TFP model. When analyzing the accuracy on volume index for
5 min, the AIPAE-TFP model reached a maximum accuracy of 0.921, whereas the SVM, LSTM,
Bi-LSTM, and DBN models achieved the minimum accuracy values such as 0.825, 0.835, 0.834,
and 0.844 correspondingly. In line with these, under the application of 25 min, the AIPAE-
TFP model accomplished an effective accuracy of 0.983, whereas the SVM, LSTM, Bi-LSTM,
and DBN methodologies produced ineffective accuracy values such as 0.915, 0.928, 0.930, and
0.938 respectively. Besides, at the time of investigating the accuracy value under the speed index
of 5 min, the AIPAE-TFP model resulted in a significant accuracy of 0.958, while the other
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models such as SVM, LSTM, Bi-LSTM, and DBN models achieved the least accuracy values
such as 0.926, 0.928, 0.937, and 0.946 correspondingly. Likewise, under the presence of 25 min,
the AIPAE-TFP model accomplished a considerable accuracy of 0.989 whereas the SVM, LSTM,
Bi-LSTM, and DBN models attained inferior accuracy values such as 0.953, 0.951, 0.956, and
0.970 respectively.

Table 3: Result of the analysis of existing models with the proposed model in terms of accuracy

Index Minutes SVM LSTM Bi-LSTM DBN AIPAE-TFP

Volume 5 0.825 0.835 0.834 0.844 0.921
10 0.854 0.868 0.875 0.898 0.937
15 0.896 0.891 0.905 0.909 0.945
20 0.901 0.908 0.917 0.926 0.968
25 0.915 0.928 0.930 0.938 0.983

Speed 5 0.926 0.928 0.937 0.946 0.958
10 0.933 0.937 0.948 0.948 0.964
15 0.949 0.944 0.950 0.957 0.976
20 0.946 0.949 0.952 0.963 0.981
25 0.953 0.951 0.956 0.970 0.989

Tab. 4 and Fig. 4 shows the results for the average analysis of different TFP models. The
results portray that the SVM model exhibited the lowest predictive outcome with an average
precision of 0.915, recall of 0.908, and accuracy of 0.910. Followed by, the LSTM model achieved
a slightly improved outcome over SVM with an average precision of 0.914, recall of 0.920, and
accuracy of 0.914. In line with these, the Bi-LSTM model certainly increased its performance with
an average precision of 0.923, recall of 0.928, and accuracy of 0.920. Moreover, the DBN model
resulted in a competitive performance with an average precision of 0.932, recall of 0.936, and
accuracy of 0.930. At last, the proposed AIPAE-TFP model accomplished a superior predictive
outcome with an average precision of 0.957, recall of 0.966, and accuracy of 0.962. From the
detailed evaluation results, it can be inferred that the proposed AIPAE-TFP model performs well
as it showcased better results under distinct aspects.

Table 4: Average results of the analysis of existing models with the proposed model in terms of
precision, recall and accuracy

Measures SVM LSTM Bi-LSTM DBN AIPAE-TFP

Precision 0.915 0.914 0.923 0.932 0.957
Recall 0.908 0.920 0.928 0.936 0.966
Accuracy 0.910 0.914 0.920 0.930 0.962
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Figure 4: Average result analysis of AIPAE-TFP model

Table 5: Results of the analysis of existing models with the proposed model in terms of compu-
tation time (m)

Index Minutes SVM LSTM Bi-LSTM DBN AIPAE-TFP

Volume 5 8.93 8.42 8.31 8.29 8.21
10 9.23 8.94 8.72 8.61 8.53
15 9.35 9.07 9.01 8.98 8.94
20 9.56 9.19 9.12 9.05 9.03
25 9.75 9.32 9.27 9.21 9.15

Speed 5 9.47 9.38 9.34 9.28 9.23
10 9.56 9.42 9.39 9.36 9.31
15 9.68 9.55 9.47 9.43 9.38
20 9.73 9.61 9.49 9.48 9.42
25 9.81 9.68 9.53 9.50 9.49

Average 9.51 9.26 9.17 9.12 9.07

4.2 Discussion
Tab. 5 illustrates the prediction outcomes of AIPAE-TFP model with respect to Computation

Time (CT) under volume and speed indexes. The table values depict that the AIPAE-TFP model
demonstrated the least output whereas the SVM model accomplished the highest output. Though
the LSTM, Bi-LSTM, and DBN models offered considerable outcomes, the values were not lesser
than the AIPAE-TFP model. When analyzing the CT value on volume index for 5 min, the
AIPAE-TFP model reached a minimum CT of 8.21 m whereas the SVM, LSTM, Bi-LSTM, and
DBN models achieved high CT values such as 8.93, 8.42, 8.31, and 8.29 m correspondingly. In
line with this, under the application of 25 min, the AIPAE-TFP model accomplished a minimum
CT of 9.15 m, whereas the SVM, LSTM, Bi-LSTM, and DBN methodologies achieved ineffective
CT values of 9.75, 9.32, 9.27, and 9.21 m respectively. Besides, during the investigation of CT
value under the speed index with 5 min, the AIPAE-TFP model produced a significant CT of
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9.23 m, while the SVM, LSTM, Bi-LSTM, and DBN models accomplished the least CT values
such as 9.47, 9.38, 9.34, and 9.28 m correspondingly. Likewise, under the presence of 25 min, the
AIPAE-TFP model gained a considerable CT of 9.49 m whereas the SVM, LSTM, Bi-LSTM,
and DBN models attained inferior CT values such as 99.81, 9.68, 9.53, and 9.50 m respectively.

5 Conclusion

The current research article designed an effective AIPAE-TFP model in CAEV to assist in
real-time decision making process. The presented model comprises of two distinct procedures
namely, feature engineering and TFP. Feature engineering process incorporates few stages such
as feature construction, feature selection, and feature extraction. On the other hand, the input
data is filtered for anomaly data points using SVDD model and the actual data is smoothened
using difference-based stationary. Lastly, the AIPAE model is applied in determining the predic-
tive values of traffic flow. In order to demonstrate the outcome of the TFP process, a brief
simulation analysis was conducted and the results were determined under different aspects. The
evaluation outcomes verified the effectual performance of the proposed AIPAE-TFP model over
other methods. As a part of future work, the AIPAE-TFP model can be incorporated in designing
the decision-making model for charging stations.
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