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Abstract:TheCellularNeural Network (CNN) has various parallel processing
applications, image processing, non-linear processing, geometric maps, high-
speed computations. It is an analog paradigm, consists of an array of cells
that are interconnected locally. Cells can be arranged in different configu-
rations. Each cell has an input, a state, and an output. The cellular neural
network allows cells to communicate with the neighbor cells only. It can
be represented graphically; cells will represent by vertices and their inter-
connections will represent by edges. In chemical graph theory, topological
descriptors are used to study graph structure and their biological activities.
It is a single value that characterizes the whole graph. In this article, the
vertex-edge topological descriptors have been calculated for cellular neural
network. Results can be used for cellular neural network of any size. This
will enhance the applications of cellular neural network in image processing,
solving partial differential equations, analyzing 3D surfaces, sensory-motor
organs, and modeling biological vision.
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1 Introduction

Graph theory is a vast field and is used to solve real problems and natural phenomena. That’s
why it has applications in molecular chemistry, robotics, physics, networks, computer science,
statistics, biological activities, and data science. It represents real scenarios in the graph based on
vertices and edges.

A topological descriptor is a single value that characterizes the whole graph [1–3]. In chemical
graph theory, they are used to estimate biological activities and atomic movements [4–6]. The first
topological descriptor Wiener index was introduced by Wiener in 1947 [7]. Hosoya polynomial,
Schultz index, atom bond connectivity, geometric-arithmetic index are other famous topological
descriptors [4,8,9]. Topological descriptors can be categorized on the basis of the mechanism of
calculation involved [10–17]. Nowadays vertex-edge topological descriptors are gaining importance
in applied sciences [18].
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Let G be a simple connected graph with vertex sets V(G) and edge sets E(G). The degree
of a vertex ε, denoted by d(ε), is the number of edges that are incident to the ε. The open
neighbourhood of ε is defined as N(ε)= {ε ∈V(G) : εε ∈E(G)} and closed neighbourhood N[ε]=
N(ε)∪ {ε} [19]. The ve-degree, denoted by dve(ε), of any vertex ε ∈V is the number of different
edges that are incident to any vertex from the N[ε]. In [20] defined the ev-degree of the edge
e= εε ∈ E, denoted by dev(e), the number of vertices of the union of the closed neighborhoods
of ε and ε. For details see [21–27].

The ve-degree and ev-degree topological indices are defined as:
∑

e∈E(G) (dev(e))
2,∑

ε∈V dve(ε)2,
∑

εε∈E (dve(ε)+ dve(ε)),
∑

εε∈E (dve(ε)× dve(ε)),
∑

εε∈E (dve(ε)× dve(ε))−
1
2 ,

∑
e1E

dve(e1)−
1
2 ,

∑
εε∈E

(
dve(ε)+dve(ε)−2
dve(ε)×dve(ε)

) 1
2 ,

∑
εε∈E

2(dve(ε)×dve(ε))
1
2

dve(ε)+dve(ε) ,
∑

εε∈E
2

dve(ε)+dve(ε) and
∑

εε∈E (dve(ε)+ dve(ε))−
1
2 are named as: ev-degree Zagreb (Mev) index, the first ve-degree Zagreb

α (M1
αve) index, the first ve-degree Zagreb β (M1

βve) index, the second ve-degree Zagreb (M2
ve)

index, ve-degree Randic (Rve) index, the ev-degree Randic (Rev) index, the ve-degree atom-
bond connectivity (ABCve) index, the ve-degree geometric-arithmetic (GAve) index, the ve-degree
harmonic (Hve) index and the ve-degree sum-connectivity (χve) index, respectively.

2 Applications and Importance

The Cellular Neural Network (CNN) is an array of cells that are interconnected locally. It
is an analog paradigm with various applications including image processing, parallel processing,
and high-speed computations. Each cell has an input, an output, and its state. A cell can interact
with neighbor cells only. A neighbor cell of a cell is in its radius. A neighborhood includes
the cell itself and its eight neighboring cells [28,29]. Fig. 1, consists of two diagrams (a) and
(b). Diagram (a), is a graph of two-dimensional CNN, in which a neighborhood is representing
red and blue colors. Diagram (b), is the internal structure of the red cell of diagram (a), this
cell can interact with all blue cells in this neighborhood. In this article, vertex-edge topological
descriptors have been calculated for CNN. The results are generalized and can be used for CNN
of any structure and size. This will enhance the applications of CNN in image processing, parallel
processing, image processing, non-linear processing, geometric maps, high-speed computations,
solving partial differential equations, analyzing 3D surfaces, sensory-motor organs, and modeling
biological vision [30].

In 2018, new degree-based topological indices are considered and the analytical sharp bounds
has been derived for neural networks in [31]. In 2019, Imran et al. [32] has been calculated the
degree based topological indices of cellular neural network. Topology optimization and Zagreb
connection indices for cellular neural network are studied in [30,33]. Recently in 2021, the compar-
ison and analysis between the dominating topological indices are determined for the cellular neural
network [34]. Some topological indices have been calculated for cellular neural network, and are
prominence their importance, but still many topological indices have not been calculated. Their
calculation will provide an analytical study of cellular neural network in different applications. The
cellular neural network is also known as the strong product of two paths, which has applications
in different area of research, see [35,36].
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Figure 1: Graph of cellular neural networks. (a) Two-dimensional CNN graph, (b) red cell internal
structure of (a)

3 The Graph of Cellular Neural Networks

The Figs. 2 and 3 show cellular neural network for different values of p and q.

Figure 2: Graph representing cellular neural networks p = 5 (rows) and q = 4 (columns)

The cellular neural network can be arranged either linearly or in a sheet form. A cellular
neural network of p rows and q columns, contains pq vertices and 4pq− 3p− 3q+ 2 edges, which
are shown in Tab. 1. The number of vertices corresponding to their degrees of CNN are shown
in Tab. 2 and the edge partition based on degree of end vertices of each edge is shown in the
Tab. 3.
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Figure 3: This is an example of cellular neural networks graph for p = 7 and q = 7 along with
sum of degrees of neighborhood vertices

Table 1: Vertices and edges of CNN

Total vertices Total edges

pq 4pq− 3p− 3q+ 2

Table 2: Number of vertices corresponding to their degrees of CNN

d(ε) Number of vertices

3 4
5 8
5 2(p+ q)− 16
8 4
8 2(p+ q)− 16
8 (p− 4)(q− 4)
Total pq

We partitioned the edges of CNN, based on ev-degree in Tab. 4.

In Tab. 5, we partitioned the vertices of CNN, based on ev-degree.
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Table 3: Edge partition of CNN

(d(ε),d(ε)) Number of edges

(3, 5) 8
(3, 8) 4
(5, 5) 2(p+ q− 4)
(5, 8) 6(p+ q)− 32
(8, 8) 4pq− 11(p+ q)+ 30
Total 4pq− 3p− 3q+ 2

Table 4: Edge partition of CNN

Number of edges dev(ε) (d (ε) ,d (ε))

8 8 (3, 5)
4 11 (3, 8)
2(p+ q− 4) 10 (5, 5)
6(p+ q)− 32 13 (5, 8)
4pq− 11(p+ q)+ 30 16 (8, 8)

Table 5: Vertex partition of CNN, based on ve-degree

Number of vertices dve(ε) d(ε)

4 18 3
8 29 5
2(p+ q)− 16 34 5
4 47 8
2(p+ q)− 16 55 8
(p− 4)(q− 4) 64 8

We partitioned the edge of CNN with respect to ve-degrees.

Now we calculated ev-degree and ve-degree based indices such as Mev index, M1
αve index,

M1
βve index, M2

ve index, Rve index, Rev index, ABCve index, GAve index, Hve index and χve index

for CNN.

3.1 The ev-Degree Zagreb Index
The values of ev-degree of each edge is calculated by the sum of degree of its end vertices.

The edge partition according to ev-degree for cellular neural network (CNN) is shown in Tab. 4.
By using ev-degree of CNN from Tab. 4, we compute the ev-degree based Zagreb index:

Mev (CNN)=
∑

e∈E(CNN)

(dev (e))
2

= 8× 82+ 4× 112+ (2p+ 2q− 8)× 102+ (6p+ 6q− 32)× 132

+ (4pq− 11p− 11q+ 30)× 162

= 1024pq− 1602p− 1602q+ 2468.
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3.2 The First ve-Degree Zagreb α Index
The ve-degree of each vertex is obtained by the sum of all degrees of its neighboring vertices.

We partitioned the vertices of cellular neural network (CNN) according to its ve-degree that is
shown in Tab. 5. Using Tab. 5 we compute the first ve-degree Zagreb α index:

M1
αve (CNN)=

∑
ε∈V

dve (ε)2

M1
αve (CNN)= 4× 182+ 8× 292+ (2q+ 2p− 16)× 342+ 4× 472+ (2q+ 2p− 16)× 552

+ (pq− 4q− 4p+ 16)× 642

= 4096pq− 8022 (p+ q)+ 15500.

3.3 The First ve-Degree Zagreb β Index
The edge partition of cellular neural network (CNN) with respect to ve-degree is shown in

Tab. 6. Using Tab. 6 we compute the first ve-degree Zagreb β index:

M1
βve (CNN)=

∑
εε∈E

(dve (ε)+ dve (ε))

M1
βve (CNN)= 8× (18+ 29)+ 4× (18+ 47)+ 4× (29+ 29)+ 8× (29+ 34)+ (2p+ 2q− 20)

× (34+ 34)+ 8× (29+ 47)+ 8× (29+ 55)+ 8× (34+ 47)+ (6p+ 6q− 56)

× (34+ 55)+ 8× (47+ 55)+ 4× (47+ 64)+ (2p+ 2q− 16)× (55+ 55)+ (6p+ 6q− 56)

× (55+ 64)+ (2pq− 8p− 8q+ 32)× (64+ 64)

= 256pq+ 580 (p+ q)− 6112.

Table 6: Edge partition of CNN, based on ve-degree

Number of edges (dve(ε),dve(ε)) (d(ε),d(ε))

8 (18, 29) (3, 5)
4 (18, 47) (3, 8)
4 (29, 29) (5, 5)
8 (29, 34) (5, 5)
2(p− 5)+ 2(q− 5) (34, 34) (5, 5)
8 (29, 47) (5, 8)
8 (29, 55) (5, 8)
8 (34, 47) (5, 8)
2(3p− 14)+ 2(3q− 14) (34, 55) (5, 8)
8 (47, 55) (8, 8)
4 (47, 64) (8, 8)
2(p+ q− 8) (55, 55) (8, 8)
6(p− 6)+ 6(q− 6)+ 16 (55, 64) (8, 8)
2(p− 4)(q− 4) (64, 64) (8, 8)
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3.4 The Second ve-Degree Zagreb Index
Using Tab. 6 we compute the second ve-degree Zagreb index:

M2
ve (CNN)=

∑
εε∈E

(dve (ε)× dve (ε))

M2
ve (CNN)= 8× (18× 29)+ 4× (18× 47)+ 4× (29× 29)+ 8× (29× 34)+ (2p+ 2q− 20)× (34× 34)

+ 8× (29× 47)+ 8× (29× 55)+ 8× (34× 47)+ (6p+ 6q− 56)× (34× 55)

+ 8× (47× 55)+ 4× (47× 64)+ (2p+ 2q− 16)× (55× 55)+ (6p+ 6q− 56)

× (55× 64)+ (2pq− 8p− 8q+ 32)× (64× 64)

= 8192pq+ 7934 (p+ q)− 154316.

3.5 The ve-Degree Randic Index
Using Tab. 6 we compute the ve-degree Randic index:

Rve (CNN)=
∑
εε∈E

(dve (ε)× dve (ε))
− 1

2

Rve(CNN)= 8× (18× 29)−
1
2 + 4× (18× 47)−

1
2 + 4× (29× 29)−

1
2 + 8× (29× 34)−

1
2 + (2p+ 2q− 20)

× (34× 34)−
1
2 + 8× (29× 47)−

1
2 + 8× (29× 55)−

1
2 + 8× (34× 47)−

1
2 + (6p+ 6q− 56)

× (34× 55)−
1
2 + 8× (47× 55)−

1
2 + 4× (47× 64)−

1
2 + (2p+ 2q− 16)× (55× 55)−

1
2

+ (6p+ 6q− 56)× (55× 64)−
1
2 + (2pq− 8p− 8q+ 32)× (64× 64)−

1
2

= 4
87

√
58+ 2

141

√
94− 13081

54230
+ 4

493

√
986− 223

7480
p− 223

7480
q+ 8

1363

√
1363

+ 8
1595

√
1595+ 4

799

√
1598+ 1

1870
(6p+ 6q− 56)

√
1870+ 8

2585

√
2585+ 1

94

√
47

+ 1
440

(6p+ 6q− 56)
√
55+ 1

32
pq

= 1
32
pq+

(
3
935

√
1870− 223

7480
+ 3

220

√
55

)
(p+ q)+ 4

87

√
58+ 2

141

√
94− 13081

54230
+ 4

493

√
986

+ 4
799

√
1598− 28

935

√
1870+ 8

1363

√
1363+ 8

1595

√
1595+ 1

94

√
47+ 8

2585

√
2585− 7

55

√
55.

3.6 The ev-Degree Randic Index
Using Tab. 4 we compute the ev-degree Randic index:

Rev (CNN)=
∑
e1E

dev (e1)
− 1

2
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Rev(CNN)= 8× (8)−
1
2 + 4× (11)−

1
2 + (2p+ 2q− 8)× (10)−

1
2 + (6p+ 6q− 32)× (13)−

1
2

+ (4pq− 11p− 11q+ 30)× (16)−
1
2

= 2
√
2+ 4

11

√
11+ 1

10
(2p+ 2q− 8)

√
10+ 1

13
(6p+ 6q− 32)

√
13+ pq− 11

4
p− 11

4
q+ 15

2

= pq+
(
1
5

√
10− 11

4
+ 6

13

√
13

)
(p+ q)+ 2

√
2+ 4

11

√
11− 4

5

√
10− 32

13

√
13+ 15

2
.

3.7 The ve-Degree Atom-Bond Connectivity Index
Using Tab. 6 we compute the ve-degree atom-bond connectivity index:

ABCve (CNN)=
∑
εε∈E

(
dve (ε)+ dve (ε)− 2
dve (ε)× dve (ε)

) 1
2

ABCve(CNN)= 8×
√

45
522

+ 4×
√

63
846

+ 4×
√

56
841

+ 8×
√

61
986

+ (2p+ 2q− 20)×
√

66
1156

+ 8×
√

74
1363

+ 8×
√

82
1595

+ 8×
√

79
1598

+ (6p+ 6q− 56)×
√

87
1870

+ 8×
√

100
2585

+ 4×
√

109
3008

+ (2p+ 2q− 16)×
√

108
3025

+ (6p+ 6q− 56)×
√

117
3520

+ (2pq− 8p

− 8q+ 32)×
√

126
4096

= 3
32

√
14pq+

(
3
935

√
162690+ 12

55

√
3+ 9

220

√
715+ 1

17

√
66− 3

8

√
14

)
(p+ q)+ 4

29

√
290

+ 2
47

√
658+ 103

58

√
14+ 4

493

√
60146− 10

17

√
66+ 8

1595

√
130790− 28

935

√
162690

− 96
55

√
3+ 8

1363

√
100862+ 16

517

√
2585+ 4

799

√
126242− 21

55

√
715+ 1

94

√
5123.

3.8 The ve-Degree Geometric-Arithmetic Index
Using Tab. 6 we compute the ve-degree geometric-arithmetic index:

GAve (CNN)=
∑
εε∈E

2 (dve (ε)× dve (ε))
1
2

dve (ε)+ dve (ε)
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GAve (CNN)=16
√
522

47
+ 8

√
846
65

+ 8
√
841
58

+ 16
√
986

63
+ 2 (2p+ 2q− 20)

√
1156

68
+ 16

√
1363
76

+ 16
√
1595
84

+ 16
√
1598
81

+ 2 (6p+ 6q− 56)
√
1870

89
+ 16

√
2585

102
+ 8

√
3008
111

+ 2 (2p+ 2q− 16)
√
3025

110
+ 2 (6p+ 6q− 56)

√
3520

119
+ 2 (2pq− 8p− 8q+ 32)

√
4096

128

= 2pq+
(
12
89

√
1870− 4+ 96

119

√
55

)
(p+ q)+ 48

47

√
58+ 24

65

√
94+ 16

63

√
986+ 16

81

√
1598

− 112
89

√
1870+ 4

19

√
1363+ 4

21

√
1595+ 64

111

√
47+ 8

51

√
2585− 128

17

√
55.

3.9 The ve-Degree Harmonic Index
Using Tab. 6 we compute the ve-degree harmonic index:

Hve (CNN)=
∑
εε∈E

2
dve (ε)+ dve (ε)

Hve (CNN)=16
47

+ 8
65

+ 8
58

+ 16
63

+ 2 (2p+ 2q− 20)
68

+ 16
76

+ 16
84

+ 16
81

+ 2 (6p+ 6q− 56)
89

+ 16
102

+ 8
111

+ 2 (2p+ 2q− 16)
110

+ 2 (6p+ 6q− 56)
119

+ 2 (2pq− 8p− 8q+ 32)
128

= 1
32
pq+ 959311

4660040
p+ 959311

4660040
q− 30087768559241

33584675843862
.

3.10 The ve-Degree Sum-Connectivity Index
Using Tab. 6 we compute the ve-degree sum-connectivity index:

χve (CNN)=
∑
εε∈E

(dve (ε)+ dve (ε))
− 1

2

χve (CNN)= 8 (47)−
1
2 + 4 (65)−

1
2 + 4 (58)−

1
2 + 8 (63)−

1
2 + (2p+ 2q− 20) (68)−

1
2 + 8 (76)−

1
2 + 8 (84)−

1
2

+ 8 (81)−
1
2 + (6p+ 6q− 56) (89)−

1
2 + 8 (102)−

1
2 + 4 (111)−

1
2 + (2p+ 2q− 16) (110)−

1
2

+ (6p+ 6q− 56) (119)−
1
2 + (2pq− 8p− 8q+ 32) (128)−

1
2

=
√
2
8
pq+

(
6
89

√
89+ 1

55

√
110+ 6

119

√
119+ 1/17

√
17)− 1/2

√
2
)

(p+ q)+ 8
47

√
47+ 4

65

√
65
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+ 2
29

√
58+ 8

21

√
7− 10

17

√
17+ 4

21

√
21− 56

89

√
89− 8

55

√
110+ 4

19

√
19+ 4

51

√
102+ 8

9

+ 2
√
2− 8

17

√
119+ 4

111

√
111.

4 Numerical and Graphical Representation

In this section, we determine the numerical values of the M1
αve,M

1
βve,M

2
ve,Rev,ABCve,GAve,Rve,Hve,χve,

in Tabs. 7–9. We represented these results graphically in Figs. 4–6.

Table 7: Numerical comparison of M1
αve,M

1
βve and M2

ve

[p, q] M1
αve M1

βve M2
ve

[5, 5] 12304 6088 129824
[6, 6] 20364 10064 235804
[7, 7] 30472 14552 358168
[8, 8] 42628 19552 496916
[9, 9] 56832 25064 652048
[10, 10] 73084 31088 823564
[11, 11] 91384 37624 1011464
[12, 12] 111732 44672 1215748
[13, 13] 134128 52232 1436416
[14, 14] 158572 60304 1673468

Table 8: Numerical comparison of Rev,ABCve and GAve

[p, q] Rev ABCve GAve

[5, 5] 20.595 16.952 72.413
[6, 6] 30.688 24.492 110.04
[7, 7] 42.781 32.733 151.67
[8, 8] 56.875 41.676 197.30
[9, 9] 72.968 51.322 246.92
[10, 10] 91.060 61.670 300.55
[11, 11] 111.15 72.718 358.17
[12, 12] 133.25 84.465 419.80
[13, 13] 157.34 96.917 485.43
[14, 14] 183.44 110.07 555.06
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Table 9: Numerical comparison of Rve,Hve and χve

[p, q] Rve Hve χve

[5, 5] 1.9915 1.9440 8.3964
[6, 6] 2.7556 2.6994 12.165
[7, 7] 3.5818 3.5174 16.288
[8, 8] 4.4709 4.3979 20.763
[9, 9] 5.4222 5.3408 25.593
[10, 10] 6.4360 6.3463 30.776
[11, 11] 7.5125 7.4143 36.313
[12, 12] 8.6513 8.5447 42.203
[13, 13] 9.8528 9.7377 48.446
[14, 14] 11.117 10.993 55.044

Figure 4: Graphical comparison of M1
αve,M

1
βve and M2

ve for CNN

Figure 5: Graphical comparison of Rev,ABCve and GAve for CNN
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Figure 6: Graphical comparison of Rve,Hve and χ ve for CNN

5 Advantages and Limitations

5.1 Advantages
As a machine learning algorithm, CNN can take image as an input, highlight image key

features, and differentiate one image from the other [37]. CNN has powerful function-fitting
capabilities and has great potential to study partial differential equations [38,39]. CNN has been
widely used in analyzing 3D surfaces and facial images applications [40]. The design components
underlying the implementation of the physiologically faithful retina and other topographic sensory
organ models on CNN universal chips. The results obtained through the proposed technique
can better understand the features and characteristics of CNN. It can enhance image process-
ing applications, solve partial differential equations, analyze 3D surfaces, sensory-motor organs,
and model biological vision. Combinations of CNN and artificial intelligence provide enhanced
human-level performance to computer architectures [41]. This article is vital in the implementation
of Human-level visual recognition.

5.2 Limitations
The calculation of vertex-edge topological descriptors carried out in this research are specifi-

cally derived for cellular neural networks. However, with some modifications they can be applied
in other fields like image processing, biological modelling, 3D surface analyzing, and complex
imaging. The applicability of this research still needs to be validated for these fields to identify
the full potential of this research. These open problems can be further studied to get full benefit
of this research.

6 Conclusion

A cell in Cellular Neural Network (CNN), can communicate with neighbor cells only. Due
to its architecture, it is used to manage hierarchical levels, and it has variety of applications. In
applied sciences, graph theory provides different tools and methods to remedy real-world problems.
To solve these problems, it represents them in the form of graphs. Topological descriptors in
graph theory are used to study and characterize biological activities in the form of graphs. In this
article, the vertex-edge topological descriptors have been calculated for the graphic representation
of CNN. Results can be used for the CNN of any size. The proposed technique can enhance
the CNN’s applications in image processing, parallel processing, non-linear processing, geometric
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maps representations, high-speed computations, solving partial differential equations, analyzing 3D
surfaces, sensory-motor organs, and modeling biological vision.
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