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Abstract: In the domain of artificial neural networks, the learning process
represents one of the most challenging tasks. Since the classification accuracy
highly depends on theweights and biases, it is crucial to find its optimal or sub-
optimal values for the problem at hand. However, to a very large search space,
it is very difficult to find the proper values of connection weights and biases.
Employing traditional optimization algorithms for this issue leads to slow
convergence and it is prone to get stuck in the local optima. Most commonly,
back-propagation is used for multi-layer-perceptron training and it can lead to
vanishing gradient issue. As an alternative approach, stochastic optimization
algorithms, such as nature-inspired metaheuristics are more reliable for com-
plex optimization tax, such as finding the proper values of weights and biases
for neural network training. In this work, we propose an enhanced brain storm
optimization-based algorithm for training neural networks. In the simulations,
ten binary classification benchmark datasets with different difficulty levels
are used to evaluate the efficiency of the proposed enhanced brain storm
optimization algorithm. The results show that the proposed approach is very
promising in this domain and it achieved better results than other state-of-the-
art approaches on the majority of datasets in terms of classification accuracy
and convergence speed, due to the capability of balancing the intensification
and diversification and avoiding the local minima. The proposed approach
obtained the best accuracy on eight out of ten observed dataset, outperform-
ing all other algorithms by 1–2% on average.Whenmean accuracy is observed,
the proposed algorithm dominated on nine out of ten datasets.
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1 Introduction

Machine learning (ML) belongs to the group of technologies that have recently become a
major part of our lives. The main objective of ML can be summed up as the process of enabling
computers and various computer systems to learn independently of humans. Deep learning is
the part of ML that focuses on the application of algorithms that mimic the human brain
structure (neurons and connections between them) and its functionality, also known as artificial
neural networks (ANNs). ANNs consist of processing nodes (known under the same name as
their counterparts in the human brain—neurons) that are inter-connected. The ANNs goal is to
transform the set of input values to the set of output values, based on the characteristics of the
processing neurons and the weights assigned to the connections between them.

ANNs must be adapted for each specific problem, as there is no single solution that fits all
possible applications. This is done by changing the connections among the neurons in the network.
The learning process of an ANN typically consists of the optimization of the network parameters
(the weights of the connections and the biases). During the learning process, the network is fed
with a set of input data that passes through the network in order to get the output prediction
values. The obtained output values are then compared to the expected values to calculate the
classification error rate measured with the loss function. The process continues with updating the
weights and biases of ANN to reduce the total loss, therefore obtaining a better model. While
the loss is being reduced, the network will slowly start to give the desired output for a specified
problem.

Two major tasks must be addressed for any neural network before applying it to a spe-
cific problem. The first task is to determine the adequate structure of the neural network—the
problem known as hyperparameter optimization. The second task is to train the network for a
given problem. The ANNs are commonly trained by the standard optimizers, that are based on
both deterministic and stochastic approaches. ANN training was until recently performed mostly
by gradient descent and backpropagation. After calculating the loss, it needs to be propagated
backward, starting by the output layer of the ANN, to the neurons positioned in the hidden layer
that are producing the output. As every single neuron in the hidden layer contributes partially
to the final output of the network, it will receive just a fraction of the overall loss, relative
to its contribution. After propagating the loss information backward throughout the complete
network, it is possible to adjust the connections’ weights, with an objective to make the loss close
to zero for the next usage of the network. The gradient descent and back-propagation belong to
the deterministic methods, with several clear drawbacks, such as stagnating in the local optima,
vanishing gradient issue, and very slow speed of convergence, that can tamper the network training
process.

The above-mentioned ANN challenges, namely the hyperparameter optimization and the
network training, both belong to the group of NP-hard problems. To solve them, stochastic
methods must be used, such as metaheuristics approaches. The nature-inspired algorithms are an
appropriate choice as they can improve the ANN’s training search capabilities by reducing the
classification error at a faster rate than the gradient descent approach.

The main motivation behind the research presented in this paper is defined by the follow-
ing research questions: How to implement a neural network training method that will improve
the accuracy and speed of the training process? How to implement an efficient nature-inspired
metaheuristics approach for the purpose of neural network training? The main objective of this
research is to provide answers to those research questions in the following way.
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• Implement an improved hybrid brain storm optimization (BSO) metaheuristic that outper-
forms the original BSO and its known variants both in terms of converging speed and
quality of solutions and

• Use the proposed BSO method to optimize the connection weight and biases in the neural
network, which will improve the accuracy and execute faster than other already existing
approaches.

The remainder of the paper is structured in the following way: Section 2 gives the background
and extensive survey about the related work. Then, Section 3 describes the artificial neural
networks together with their optimization. Section 4 presents the basic BSO algorithm, highlights
its drawbacks, and introduces the proposed method. Section 5 consists of the unconstrained
simulations, followed by the experiment of artificial neural network training optimization and
hidden unit optimization. In the end, Section 6 concludes the paper.

2 Background and Related Work

NP-hardness defines a class of problems that have a significant impact on modern computer
science. A number of practical challenges from different application domains such as scheduling,
routing, wireless sensor, and ad hoc networks localization, network lifetime maximization, and
cryptography belong to this group. Neural network training and optimization of hyperparameters
belong to this group as well. NP-hard problems are challenging because they cannot be solved
by applying traditional deterministic methods within an acceptable time frame. Instead, these
problems must be tackled by stochastic methods that typically focus on finding a solution that is
good enough and acceptable for a given problem, although not guaranteed to be the best, in a
much shorter time frame [1].

The swarm intelligence (SI) metaheuristics belong to the nature-inspired approaches. They are
inspired by collective behavior and social activities found in large groups of simple insects and
animals. A large number of SI approaches exist nowadays, both in original implementations and in
hybrid/enhanced variations, that were proven to be efficient, including the cuckoo search (CS) [2,3],
the firefly algorithm (FA) [4], the whale optimization algorithm [5] and the bat algorithm [6].

The variety of application domains where SI methods have been successfully used is wide,
and in several cases, the obtained results can be considered to be world-class. The most successful
SI applications include the COVID-19 cases prediction [7] the cloud systems and the scheduling
problem [8]. WSN localization and energy-efficient operation and numerous others applications [9].

The ANN learning task is the most difficult problem that belongs to the group of NP-hard
challenges, and it has been addressed by numerous SI approaches. The paper [10] proposed the
whale optimization algorithm (WOA) for intrusion detection task ANN’s training. The proposed
ANN is capable to perform the classification of different classes of cyber-attacks, and also power-
based incidents. Research presented in [11] used the grasshopper optimization algorithm (GOA)
in a hybrid approach to train the multilayer perceptron (MLP). The research published in [12]
proposed an enhanced PSO method that utilized the gradient penalties for optimal CNN structure
generation and validated it on a set of EEG signals with three emotional states of the participants
in the experiment. Another problem that neural networks face is over-fitting. It was also tackled
with the SI-based approach in [13], where the researchers have developed and tested four SI
metaheuristics (FA, BA, CS, and PSO) and used them to determine the appropriate selection of
the regularization parameter dropout. Another recent paper used the enhanced firefly algorithm
(FA) to optimize the feature selection process, with promising results [14]. GA was also recently
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used in a hybrid machine learning approach to predict the number of COVID-19 cases [15].
Another GA approach with ranked mutation was used for discovery of high utility itemsets
in [16]. Stellar mass black hole optimization was used for utility mining in [17]. There were also
numerous recent published papers dealing with different applications of the machine learning
and deep learning approaches, ranging from the sentiment analysis [18], flood prediction [19], the
Dengue disease prediction [20], other medical diagnostics [21–23], all the way to eHealth and
IoT [24–26].

3 ANN Training Process and Hyper-Parameter Optimization

The training process of the ANNs represents a crucial task that is required to build a model
that will be able to achieve better results. The main objective of the network training process is
to optimize the loss function, which takes place in the weight learning phase. Another challenge
during the training process of the ANNs is the overfitting problem, which arises when a large
difference exists in the training and the test accuracy. The ANN’s main purpose is to achieve the
appropriate final model that will have good performances on both training data and the new data
that is later fed to it. In this paper, multilayer perceptron (MLP) is considered, with an objective
to perform the optimization of the hidden unit number in the hidden layer. Additionally, the
optimization of the connection weights and biases has been conducted.

The typical structure of the MLP with one hidden layer is depicted in Fig. 1. The neurons
between layers are connected, while each connection has the assigned weight. Each individual
neural node can perform two fundamental operations: summation and activation. The summation
operation is executed by utilizing the product of the inputs, weights, and bias, as defined by the
Eq. (1):

Sj =
n∑
i=1

ωijIi+βj (1)

where, n marks the number of inputs, Ii denotes the i-th input value, ωij represents the connection
weight, and lastly, βj represents the bias.

The activation functionality is performed over the result of the Eq. (1). Various activation
functions exist, one common approach is to use the S-shaped curved sigmoid function, defined by
the Eq. (2):

fj(x)= 1
1+ e−Sj

(2)

The measurement of the ANN’s performance is determined by the loss function. The common
approach is the utilization of the mean squared error (MSE) as the loss function. The MSE
measures the sum of the squared differences between the actual and predicted values as given by
the Eq. (3):

MSE = 1
n

n∑
i=1

(yi− ŷi)2 (3)
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Figure 1: MLP architecture with one hidden layer

In the end, if the observed data contains for instance two features, that correspond to three
nodes in the input layer, and if the hidden layer contains three hidden units, such NN can be
mathematically denoted as:

S1 =

⎡
⎢⎢⎣

ω11 ω21

ω12 ω22

ω13 ω23

⎤
⎥⎥⎦×

[
I1

I2

]
+

⎡
⎢⎢⎣

β1

β2

β3

⎤
⎥⎥⎦

4 Proposed Method

The BSO algorithm belongs to the SI group of algorithms and it was introduced by [27].
The BSO approach differs from other SI methods as it is inspired by humans and simulates the
brainstorming process that is performed to generate new ideas. This method has already been used
to solve different problems recently, including solving multi-objective optimization challenges and
many practical problems.

4.1 Original BSOMetaheuristics
The original BSO algorithm mimics the human process of generating new ideas, known as

brainstorming. The generated ideas are in the ideal case as diverse as possible. The generation of
the individual solution can be mathematically expressed as given in Eq. (4):

xdnew = xdselected +β ×N(μ,σ) (4)

here, xdselected denotes the d-th dimension of the population component that generates a new

component, xdnew denotes the d-th element of the new component, N(µ, σ ) is a Gaussian random
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function, and finally, β denotes a coefficient of the Gaussian function contribution weight, that
can be calculated as shown in Eq. (5).

β = logsig((0.5 ∗maxIter− t)/K) ∗ r( ) (5)

where logsig( ) represents the logarithmic sigmoid function, the maximum number of rounds is
limited by the maxIter, while the current iteration is marked as t, the slope of the logsig( ) function
is defined by K, and finally, r( ) denotes a random number ∈ [0, 1]. Additional details regarding
the original BSO are available.

4.2 Observed Deficiencies of Basic BSO and Proposed Enhanced Metaheuristics
The original BSO algorithm was tested on standard unconstrained instances retrieved from

Congress on Evolutionary Computation (CEC) test suite. By analyzing achieved performance
metrics, it is concluded that the exploitation process and also the balance between exploration and
intensification can be better adjusted. First, the proposed improved BSO approach incorporates
chaotic local search (CLS) in the initialization phase, similar to the method used in [28]. The
search process has been modified by introducing the CLS approach, which helps to improve
the performances of BSO in achieving the global optimum. The proposed approach is able to
accelerate the search process by forcing it to proceed to the region where the optimal solution is
more likely to be found, therefore it improves the exploitation process. The CLS completes when
either a better solution is found or a local search termination condition is fulfilled.

The CLS is a common optimizer that helps to escape the local optimal values. For example,
it was used in [29] in combination with artificial algae algorithm (AAA) to help training the MLP.
In this paper, ten chaotic maps were utilized to generate the corresponding chaos sets, as shown
in Tab. 1. The chaotic maps can be initialized by a number between 0 and 1. The value used for
the initialization in this paper was set to 0.7.

Second, followed another common way to improve metaheuristics by hybridization with
another optimization algorithm, search equation from the FA metaheuristics is introduced in the
original BSO. As stated in various other research including [30]. it can be concluded that the
search procedure of the FA [31], shown in Eq. (6), expresses strong exploitation in the local
neighborhood of the current solutions by using the parameters α, β0, and γ , that represent
randomization, attractiveness at distance r= 0 and light absorption, respectively.

xt+1
i = xti +β0 · e−γ r2i,j(xtj −xti)+αt(κ − 0.5) (6)

where the pseudo-random value from uniform or Gaussian distribution is marked as kappa, the

distance between solutions xti and xji at iteration t is represented as ri,j and xt+1
i denotes the new

position of solution i for the next iteration (t+ 1). The gap ri,j among two solutions xi and xj is
obtained based on Cartesian distance.

The proposed algorithm incorporates both CLS and FA search processes, to address the
drawbacks of getting stuck in the local optimum and slow convergence. The CLS adds the
property of not repeatedly traversing the search space, while the FA search helps the algorithm
getting closer to the global optimum. As the result, the performances and converging speed of
the proposed algorithm will be improved when compared to the original BSO.

In each iteration, search is conducted either by using standard BSO procedure, either FA’s
search expression. To control this, an additional control parameter, called search adjustment (SA)
is introduced. Parameters α, β0, and γ are standard FA’s parameters, where α is used as the
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randomization factor, β0 denotes the attractiveness of the firefly at zero distance, and γ is the air
light absorption coefficient that controls the visibility of the fireflies, respectively. The proposed
method was named enhanced BSO (eBSO) and its pseudo-code is given in Algorithm 1.

Table 1: Chaotic map details

No. Map name Map equation

1 Logistic ck + 1 = 4ck(1 − ck)

2 Cubic ck+1 = 2.59ck(1 −c2k)
3 Sine ck+1 = sin(πck)

4 Sinusoidal ck+1 = 2.3c2ksin(πck)

5 Singer ck+1 = 1.073(7.86ck − 23.31c2k + 28.75c3k − 13.302875c4k)

6 Tent ck+1 =
⎧⎨
⎩
ck
0.4

, 0< ck ≤ 0.4

(1− ck), 0.4< ck ≤ 1

7 Gaussian ck+1 =

⎧⎪⎨
⎪⎩
0, ck = 0(
1
ck

)
mod(1), ck �= 0

8 Chebyshev ck+1 = cos(0.5cos−1ck)

9 Bernoulli ck+1 =
⎧⎨
⎩
ck
0.6

, 0< ck ≤ 0.6

(ck− 0.6)/0.4, 0.6< ck ≤ 1

10 Circle ck+1 = ck + 0.5 − (1.1/π ) sin(2 πck)mod(1)

5 Simulations

This section is divided into two subsections, the first subsection describes the simulation setup
along with the dataset used in the experiment, the second subsection presents the measures which
are used for the model evaluation, and the obtained simulation results, as well as the comparative
analysis.

Algorithm 1: Pseudo-code of the proposed method

Generate initial population Pinit randomly, consisting of N solutions; Based on Pinit generate chaos
population Pchaos using chaotic maps; while t<MIter do if rnd¡ = SA then

Do the clustering for each solution, into m clusters;
Calculate the fitness of each solution;
Sort the population within the clusters and save the best solution for the center of the
cluster; if random1< preplace then

(Continued)
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Chose the center of the cluster randomly;
Create a new solution randomly for the replacement of the chosen center of the cluster;
end if

Create new solution; if random2 < p1 then
Select a cluster randomly with a probability p1; if random3< p1center
then
Choose the center of the cluster and add a random number for creating new solution;
else
Random solution selection from this cluster and add a random number for creating
new solution; end if

else
Create new solution from two randomly selected solutions; if random4< pp2center
then
Combine the two cluster centers and by adding a random number, create new solution;
else

Combine two solutions from randomly selected clusters and add with other state-of-the-art
approaches.

Due to the fact that the basic BSO was not tested on datasets used in this paper, for the
purpose of this research, along with proposed eBSO, original BSO was also implemented and
tested.

5.1 Simulation Setup
In the proposed eBSO algorithm, the population consists of N solutions, and each candidate

solution encodes the connection weights and biases. The population can be represented as follows:

P=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . .x1,D

x2,1 x2,2 . . .x2,D

...

xN,1

...

xN,2

...

. . .xN,D

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

where the population is denoted by P, D refers to the dimension of a solution and N indicates
the number of candidate solutions in the entire population.

The dimension of a solution is obtained by the sum of the total number of weights and
biases:

D=W +B (8)

where D indicates the dimension, W denotes the number of connection weights and B indicates
the number of biases.

The number of connection weights is calculated as:

W = I ×H+H ×O (9)

I denotes the number of units in the input layer, that corresponds to the number of features
in a given dataset, H refers to the number of units in the hidden layer, while O indicates the
number of units in the output layer, that matches the number of classes.
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In this experiment, the unit number in the hidden layer is determined by the following
formula:

H = 2× I + 1 (10)

The number of biases is obtained by the sum of the hidden unit number and output unit
number, since each unit has only one bias term, and it is calculated as:

B=H +O (11)

where B denotes the number of biases, H indicates the number of hidden units, and O is the
number of output units.

Fig. 2 depicts the solution representation and the assignment of the solution to the MLP.
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Figure 2: Solution representation and its assignment to MLP

The fitness function value determines the quality of the solutions. For the fitness evaluation,
the Mean Square Error (MSE) is utilized, which calculates the squares of errors between the
actual value and the predicted value and averages it for all data. The MSE is formulated as:

MSE = 1
n

n∑
i=1

(yi− ŷi)2 (12)

where the actual output is denoted by y, while ŷi denotes the predicted output and n refers to the
number of instances in a given dataset. The utilized framework has been implemented in python
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due to the great support for the open-source machine learning and data science libraries. Namely,
numpy, scipi and scikit-learn have been used in the experiments. It can be noted that Keras could
have been used to implement ANN, however, we have implemented the ANN model by ourselves
because of the efficiency. When a model is executed as Sequential instance in Keras, execution is
slower. 10 binary datasets are used to test the performance of the proposed method. The summary
of the datasets is given in Tab. 2.

Table 2: Dataset details

Dataset Classes Samples Features Description

Australian 2 690 14 Australian credit approval
Blood 2 748 4 Blood transfusion service center
Breast cancer 2 699 8 Breast tumor dataset
Chess 2 3196 36 King-Rook vs. King-Pawn
Diabetes 2 768 8 Diabetes risk prediction
Ionosphere 2 351 33 Classification of radar data
Liver 2 120 6 Medical database of liver disorders
Parkinson’s 2 195 22 Parkinson’s disease detection dataset
Tic-tac-toe 2 958 9 Possible configurations of tic-tac-toe game
Vertebral 2 310 6 Orthopaedic patients classification

Table 3: Control parameters

Parameter Value

Population size N 40
Fitness function evaluation FFE 10,000
Number of independent runs run 30
Number of clusters clusternumber 5
Replacing operator probability preplace 0.2
One cluster selection probability p1 0.8
Cluster center selection probability p1center 0.4
Cluster center selection probability p2center 0.5
Step size k 20
	1 for combining two solutions 0.5
	2 for combining two solutions 0.5
FA parameter α 1.0
FA parameter β0 1.0
FA parameter γ 1.0
Search adjustment (SA) 0.5

Each dataset in the experiment is normalized to speed up the process of learning, the values
are scaled into the range between 0 and 1 as follows:

xnormalized =
xi−xmin
xmax−xmin

(13)
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where xnormalized denotes the normalized data, xi is the original value, xmin, xmax denote the
minimum value in a feature, and the maximum value in a feature, respectively.

Figure 3: Representation of the eBSO based MLP training
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Table 4: Comparison of the results of the observed metaheuristics approaches over 10 datasets

Dataset Measure AAA PSO WOA BAT CS GWO FFA BP BSO eBSO

Australian Best 0.860 0.851 0.834 0.843 0.864 0.843 0.838 0.877 0.893 0.906
Mean 0.848 0.817 0.794 0.837 0.839 0.838 0.827 0.857 0.879 0.894
StdDev 0.006 0.021 0.049 0.005 0.013 0.005 0.010 0.016 0.008 0.008

Blood Best 0.757 0.749 0.745 0.745 0.753 0.741 0.745 0.784 0.819 0.822
Mean 0.748 0.743 0.741 0.741 0.745 0.740 0.741 0.663 0.807 0.815
StdDev 0.003 0.004 0.004 0.003 0.004 0.003 0.004 0.205 0.005 0.004

Breast cancer Best 0.987 0.987 0.971 0.975 0.987 0.979 0.971 0.970 0.991 0.993
Mean 0.981 0.968 0.965 0.971 0.970 0.973 0.966 0.892 0.989 0.993
StdDev 0.003 0.008 0.006 0.004 0.008 0.003 0.005 0.101 0.001 0.001

Chess Best 0.767 0.744 0.822 0.828 0.752 0.944 0.723 0.725 0.769 0.767
Mean 0.710 0.678 0.662 0.736 0.715 0.939 0.697 0.690 0.740 0.731
StdDev 0.018 0.037 0.089 0.094 0.024 0.003 0.020 0.047 0.015 0.015

Diabetes Best 0.771 0.771 0.718 0.752 0.767 0.752 0.752 0.690 0.808 0.820
Mean 0.753 0.747 0.692 0.746 0.739 0.747 0.742 0.596 0.800 0.805
StdDev 0.007 0.016 0.026 0.006 0.014 0.003 0.006 0.140 0.005 0.005

Ionosphere Best 0.925 0.875 0.658 0.892 0.892 0.908 0.850 0.783 0.950 0.970
Mean 0.867 0.791 0.599 0.841 0.809 0.897 0.819 0.751 0.928 0.949
StdDev 0.022 0.046 0.046 0.054 0.040 0.012 0.029 0.038 0.014 0.013

Liver Best 0.780 0.780 0.653 0.754 0.763 0.754 0.746 0.737 0.794 0.810
Mean 0.760 0.750 0.616 0.736 0.714 0.742 0.729 0.552 0.764 0.792
StdDev 0.011 0.015 0.027 0.021 0.026 0.017 0.011 0.071 0.019 0.012

Parkinson Best 0.896 0.881 0.791 0.866 0.866 0.866 0.836 0.865 0.938 0.946
Mean 0.860 0.790 0.721 0.860 0.812 0.858 0.804 0.778 0.925 0.926
StdDev 0.017 0.045 0.059 0.009 0.036 0.009 0.026 0.148 0.007 0.010

Tic-tac-toe Best 0.739 0.755 0.663 0.702 0.718 0.712 0.715 0.625 0.729 0.785
Mean 0.713 0.688 0.646 0.692 0.675 0.697 0.693 0.583 0.711 0.748
StdDev 0.013 0.027 0.018 0.009 0.022 0.014 0.018 0.046 0.009 0.017

Vertebral Best 0.896 0.906 0.783 0.877 0.906 0.877 0.868 0.811 0.893 0.898
Mean 0.881 0.869 0.740 0.854 0.835 0.869 0.855 0.717 0.886 0.891
StdDev 0.006 0.016 0.026 0.019 0.035 0.010 0.020 0.146 0.007 0.006

Total best Best 0 1 0 0 1 1 0 0 0 8
Mean 0 0 0 0 0 1 0 0 0 9
StdDev 3 0 0 3 0 5 1 0 3 2

In the simulations, 2/3 of the dataset is used for training purposes, while the remaining 1/3 is
used as a test dataset. Initially, the solutions are randomly generated between −1 and 1. In the
next step, the solution vector is assigned to the MLP, and the fitness value is evaluated for each
solution. The solutions are updated by the proposed eBSO algorithm while the termination criteria
are not reached. The algorithm returns the best solution which is applied to the test dataset. The
experiment is executed in 30 independent runs, the termination criteria in each run are based on
the fitness function evaluation (FFE), and it is set to 10,000. The population in the experiment
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consists of 40 solutions. Parameters of the original BSO, as well as the proposed eBSO are shown
in Tab. 3. The flowchart of the proposed model is presented in Fig. 3.

5.2 Simulation Results and Discussion
To measure the performance of the proposed eBSO method, multiple metrics are used: mean

accuracy, best accuracy, and standard deviation of the 30 independent runs. The experimental
results of the eBSO are compared to the original BSO algorithm, back-propagation, and seven
other state-of the-art metaheuristic-based approaches: artificial algae algorithm (AAA), particle
swarm optimization (PSO), whale optimization algorithm (WOA), cuckoo search (CS), grey wolf
optimizer (GWO), bat algorithm (BAT) and firefly algorithm (FFA). The experimental setup is
done likewise in [29]. Tab. 4 presents the obtained results of eBSO, and the comparison with other
approaches, where the results of AAA, PSO, WOA, CS, GWO, BAT, FFA, and BP are taken
from [29] In Tab. 4 the boldface indicates the best results, and at the end of the table the best
results are summarized for each approach.

Fig. 4 depicts the side-by-side comparison of the best classification accuracy over the pro-
posed method and all other compared approaches.

Based on the obtained results and comparative analysis, the proposed eBSO shows superiority
over other approaches on the majority of datasets. The proposed eBSO achieved the best accuracy
on 8 datasets. Only GWO resulted in the best accuracy on the Chess dataset. In the case of
average accuracy, GWO has the best performance on Chess datasets, while on all other datasets,
eBSO achieved the highest average classification accuracy. Overall, eBSO has the best performance,
the second-best method is BSO, and the third is AAA. Fig. 5 shows the convergence curve of the
eBSO and BSO over the ten benchmark datasets.

Figure 4: Comparison of the best classification accuracy

Based on the observation and analysis of the convergence graph, it is visible that the proposed
enhancement on the BSO algorithm results in faster convergence. Finally, it is worth mentioning
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that we have also tested the proposed eBSO approach on other UCI and Keggle datasets as well,
and compared the results to several other recent research papers published in the state-of-the-art
journals that used the same datasets, including [32,33]. The obtained results are encouraging and
indicate that the eBSO method could prove to be the superior optimizer for the feature selection
problem.
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Figure 5: Convergence graph of eBSO and BSO



CMC, 2022, vol.70, no.2 4213

6 Conclusion

In this research, we propose an enhanced Brain Storm Optimization algorithm for optimizing
the values of connection weights and biases and to train multi-layer perceptron. The experiments
are conducted on ten benchmark datasets from the UCI machine learning repository, which are
Australian, Blood, Breast Cancer, Chess, Diabetes, Ionosphere, Liver, Parkinson, Tic-tac-toe, and
Vertebral. The obtained results of eBSO are compared with the original BSO algorithm, BP, and
seven metaheuristic-based approaches, namely, AAA, PSO, WOA, CS, GWO, and FFA. Based
on the simulation results, we can conclude that eBSO is very efficient for MLP training, it is
capable to find the proper set of connection weights and biases which leads to better classification
accuracy. Besides the high classification accuracy, the algorithm converges fast and avoids the local
optima issue.

Future research could include other parameters into the optimization process, such as the
number of hidden layers, number of units. Additionally, we plan to test the proposed method
on other datasets as well, to verify the performances of the eBSO even further. Moreover, we
will include other nature-inspired algorithms for MLP training and improve it with different
mechanisms. At the end, eBSO approach can be tested in other application domains, including
cloud computing and wireless sensor networks lifetime optimization.
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