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Abstract:Cognitive Radio (CR) has been developed as an enabling technology
that allows the unused or underused spectrum to be used dynamically to
increase spectral efficiency. To improve the overall performance of the CR
system it is extremely important to adapt or reconfigure the systemparameters.
The Decision Engine is a major module in the CR-based system that not only
includes radio monitoring and cognition functions but also responsible for
parameter adaptation. As meta-heuristic algorithms offer numerous advan-
tages compared to traditional mathematical approaches, the performance of
these algorithms is investigated in order to design an efficient CR system
that is able to adapt the transmitting parameters to effectively reduce power
consumption, bit error rate and adjacent interference of the channel, while
maximized secondary user throughput. Self-Learning Salp Swarm Algorithm
(SLSSA) is a recent meta-heuristic algorithm that is the enhanced version of
SSA inspired by the swarming behavior of salps. In this work, the parametric
adaption of CR system is performed by SLSSA and the simulation results
show that SLSSA has high accuracy, stability and outperforms other competi-
tive algorithms for maximizing the throughput of secondary users. The results
obtained with SLSSA are also shown to be extremely satisfactory and need
fewer iterations to converge compared to the competitive methods.
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1 Introduction to Cognitive Radio Technology

The exponential growth of wireless communication technology-based applications has resulted
in an increase in spectrum demand. However, the major impediment to meeting this demand
is a lack of radio resources. The Federal Communications Commission’s (FCC) research has
established that the primary cause of this shortage is licensed users’ spatial or temporal under-
utilization of the spectrum [1]. In frequencies below 3 GHz, non-line-of-sight radio propagation
is preferred, and spectrum utilization efficiency varies between 15%–85% in these bands [2]. The
current spectrum allocation strategy is rigid, assigning a specific band to each licensed or primary
user (PU), which has resulted in spectrum underutilization [3].

Cognitive radio (CR) technology has garnered much interest in recent years as a means of
alleviating the seeming scarcity of accessible bandwidth. Motivated by FCC research indicating
inefficient use of a significant portion of the licensed spectrum, Joseph Mitola proposed the
concept of CR [4]. This technique enables unlicensed users to dynamically search for and operate
in underutilized spectrum bands, therefore boosting spectral efficiency without interfering with
PUs [5,6].

CR is defined as an intelligent system that can modify and reconfigure itself in response
to its surroundings in order to satisfy the end user’s expectations. Cognition and reconfigura-
tion are critical capabilities that contribute to the CR’s intelligence [7]. These capabilities are
detailed below:

Cognitive capability It offers spectrum awareness in terms of spectral occupancy, channel
conditions, and so on, and accomplishes this by recording the spatial and temporal changes
occurring in the environment while avoiding interfering with other users. When the radio performs
the specific responsibilities [8], the full cognitive cycle is completed: (i) Spectrum sensing identifies
the frequency bands that are open for opportunistic use. (ii) Spectrum management determines
the optimal channel configuration based on the end user’s requirements. (iii) Spectrum sharing
enables impartial spectrum scheduling by concurrent CR users to coordinate access to a specified
channel. (iv) Spectrum mobility refers to the process of leaving a channel when the principal user
becomes active and seamlessly transitioning to another unused channel.

Re-configurability It permits dynamic programming of the device by altering the operational
settings on the fly without requiring any changes to the hardware components. The CR device may
be set to transmit and receive on a variety of different frequencies, and its hardware architecture
supports a variety of transmission access methods. Operating frequency, transmission power,
modulation technique, and channel coding are just a few of the characteristics that may be
customized based on user requirements, current environmental variables, and prior experiences [9].
The cognitive decision engine (CDE) is the module that combines the qualities of observation,
cognition, and reconfiguration [10].

CDE is a critical component of CR since it enables the radio to adapt intelligently to
its operational environment. After receiving input from the environment/user (observation), CR
evaluates and classifies the situation in order to identify an appropriate response to the stimulus
(cognition) and makes the decision (re-configuration). The components that contribute to cognitive
capability development and CR functioning are described below [11]:

Sensors The spectrum sensing module is made up of radio frequency (RF) sensors and
internal state sensors. RF sensors detect the radio environment and channel parameters such as
path loss, noise power, and interference power. Internal status sensors, on the other hand, are
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responsible for recording information about the user’s present service requirements and the radio’s
battery level.

Policy engine Policies are government-defined regulations that constraint CR’s activities and
must be considered while making choices. The policy engine guarantees that the optimization
process produces transmission parameters that conform with local regulatory standards.

Decision module The CDE’s decision-making component analyzes sensor data and then
determines the necessary actions. If optimization is necessary, the decision module supplies the
optimizer with the optimization objectives (e.g., high throughput or low power consumption).
Additionally, it establishes a time limit and stopping conditions for achieving these objectives.

Optimizer An optimizer provides the set of transmission parameters optimal for given
environmental conditions and user-oriented information to attain extreme performance.

Thus, the decision-making module integrates sensor data and makes an autonomous choice
based on the current environmental condition. The choice is made using reconfigurable parameters
that are transmitted to the radio, which is implemented as a software-defined radio (SDR).
Following that, SDR modifies its settings in accordance with the decision module’s decisions.

Radio parameters for CDE are classified into environmental and transmission
parameters [12,13] as described below:

Input or environmental parameters These are the radio characteristics that are sent to the CR
via RF sensors that include path loss, signal-to-noise ratio (SNR), noise power, and channel
attenuation. Internal state sensors provide information on the radio’s battery level and the type
of service requested by the user. This information also serves as an input parameter.

Output or transmission parameters Transmission parameters serve as reconfigurable or tunable
CR parameters, which are created by the decision module in order to meet the user’s QoS
requirements in the current operating environment. Transmission characteristics include transmit
power, bandwidth, modulation level, symbol rate, time division duplex percentage, and the size of
a transmission frame in bytes.

Due to the fact that the input variables are dependent on environmental conditions and user
needs, these are treated as static in the current situation. As a result, transmission parameters,
also known as decision variables, must be adjusted to meet the end user’s defined objectives and
QoS parameters. The particular aim might be to minimize bit error rate (BER), to maximize
throughput, to minimize power consumption, and/or to minimize interference. The optimal set
of transmission parameters can be obtained using various available techniques such as Case-
based system (CBS) [14,15], Rule-based system (RBS) [16], Artificial neural networks (ANN) [17],
Machine learning (ML) [18] and meta-heuristic algorithms.

Because of its cognitive nature, the CR may interact with the environment in real time, this
interaction helps to identify the optimal communication parameters to be adapted to the changing
radio environment. In other words, CR examines environmental information and identifies the
optimum possible set of transmission parameters to meet certain service performance objectives.
By defining the environmental inputs, the correctness of the CR system choices is substantially
affected. The definition of the collection of CR controlled transmission parameters also influences
radio efficiency considerably. Meta-heuristic strategies have been employed successfully in the
literature over the last two decades to resolve the parameter problem of CDE adaptation.

There is no one algorithm among meta-heuristics, according to the No Free Lunch (NFL)
theorem, which finds the best solution for all sorts of optimization tasks. When applied to some
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other set of problems, an algorithm which exhibits good results on one problem can demonstrate
poor performance. Therefore, it is an open field of research that searches enhanced, novel or
hybrid optimization methods and their use in various fields. In order to propose new meta-
heuristic procedures and improve the capability of current techniques, substantial study was
carried out in this area.

The performance of recently introduced meta-heuristic methods for parameter reconfiguration
in CR-based systems is explored in this paper. There are five alternative transmission scenarios
to consider, each with its own set of user requirements and radio battery level. Determining the
appropriate value of transmission parameters is a difficult issue for a with high dimensional multi-
carrier system. However, meta-heuristic optimization approaches provide a quick and easy solution
to the abovesaid issue. The performance of the self-learning salp swarm algorithm (SLSSA) [19]
has been investigated in this study, and an optimal solution for each transmission situation is
presented. SLSSA have a few algorithm-specific parameters and can find an optimal solution
without much control-parameter-setting, and minimizing the algorithm’s complexity.

The structure of the paper is as follows: Related work based on meta-heuristic algorithms
to solve the parameter adaptation problem for CDE is given in Section 2. Section 3 describes
self-learning salp swarm algorithm (SLSSA) in detail. Transmission Parameters Optimization of
CR System using SLSSA is detailed in Section 4. Simulation outcomes are given in Section 5 and
Section 6 concludes the paper with possible future directions.

2 Related Work

Meta-heuristic algorithms are easy to operate, have high convergence speed and are able
to tackle optimization problems that are non-linear, non-convex, highly complex and/or multi-
dimensional [20]. The process of optimization utilizing meta-heuristic algorithms begins with
the random solutions generation. Then these initial solutions are altered over a certain number
of iterations. The mechanisms involved in updating or altering the solutions differentiate those
algorithms. Meta-heuristic techniques have been popular among researchers and scholars in the
recent two decades. The problem of parameter adjustments for CDE were successfully applied
in the literature. Metaheuristic algorithms that have been employed for optimizing the CDE
design include: Genetic algorithm [21], Particle swarm optimization (PSO) [22], Artificial bee
colony (ABC) algorithm [23], Ant colony optimization (ACO) [24], Simulated annealing (SA) [25],
Biogeography based optimization (BBO) [26], Cat swarm optimization (CSO) [13]. This work
focuses on meta-heuristic techniques to resolve the problem of parameter adaptation in CDE.

GA-based CDE, which gives optimum parameters for single and multi-carrier CR systems,
were proposed by Newman et al. [21]. Using the weighted sum approach, many fitness functions
were presented and optimized. The transmission variables set, i.e., the transmission power and
modulation level for various transmission modes are reconfigured. Each scenario contains a pri-
mary objective of 80% weighting and a significantly lower secondary target. GA has the problem
of getting stuck at local optimal solution and it takes around 500 iterations for the best value
to converge.

The PSO was used for decision-making purposes to obtain parameter adaption for a multi-
carrier CR system [22]. For four different modes of operation are used to solve the multi-objective
optimization (MOO) problem. The performance of a real coded of the PSO algorithm was
compared by the authors with the GA-based technique. This method provides higher stability and
fitness value than standard GA methods.
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The performance of the GA, PSO and ABC algorithms to develop a CDE was compared
in [23]. Three types of transmission modes are evaluated: low power mode, multimedia mode and
emergency mode, in addition the interference constraints are examined for primary and secondary
users. In terms of mean optimal fitness and mean computation time, the results obtained from
simulations are compared. A performance comparison of all modes indicates that CDE based on
ABC is a better method than GA and PSO.

In the resolution of CDE problem with 10 subcarrier numbers, Zhao et al. [24] developed
a novel mutated ACO (MACO) algorithm. The implementation of a weighted sum approach to
maximize overall goal function addressed four different scenarios: low power mode, multimedia
mode, emergency mode and balanced mode. In local minimal avoidance, the mutation process in
MACO helps to improve its performance than the usual ACO algorithm. MACO evaporation rates
were chosen at 0.8, 0.85 and 0.9 respectively, to simulate simulations. The fitness values achieved
by MACO with 0.9 evaporation rate are better than GA and ACO base fitness values.

In order to optimize the transmission parameters in a CR system, Kaur et al. [25] presented
SA-based CDE. The transmission parameters have been optimized to meet the user’s diverse QoS
requirements, such as reducing transmission power, bit error rate and interfering power while
increasing spectral efficiency and throughput. Various transmission parameters, including power
transmission, bandwidth, modulation level, time division duplexity and symbol rates, have been
optimized for a range of objectives. SA-based CDE attains better fitness rates than the GA-based
system, however SA require a comparably higher computation time and a greater number of
generations to converge. Therefore, the SA-based CDE is only a good solution if the optimization
work is not time-bound, and is not ideal for real time applications where the decision process
needs to be relatively fast.

The above-mentioned work is extended in [26] in which the authors have utilized a BBO
technique to solve the problem of optimization in the single CR system carrier. The two tech-
niques used in BBO for searching for the optimal global value are migration and mutation. These
mechanisms are further controlled by emigration and immigration rates. A comparative analysis
of BBO and GA in different scenarios revealed that the fitness scores acquired using BBO are
better than those obtained for conventional GA based CDE.

The performance of six evolutionary algorithms: ABC, GA, DE, BFO, PSO, and CSO has
been tested by Pradhan et al. [13] for the solution of the CDE design problem. The task is to
optimize certain communication goals for a single and multi-carrier CR system for parameter
adaptations. These objectives are stated in terms of predefined fitness functions that reduce power
consumption (for low power mode), minimize bit error rate (in an emergency mode) and improve
throughput (for multimedia mode). From the simulation results, the CSO algorithm was identified
as a fair choice for efficient CDE realization.

A modified whale optimization algorithm (MWOA) for the design of the cognitive radio
system is proposed by Bansal et al. [27]. The random weight vector on location of humpback
whales is used in this technique. It suggests the exploration and exploitation, and balance of these
two phases in the search space. Results comparison of MWOA was carried out with BBO and
SA. The results achieved using MWOA are found to be highly satisfying and need fewer iterations
than the BBO and SA algorithms.

According to Dinesh et al. [28], as the wireless communication fields are developing day
by day, the challenges faced are also increasing as well. The spectrum allotment is one of the
significant difficulties in this area. Therefore, they proposed the use of modified Spider Monkey
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Optimization to optimize the spectrum scheduling, which in turn improves the energy efficiency
of the available spectrum. This delivers the optimal global solution and enhances functional
requirements. A modified round robin approach is used to schedule spectrum by employing a
packet flow with a packet queue in the interface controller. Performance measurements such as
handoff, probability of false alarm, throughput, and success probability are analyzed. The results
suggest that the system proposed performs well than the other existing methodologies.

An efficient metaheuristic algorithm is required in the work already undertaken to optimize
the CDE design. The required algorithm must have fast processing speed and capability to provide
a higher probability of detection for a licensed channel. This work aims to design an efficient
cognitive decision engine optimizer for adaptation of transmission parameters in a multicarrier
system using SLSSA discussed in next section.

3 Self-Learning Salp Swarm Algorithm (SLSSA)

3.1 Salp Swarm Algorithm (SSA)
Salp swarm algorithm (SSA) [29] is a swarm-based meta-heuristic optimization technique

inspired by nature. Salps are jellyfish-like creatures that live in the deep ocean and the swarming
behaviour of salps inspired this algorithm. The population of salps can be divided into two
groups: leaders and followers. Leaders lead the entire population, while followers, either directly or
indirectly, obey the leaders’ orders. To move, the salps create a chain. The salps at the front of the
chain are called leaders, while the remaining salps are called followers. Leader salps are assigned to
the better half of the population. The remaining salps, on the other hand, are regarded followers.

The position of salp is an n-dimensional search space, in which n is the number of variables
of a particular problem, as specified with other swarm techniques. The position of all salps is
therefore stored in a 2-D matrix known as x. The food source is also assumed to be F in the
search space as the target of the swarm. The following are the updated candidate solutions for
leaders and followers.

Update of Candidate Solutions for Leaders:

The equation used to update the leader’s position is:

xi,j =
{
Fj+ c1((ubj− lbj)c2+ lbj), c3 ≥ 0
Fj − c1((ubj− lbj)c2+ lbj), c3 < 0

(1)

where xi,j indicates the ith salp’s j-dimensional position (leader), Fj is the food-source location in
the jth dimension, lbj and ubj indicate the lower and upper bound of jth dimension respectively,
c1, c2, and c3 represents random numbers. Eq. (1) shows that only with regard to the food source
the leader upgrades his position. The c1 is the main parameter in SSA as it equalizes the following
exploration and exploitation capability:

c1 = 2e
−

(
4l
L

)2
(2)

where l and L are the current and maximum number of iterations respectively. The c2 and c3
parameters are the random numbers generated uniformly in the [0, 1] interval. They actually
dictate whether the next position should be towards +ve or −ve infinity along with the step size
in the jth dimension.
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Update of Candidate Solutions for Followers

The solutions of leaders are used to update the candidate solutions for followers. For updating
the candidate solutions for followers, a mathematical equation is applied as

xnewi,j = 1
2
(xi,j +xi−1,j) (3)

where i ≥ 2 and xi,j represents the jth dimension position of ith follower salp.

The position of the leader and the followers salp is updated with Eqs. (1) and (3). Because
of c1 parameter, the movement of the salp chain can explore and use the search space around
both the food sources that are fixed and that are in motion [29]. Parameter c1 reduces over the
number of iterations adaptively so as to enable the algorithm to explore during initial stages and
exploit at the end. Owing to this, SSA can avoid local optimum stagnation and determine the
appropriate estimate of the optimal solution over the entire process of optimization.

3.2 Self-Learning Salp Swarm Algorithm (SLSSA)
To obtain its global optimum, a self-learning rule exploits the region in close proximity to the

individual position [19]. The rule gives each learner the opportunity to expand their individual
experience by search around them. This phase can be described as

xnewi,j (k)= xi,j(k)(1+λ(rand − 0.5)) (4)

where, xnewi,j (k) is the updated solution in the self-learning phase, λ is the self-learning factor

that determines each individual’s self-learning capability, and rand ∈ [0, 1] is the random number
generator. In this work, the value of λ is taken to be 3. Using greedy selection, update the solution
vector xi,j(k). After the completion of self-learning phase, the updated xi,j(k) is used in the next
iteration.

4 Transmission Parameters Optimization of CR System Using SLSSA

Transmission parameters are used by CR systems to control communication aspects. Five
transmission parameters are employed as decision criteria for objective tasks in this employment.
In a wireless communication scenario, the CR system will have to achieve numerous performance
goals [25]. Various methods such as GA [21], SA [25], BBO [26] were applied to optimize CR sys-
tems design. For throughput maximization, interference minimization, bit error rate minimization,
spectral efficiency maximization, and transmit power minimization, the nature inspired methods
are utilized to achieve these goals. Tab. 1 lists the details of the above-said CR objectives.

Table 1: Objectives for the CR system

Name of the objective Description

Power consumption minimization To minimize the system power consumption
BER minimization To minimize the BER of the transmitted information.
Throughput maximization To maximize in data throughput of the system.
Interference minimization To reduce the interference contributed by the radio
Spectral efficiency maximization To maximize the frequency spectrum usage
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Tab. 1 can be mathematically defined using five single objective attributes. The following are
the single objective functions for a CR scheme with N autonomous subcarriers:

Power minimizing mode: The fitness function to minimize general power consumption is
provided as

fmin−power=Pavg/Pmax (5)

where Pmax is the highest transmitting power available and Pavg is the average transmitted power.

BER minimizing mode: in order to minimize the bit error rate, the fitness function can be
expressed as

fmin−BER = log10(0.5)/log10(PBER) (6)

where PBER is the quadrature amplitude modulation (QAM) BER.

Throughput maximizing mode: To attain maximum throughput, the fitness function can be
formulated as

fmax−throughput= 1− log2(m)/log2(mmax) (7)

where mmax is the upper limit of the modulation index and m is the modulation index of a single
carrier.

Interference minimizing mode: With an aim to minimize the effect of interference, the fitness
function is given as

fmin−inter = {(Pc+BW +TDD)− (Pmin+BWmin+ 1)}/(Pmax+BWmax+ 100) (8)

where BW is the single carrier bandwidth, and BWmin and BWmax are the highest accessible and
the minimum required bandwidth.

Spectral Efficiency maximizing mode: To attain the maximum spectral efficiency, the fitness
function is expressed as

fmax−spec.eff = 1− (M×BWmin× S)/(B+mmax+Smax) (9)

where S is symbol rate and Smax is the upper limit of symbol rate.

For any mode or service type, one of the objectives is selected as primary and others are
treated as secondary. There are several techniques available to solve such problems with multiple
fitness functions. One of the most frequently used techniques is a weighted sum approach which
is adopted in this work. This approach assigns a higher weight to the primary objective and lower
weight values to all the secondary objectives. In general, the weighted sum approach for objective
functions is provided as

fCRobjective =w1 ∗ fmin−power+w2 ∗ fmin−BER+w3 ∗ fmax−throughput+w4 ∗ fmin−inter
+w5 ∗ fmax−spec.eff (10)

Based on the type of various modes of operation and battery levels, the assigned weight
values are listed in Tab. 2.

5 Simulation Outcomes

SLSSA has been used on the CR system in this study to meet the optimization goals. Each
simulation is run 30 times for sensitivity analysis for 2000 number of iterations with a population



CMC, 2022, vol.70, no.2 3829

size of 30. The NBA, CS, TLBO, DA, GWO, and SSA algorithms were chosen to test the
performance of the SLSSA algorithm. Tab. 3 shows the parameter settings for the algorithms
utilized in this comparison. For each of the algorithms, we used a total of 30 search agents and
2000 iterations.

Table 2: Weight factors for CR system [30]

Mode Weight factors for five modes

[w1 w2 w3 w4 w5]

Power minimizing mode [0.45 0.10 0.20 0.15 0.10]
BER minimizing mode [0.10 0.50 0.10 0.10 0.20]
Maximizing throughput mode [0.10 0.15 0.50 0.15 0.10]
Minimizing interference mode [0.10 0.10 0.20 0.50 0.10]
Maximizing spectral efficiency mode [0.10 0.15 0.15 0.10 0.50]

Table 3: Parameter settings

Algorithm Parameters

TLBO NP= 30; D= 5; Gmax = 2000;
CS NP= 30; D= 5; Gmax = 2000; Probability (pa) = 0.25
NBA NP= 30; D= 5; Gmax = 2000; A= 0.5; r= 0.5; α = γ = 0.9; fmin = 0; fmax = 1.5
GWO NP= 30; D= 5; Gmax = 2000; a= [2–0]
DA NP= 30; D= 5; Gmax = 2000; w = [0.4–0.9], s = 0.1, a = 0.1, c = 0.7, f = 1, e = 1
SSA NP= 30; D= 5; Gmax = 2000
SLSSA NP= 30; D= 5; Gmax = 2000; λ= 3

Notes: Here, NP is number of populations, D is dimension of population, Gmax is number of iterations.

For CR system optimization utilizing SLSSA, five parameters were examined in the simulation
setup, with the transmission parameter list presented in Tab. 4 [30]. Tabs. 5–9 show the optimum
values as well as the transmission parameters of the five objective functions for NBA, CS, TLBO,
DA, GWO, SSA and SLSSA. The fitness values achieved by the SLSSA are clearly superior
to those attained by the NBA, CS, TLBO, DA, GWO, and SSA in three examples, and very
competitive in the other two. As shown in Figs. 1–5, the convergence rate for SLSSA is also better
than the other algorithms.
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Table 4: Transmission parameter list

Parameter name Value

Transmit power 0.1 to 2.4808 mW
Modulation type QAM
Modulation index (MI) 2–256
Bandwidth (BW) 2 and 32 MHz
Time division duplexing 25% and 100%
Symbol rate 125 Ksps to 1 Msps

Table 5: The performance of simulated algorithms for CR in Power minimizing mode

Algorithm Transmit
power

Modulation
index

Bandwidth TDD Symbol
rate

Best fitness value
achieved

TLBO 4.419092134786 256 2 25 1000 0.0228772297371797
CS 4.419092186996 256 2 25 1000 0.0228772297371796
NBA 4.419092111489 256 2 25 1000 0.0228772297371797
GWO 4.419093763176 256 2 25 1000 0.0228772297371796
DA 4.419092186996 256 2 25 1000 0.0228772297371802
SSA 4.419090540974 256 2 71.227858 1000 0.0228772297371798
SLSSA 4.417647469714 256 2 25 1000 0.0228772286163529

Note: Best values are given in bold.

Table 6: The performance of simulated algorithms for CR in BER minimizing mode

Algorithm Transmit
power

Modulation
index

Bandwidth TDD Symbol
rate

Best fitness value
achieved

TLBO 36.218020572198 256 2 25 1000 0.0313254493188997
CS 36.218020655322 256 2 25 1000 0.0313254493188916
NBA 36.218020421591 256 2 25 1000 0.0313254493188998
GWO 36.218095978073 256 2 25 1000 0.0313254493189077
DA 36.218020655322 256 2 25 1000 0.0313254493188999
SSA 36.218032101506 256 2 83.159391 1000 0.0313254493188998
SLSSA 36.218017903564 256 2 25 1000 0.0313254467296183

Note: Best values are given in bold.
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Table 7: The performance of simulated algorithms for CR in Maximizing throughput mode

Algorithm Transmit
power

Modulation
index

Bandwidth TDD Symbol
rate

Best fitness value
achieved

TLBO 17.531329158313 256 2 25 1000 0.0161197040240226
CS 17.531329089409 256 2 25 1000 0.0161197040240226
NBA 17.531328868460 256 2 25 1000 0.0161197040240225
GWO 17.531184083205 256 2 25 1000 0.0161197040240224
DA 17.531329089409 256 2 25 1000 0.0161197040240226
SSA 17.531337043294 256 2 90.664949 1000 0.0161197040240232
SLSSA 17.531709851516 256 2 51.883459 1000 0.0161197040242182

Note: Best values are given in bold.

Table 8: The performance of simulated algorithms for CR in Minimizing interference mode

Algorithm Transmit
power

Modulation
index

Bandwidth TDD Symbol
rate

Best fitness value
achieved

TLBO 13.480433141510 256 2 25 1000 0.0127781074462338
CS 13.480433136680 256 2 25 1000 0.0127781074462338
NBA 13.480433308669 256 2 25 1000 0.0127781074462337
GWO 13.480095745371 256 2 25 1000 0.0127781074462339
DA 13.480433136680 256 2 25 1000 0.0127781074462338
SSA 13.480369896665 256 2 63.193352 1000 0.0127781074462338
SLSSA 13.477204142167 256 2 99.860623 1000 0.0127781074462333

Note: Best values are given in bold.

Table 9: The performance of simulated algorithms for Maximizing spectral efficiency mode

Algorithm Transmit
power

Modulation
index

Bandwidth TDD Symbol
rate

Best fitness value
achieved

TLBO 17.531329149315 256 2 25 1000 0.0161196664981725
CS 17.531329150164 256 2 25 1000 0.0161196664980734
NBA 17.531328866958 256 2 25 1000 0.0161196664980498
GWO 17.531328991404 256 2 25 1000 0.0161196664980499
DA 17.531329150164 256 2 25 1000 0.0161196664981263
SSA 17.531369474968 256 2 81.48074 1000 0.0161196664981241
SLSSA 17.531348503729 256 2 25 1000 0.0161196664981152

Note: Best values are given in bold.
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Figure 1: Convergence characteristics for minimizing power mode operation

Figure 2: Convergence characteristics for minimizing BER mode operation

Figure 3: Convergence characteristics for maximizing throughput mode operation
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Figure 4: Convergence characteristics for minimizing interference mode operation

Figure 5: Convergence characteristics for maximizing spectral efficiency mode operation

6 Conclusion and Future Directions

CR is a potential solution for overcoming the difficulty of rising wireless applications requir-
ing additional spectrum. This work is focused on the adaptation of different parameters of
a CR system so that the overall transmission and sensing performance of the system can be
improved. As meta-heuristic algorithms offer numerous advantages over classical mathematical
approaches, performance of these algorithms is investigated to solve the problem of parameter
reconfiguration. In this work, an optimization problem is studied to reconfigure the transmission
parameters for the data transmission scenario of a CR. Further, the adaptation of transmission
parameters by CDE is carried out for a multicarrier CR based system employing SLSSA, in that
the multi-objective optimization problem is dealt with the weighted sum method. Five different
transmission scenarios are considered each supporting different user requirement and radio battery
level. SLSSA algorithm provides the best solution for most of the transmission scenarios of CR
system.

In future, the problem of CDE design can be studied for other smart networks such as home
area networks, smart grids etc. through advanced meta-heuristic schemes. Advanced meta-heuristic
optimization techniques can be investigated for transmission parameter adaptation to realize green
radios that support different transmission modes with the application of highly efficient Power
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Amplifiers. The idea of energy harvesting based cooperative spectrum sensing with meta-heuristic
techniques has not been explored yet and has a wider scope to probe in.
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