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Abstract: This research uses the improved Quantum Particle Swarm Opti-
mization (QPSO) algorithm to build an Internet of Things (IoT) life comfort
monitoring system based on wireless sensing networks. The purpose is to
improve the quality of intelligent life. The functions of the system include
automatic basketball court lighting system, monitoring of infants’ sleeping
posture and accidental falls of the elderly, human thermal comfort measure-
ment and other related life comfort services, etc. On the hardware system
of the IoT, this research is based on the latest version of ZigBee 3.0, which
uses optical sensors, 3-axis accelerometers, and temperature/humidity sensors
in the IoT perception layer. In the network transmission layer, the central
network architecture is used for connection. In the application layer, we have
designed a graphical interface for real-time values and information that can
be read at any time and place using mobile devices. In this study, authors
use the improved QPSO algorithm in the calculation part, so that the target
can be effectively positioned outside the numerous surveillance data. This
study uses various sensor data fusion technologies to make the IoT system
becomes able to provide more extensive and even better services than ever
before. In short, this research work has proven to be an effective way to reduce
power consumption, improve medical quality and provide higher comfort for
intelligent lift level.

Keywords: Quantum particle swarm optimization; IoT; wireless sensor
network; ZigBee

1 Introduction

The IoT is a network composed of global connected things, which is constantly expanding
in scale. The connected things can transmit data and communicate with each other. These objects
have unique identification codes and have a wide range of applications, covering fields such
as mobile devices, household appliances and automobiles in one fell swoop. Traditionally, the
connection capability mainly relied on Wi-Fi wireless networks, but now 5G and other types
of network platforms have gradually been able to handle large data sets with the speed and
reliability [1–3]. The ultimate goal of IoT devices collecting and transmitting data is to analyze
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and accelerate the formulation of strategies. This is what AI technology is good at: building AIoT
networks with the help of advanced analysis and machine learning [4,5].

The IoT is widely used in network integration through intelligent perception, recognition
technology and pervasive computing and other communication perception technologies. Therefore,
it is called the third wave of the development of the world’s information industry after computers
and the Internet [6,7]. This research is based on the huge amount of data calculations and burdens
of the IoT. Therefore, an improved quantum particle swarm optimization algorithm with powerful
computing capabilities is used to solve this problem. The IoT system in this research uses quantum
computing, which can enhance the network. The computing power of the road and the reduction
of network delay, and the man-machine interface of the system have artificial intelligence capa-
bilities, timely analysis and prediction of the optimization of life comfort, and increase the data
storage capacity and the security of cloud computing [8,9]. Through a wireless network, an IoT
covers the linkage among tagged objects for efficient tracking and transparent management. Other
than monitoring and anti-theft, a wide variety of IoT applications can be found in the fields of
medical treatment, public transportation, services, home use devices, manufacturing, urbanization,
etc. Hence, IoT is viewed as a promising technique in further market. A number of simulation
experiments are made in this work through a ZigBee network involving RFID technique for
recognition and data communication among sensor nodes. Furthermore, an IoT is formed by
electrical connection of various types of devices as sensor nodes [10–14].

2 Improved QPSO Algorithms

PSO refers to a swarm intelligence theory-based optimization algorithm under the assumption
that there is a swarm of birds foraging randomly for a single piece of food. However, all the birds
do not know where the search target, namely the food, is, but merely know the distance between
the search target and their current positions. Hence, there is no doubt that the optimal search
scope is the neighborhood of the bird nearest to the target. In terminology, a bird is termed as
a particle, that is, a potential solution in this optimization problem. Two extremums, the local
optimization pbest and the global optimization gbest, are tracked during each iterative search in
such a way that the position and the speed of each particle are dynamically updated and the
optimization problem is resolved eventually. First proposed by Kennedy et al. [15,16], the particle
speed and position in a standard PSO are expressed as:

vi+1 =ωvi+φ1 · r1 · (pbest−xi)+φ2 · r2 · (gbest−xi) (1)

where ω denotes the inertia weight factor.

xi+1 = xi+ vi+1 (2)

In quantum mechanics, the motion of a particle is represented by a wave function in a Hilbert
space, rather than a position vector and a velocity, namely

ψ(x, t)=ψ(x)f (t) (3)

where f (t)= e−
iE
h t and E denotes the state level. Hence, the wave function is a sinusoidal function

of time, and, according to de Broglie relationship, the wave function is referred to as a steady-state
wave function since the energy level E is deterministic. Hence, the probability density function of
locating a particle at the position x is found from a Schrodinger equation as

|ψ(x, t)|2 = |ψ(x)|2 (4)
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In this manner, a particle can be fully described by ψ(x), instead ofψ(x, t), which is
rewritten as

ψ(x)= 1/
√
L exp(−‖p−x‖/L) (5)

and the probability density function is expressed as

|ψ(x)|2 = 1/L · exp(−2‖p−x‖/L) (6)

The search scope for a particle is specified by the parameter L(t+ 1) = 2α × |p+x(t)| up
to potential energy strength. It is unwise to apply the best position Pi of a particle to the
entire population, for the reason that non-uniform convergence rate gives rise to a premature
convergence problem in the case of a small population. A mean best position (mbest) is introduced
as the centroid of all the particles, namely [17,18],

mbest=
M∑
i=1

pi/M =
(

M∑
i=1

pi1/M,
M∑
i=1

pi2/M, . . . ,
M∑
i=1

pid/M

)
(7)

where M denotes the size of population, Pi the best position of particle i. In this manner, L equals
L(t+ 1) = 2β × |mbest−x(t)|, where β represents the contraction expansion coefficient affecting
the convergence rate of a single particle and the algorithm performance. Referring to the adaptive
changes in the law of inertia weightω in a PSO model, β is defined as

β = βmax − (βmax−βmin) ·Tmax
T

(8)

Subsequently, through Monte Carlo simulation of Eq. (7), the position function of a particle
is given by x(t)= p±L/2 ln(1/u). The substitution of L yields the improved QPSO algorithm in
an iterative form as

x(t+ 1)=
{
p+β × |mbest−x(t)| ln(1/u) (if u< 0.5)

p−β × |mbest−x(t)| ln(1/u) (if u≥ 0.5)
(9)

where p= (r1 · pbest+ r2 · gbest)/(r1 + r2), r1, r2 ∈ rand(0, 1).
The improved QPSO algorithm is stated as follows.

Step 1: Initialize a quantum particle swarm, and specify the parameters thereof;
Step 2: Assess the fitness of each particle, and then define a fitness function according to the

problem dealt with.
Step 3: For each particle, the current fitness f (xi) is compared with the record high of

fitness f (pbesti), and if f (xi) < f (pbesti), then pbesti = xi. Likewise, compare the cur-
rent fitnessf (xi) of all the particles with the best fitness f (pbesti), and if f (xi) <
f (pbesti), then the global optimization solution is pbesti = xi.

Step 4: The best position mbest is given as Eq. (7).
Step 5: The position of a particle is updated as Eq. (9) in a QPSO algorithm, and create a

new swarm x(t+ 1).
Step 6: The optimization process terminates once the requirements are fulfilled. Otherwise,

T = T + 1 and skip to step 2 for the next iteration. The process is repeated until the
maximum number of iterations is reached or the evaluation value is found below a
given accuracy.



3532 CMC, 2022, vol.70, no.2

A flow chart of an improved QPSO algorithm is exhibited in Fig. 1.

Figure 1: Improved QPSO algorithm flowchart

This system is a WSN intelligent sensor network with a QPSO algorithm based on the IoT
architecture. The system can collect the environmental parameters of the sensor in real-time.
Then the system sends the environmental parameter values to the back-end database. Through
the calculation of the system’s QPSO method, the system can analyze and process various
environmental conditions, and perform intelligent and efficient environmental control in a timely
manner. This is an integrated application of QPSO and artificial intelligence methods. Aiming
at the problem of inaccurate selection of weights and thresholds for existing particle swarms,
an improved quantum particle swarm optimization algorithm is used to optimize the traditional
particle swarm weights and thresholds. First, in the improved quantum particle swarm optimiza-
tion algorithm, a two-layer multi-group optimization strategy is used to improve the optimization
ability of the entire population, and then chaotic reverse learning is used in each subgroup to
enhance the optimization ability of the particle swarm. Finally, the improved optimal weights and
thresholds of quantum particle swarms are used. The experimental results show that the improved
quantum particle swarm optimization algorithm can effectively improve the global optimization
ability and convergence of the traditional particle swarm, and make accurate predictions for this
research [19–21].

3 System Hardware Architecture

In the hardware architecture of this research, the authors used the one shown in Fig. 2. In
this research, the wireless sensor network and sensor technology with the 2.4 GHz CC2530 ZigBee
3.0 development module circuit board that are used to complete a smart life monitoring system
is constructed. The system includes related hardware components and devices, such as various
sensor components, node signal processing chip modules and antennas, RFID and readers, which
belong to the perception layer of the IoT, as for network transmission. The layer uses the ZigBee
module to transmit the data in the perception layer to the coordinator, which is the gateway.
In the system design of the application layer, the authors use Python programs and design user
graphical interfaces to allow end users to make some settings and Operation, its functions include
thermal comfort monitoring and environmental lighting control, which can be used in baby care,
fall warning for the elderly, smart and comfortable life and other projects [22,23].
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Figure 2: Constituents of the proposed ZigBee-based monitoring system

This system uses the improved quantum particle swarm optimization algorithm to analyze and
sense the multiple calculation results and use this calculation result as the judgment of artificial
intelligence as the basis for the judgment criterion of artificial intelligence. Data centers promote
the development of the cloud. In fact, the so-called cloud computing and cloud computing refer
to Internet computing. The network is a connection between the client’s personal computer and
the remote server through a cable. The data center in this study also refers to the functions
of cloud computing and services [24]. ZigBee embedded chip Ti-CC2530 intelligent environment
sensing and control nodes mostly use ZigBee wireless sensor network. The CC2530 chip is the
SOC chip-CC2530 launched by Texas Instruments (TI) in 2009. This chip is a SOC chip tailored
by TI for IEEE802.15.4, ZigBee, ZigBeeRF4CE, and Smart Energy applications. With a large flash
memory with a capacity of up to 256KB, CC2530 is suitable for ZigBee PRO applications. In
addition, CC2530 combines a fully integrated high-performance RF transceiver, 8051 MCU, and
other powerful functions with peripherals, such as built-in ADC, SPI, USB. . . and other functions,
and a SOC chip tailored for energy applications. With a large flash memory with a capacity of
up to 256KB, CC2530 is suitable for ZigBee PRO applications. In addition, the CC2530 combines
a fully integrated high-performance RF transceiver, 8051 MCU, and other powerful functions and
peripherals, such as built-in ADC, SPI, USB. . . and other functions to facilitate connection with
other [25].

4 Lighting Experiment and Analysis

In this study, a photoresist sensor module was used as a light sensor to conduct outdoor
lighting simulation experiments. The various experiments in this study have calibration procedures
before using the sensor, and the approximate error rate is about ±0.03% or less, which is within
the range of the general instrumentation. This is usually used in outdoor environment lighting.
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For example, the authors achieve the lighting of streets, stadiums and parking lots through light
sensor module control circuits. That is, the lighting of the monitored field is controlled, and the
data is transmitted through the IoT network layer of this research. The lighting status sensed in
the field is transmitted through the ZigBee network node, and finally the terminal displays a long
graph and real-time detected data on the screen in the user’s graphical interface and stores it in
the cloud host.

4.1 Outdoor Lighting Adequate State
In the lighting experiment, we set the lighting range of the outdoor monitored field to be

between 85 and 1625 lumens. This setting is in line with the lighting regulations in Taiwan. Fig. 3a
shows the real-time values and graphs detected during the current experiment. For most sports
fields, this study recommends to use at least 570 Lux, which is 35% of 1625 Lux, and use a yellow
indicator light to indicate. When the system detects that the illumination is below 35%, this study
suggests that it should be turned on outdoor lighting facilities to provide sufficient illumination.
The author uses 35% as the recommended threshold for turning on outdoor lighting equipment.

(a) (b) (c)

Figure 3: Comparison of lighting in different environments (a) Lighting experiment and analysis
(b) An illustration of insufficient outdoor lighting (c) An illustration of a disabled lighting system
at night time

4.2 An Illustration of Insufficient Outdoor Lighting
As illustrated in Fig. 3b, a threshold of 30% is specified in a simulation experiment in the

case pf an insufficient light level or at night time. In this case, an average illuminance below 20%,
far below the threshold, is sensed, transmitted by ZigBee technique to a remote GUI, and the
green indicator turns red, according to which the outdoor lighting facility is immediately switched
on for illuminance enhancement.

As illustrated in Fig. 3c, the lighting system can be powered on during a specified time span
between 18 and 20:00 in case the lighting falls below a threshold of 30%. In other words, at a
time point beyond such time slot, the lighting system is deactivated in any case. This feature can
be disabled for continuous lighting monitoring.

A smart lighting facility is implemented in the simulation case of a basketball court, achieving
the aim of energy consumption reduction in an effective manner. In successive studies, this work
together with RFID, easy cards, and so forth, is expected to be applied to pay per use schemes.
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5 Infant Take Cares for Experiment and Analysis

In this research, the author designed a nursing simulation experiment with young children and
the elderly as monitoring objects. The main sensing element of this experiment is the commonly
used three-axis accelerometer module on the market. This experimental design first uses the
active RFID tag technology on the tested body to identify the identity, and then installs the
accelerometer module on the tested body, and finally can monitor the status of some body changes
of the tested body, including the tested body the sleeping position of the person or accidental
fall. In the signal transmission part of this experiment, the authors used ZigBee technology to
transmit the 3-axis acceleration data to the terminal host, and then displayed the values and
corresponding graphics in the user interface immediately, and stored them in the cloud host
for future query. Fig. 4a shows some instant messages detected by 3-axis acceleration in the
experiment and graphical representations.

 (a) (b)

Figure 4: (a) Real-time display of the conditions measured by the 3-axis accelerometer with
numerical values and graphs (b) The result of the subject’s posture detection state is laying state

5.1 Lying Down State
The main task of this experiment is to detect the changes of the subject’s body when lying

down. The interval values on the x, y and z axes are displayed as accelerations of ±0.2, −2.8 and
±0.3 g, as shown in Fig. 4b. which the detected condition represents the lying state.

5.2 The Subject Lies Flat on the Left and Right Sides
In this experimental project, Fig. 5 shows that the Z-axis acceleration signal is used to identify

the subject is currently lying on the left or right side. The acceleration from 0 g to −2.4 g on the
Z axis indicates the difference between the lying state and the left state. The change process is
shown in Fig. 5a. If the acceleration signal drops from 0 to +2.6 g, it means the movement from
the lying state to the right side, as shown in Fig. 5b.

5.3 Lying State During Sleep
The detection of posture during sleep is very important. It is possible to know the sudden

situation of the subject. From the curve comparison chart shown in Fig. 6, we can know the
sleep position changes of the tested person. This experiment uses the Z-axis signal to identify.
Comparisons the results of this experiment are Figs. 6a and 6b, they can be seen that the z-axis
signal changes in the same way. In terms of the x-axis and y-axis signals, their rise and fall
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indicate that the subject is from the right or turn over to a horizontal front position in the left
side lying position.

(a)                         (b) 

Figure 5: The detection result of the acceleration signal based on the Z axis when the subject’s
posture changes (a) The person lays to the left side (b) The person lays to the right side

(a) (b)

Figure 6: Accelerometer signal detection comparison chart of posture changes during sleep, the
change process of the subject from (a) Left side to (b) Right side to lying down, calculated with
three-axis acceleration signals

5.4 Standing Posture Status
Other than the analysis on a lying state, movements, namely an upright standing posture,

forward fall, backward fall, rightward fall and leftward fall, are addressed here as well. As
illustrated in Fig. 7, a body movement from a lying to a standing state is recognized by a y-axis
signal transition from 0 down to −2 g and a z-axis signal transition from 1.5 down to −0.5 g.
Both signal tails in the x and y axes represent an upright standing state.
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Figure 7: Acceleration signals in an upright standing posture along the x, y and z axes

5.5 Standing Dumping Status
As illustrated in Fig. 8, either a leftward or rightward fall is identified by the x-axis signal.

The transition between 0 and 1 g, as exhibited in Fig. 8a, and that between 0 and −1 g, as in
Fig. 8b, signify a rightward fall and a leftward fall, respectively.

(a) (b)

Figure 8: Acceleration signals in (a) A rightward and (b) A leftward fall along the x, y and z axes

(a) (b)

Figure 9: Acceleration signals during (a) A forward and (b) A backward fall along the x, y and z
axes
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5.6 Standing Forward or Backward Dumping State
As illustrated in Figs. 9a and 9b, either a forward or backward fall is indicated by the y and

z-axis signals. The former reflects the falling process, while the latter indicates the falling direction.
A signal drop from 0.5 to −0.5 g in Fig. 9a along the z axis represents a forward falling process,
while a rise from 0.5 to 1.5 g in Fig. 9b represents a backward falling transition instead.

This monitoring system is applied to medical care systems for both infants and the elderly
through a ZigBee network. In case of any urgent matters, a test object is located instantly such
that medical stuff can even perform first arid on the test object. Accordingly, the simulation
experiment indicates an elevated the quality of medical care.

6 Smart Living Comfort Experiment and Analysis

The purpose of this experiment is to optimize comfort in a smart living environment, so
that system users can live in the most comfortable space. In the experiment, we used the SHT10
temperature and humidity sensor module to conduct a simulation experiment. This research refers
to the thermal comfort equation dedicated to the Central Meteorological Bureau of Taiwan as
shown in Eq. (10) [26]:

CI=T − 0.55

⎡
⎣1− Exp

(
d×17.269
237.30+d

)
Exp

(
T×17.269
237.30+T

)
⎤
⎦× (T − 14) (10)

d = T ×H
100

(11)

Among them, CI stands for comfort index, H stands for relative humidity, d stands for dew
point, and T stands for temperature in ◦C. Tab. 1 shows that the comfort is divided into 6 levels.
The authors use the Python design program to calculate the dew point value and the comfort
index. As shown in Fig. 10, the authors gave two examples and calculated the dew point value
and comfort index. The case one condition is (T = 30◦C, H = 62%) and case two condition is
(T = 25◦C , H = 48.6%) [26].

Table 1: Comfort levels corresponding to human perception

Level no. Comfort level Comfort index (◦C)
1 Very cold 11◦C or less
2 Cold 12◦C∼16◦C
3 Cool slightly 17◦C∼20◦C
4 (Case study 2) Comfortable 21◦C∼27◦C
5 (Case study 1) Muggy 28◦C∼31◦C
6 Easy to heat stroke 32◦C or above

6.1 Environmental Temperature and Humidity Anomalies
Through a Visual Basic-based GUI with an alert indicator, the sensed data are plotted against

time and saved as a file. As illustrated in Fig. 11a, a red indicator signifies a temperature beyond
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40 or below 20◦C, a need to activate an air conditioner or a radiator. Likewise, as presented
in Fig. 11b, a red indicator represents relative humidity beyond 70% or below 50%, a need to
turn on a dehumidifier or a humidifier. Furthermore, the rates of change of temperature/humidity
are found to have a direct relationship with the comfort level. In short, the GUI is developed
as an approach for sensed data collection, presentation and the intended energy consumption
reduction [27].

Figure 10: Smart living comfortable

(a) (b)

Figure 11: (a) Indication of monitored temperature below or beyond a threshold on a GUI (b)
Indication of monitored humidity below or beyond a threshold on a GUI

6.2 Monitoring Experiment and Analysis of Temperature and Humidity in Comfort
6.2.1 Early Stage of the Experiment

This study designed a monitoring experiment of temperature and humidity in comfort. The
average outdoor temperature released by Taiwan’s Central Meteorological Bureau every hour was
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used as a reference, and the recommended temperature monitoring system was used to sense
indoors. A conclusion can be observed from the comparison curve in Fig. 12 that when the high
temperature in the environment drops, the comfort level will be lower. At this time, it is necessary
to turn on the air conditioner by the system of this study to achieve the best comfort.

Figure 12: Indoor and outdoor temperature measurement experiment

From this experiment, it can be found that temperature and humidity will affect comfort,
especially outdoor humidity is easily affected by weather factors, resulting in a decrease in comfort,
and indoor humidity changes have little effect on comfort. Therefore, this study suggests that
humidifiers and dehumidifiers can be used. The humidity in the room is adjusted by the machine
to optimize comfort. The comparison and adjustment of humidity are shown in Fig. 13.

Figure 13: Indoor and outdoor humidity measurement experiment

6.2.2 Last Stage of the Experiment
The system sets the best comfort index from 19 to 25, and the monitoring time we set focuses

on the period from 8:30 in the morning to 5:30 in the afternoon when the average person is in
the office. Figs. 15 and 16 compare the results of indoor and outdoor temperature and humidity
adjustments. In the experiment, it can be found that after the air conditioner starts to operate at
8:30 in the morning, the indoor temperature and humidity begin to adjust with time, and finally
achieve the best comfortable smart living environment.

In this experiment, the authors compared the indoor and outdoor comfort conditions. When
the system detects that the comfort level is reduced, the system will recommend turning on
the air conditioner to adjust the temperature and humidity to achieve the best indoor comfort
environment. When the measured value is low, the system will suggest that you should pay special
attention to whether the weather is hot or cold when you go out, so that everyone can be prepared
for outdoor activities. The relevant comparison curve is shown in Fig. 14.
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Figure 14: Experimental comparison chart: outdoors, comfort index and the best comfort of this
study

Figure 15: Flow chart of comfort level evaluation

7 Improved QPSO Experimental Analysis

A full one-day observation for the ambient temperature/humidity data is made and recorded
per 3 s. Up to approximately 25000 pieces of sensed data average out into 500 pieces, this
experiment is analyzed by an improved QPSO algorithm that it used Matlab code.

7.1 Comfort Level Computing
To begin with, the respective comfort levels index on 500 pieces of collected data are evaluated

with a Matlab program. As illustrated in Fig. 15, the dew point is evaluated as a function of
temperature and humidity, the comfort level is then found and rated on a scale of 1 to 6.

Presented in Figs. 16a and 16b are the aforementioned 500 pieces of temperature and humid-
ity data, respectively, while indicated in Figs. 16c and 16d are the evaluated due point and comfort
level, respectively.
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(a) (b)

(c) (d)

Figure 16: (a) 500 pieces of temperature data (b) 500 pieces of humidity data (c) 500 pieces of
dew point data (d) 500 pieces of comfort level data

7.2 Simulation State Analysis
As tabulated in Tab. 2, comfort level is classified into 6 levels, namely, extremely cold, chilly,

cool, comfortable, muggy and extremely hot. In Tab. 2, comfort levels of 10, 17.5, 23, 28.5 and
31 are rated as levels 1 (extremely cold), 2 (chilly), 3 (cool), 4 (comfortable), 5 (muggy) and
6 (extremely hot), respectively. A search task for 500 comfort levels, viewed as particles in an
improved QPSO algorithm, is performed by a Matlab program. Each particle’s speed and position
are updated each iteration, until the optimal local solutions and the global solution, i.e., the
particle nearest to the specified case, are located.

Table 2: The classification of comfort levels into cases

Simulation state Comfort

Case 1 10◦C
Case 2 13± 2◦C
Case 3 17.5± 1.5◦C
Case 4 23± 3◦C
Case 5 28.5± 1.5◦C
Case 6 31◦C
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7.3 Case 4 Simulation State
In this work, a search task is performed through an improved QPSO algorithm on the

aforementioned 500 pieces of sensed data. Data 341 is found to best fit level 4. Subsequently,
with an error of 3, the portion highlighted in blue represents a comfortable state, as illustrated in
Fig. 17.

Figure 17: Data pertaining to case 4

Figure 18: Data pertaining to case 5

7.4 Case 5 Simulation State
Likewise, data 499 is found to best fit level 5. With an error of 1.5, those rated as level 5

are highlighted in blue in Fig. 18. In case of level 5, the muggy state can be eased by use of
an air conditioner, a fan, etc. In this simulation experiment, two dominant quantities, i.e., the
temperature and humidity, are sensed with a SHT10 temperature humidity sensor module in a
ZigBee network. As a comfort measure, the comfort level is evaluated over 500 pieces of collected
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data. Highlighted in Fig. 17 is the level 4 portion indicating the most comfortable state, while in
Fig. 18 is level 5 indicating the muggy state. The analysis does not indicate any uncomfortable
cases, namely, Cases 1−2, 3 and 6, which is a validation of this thermal comfort monitoring
system.

8 Improved QPSO Algorithm Optimization Analyses

The improved QPSO algorithm is validated by the following 3 typical test functions, and an
optimization comparison is made with a basic particle swarm optimization algorithm. Eq. (12) is
a sphere function. Eq. (13) shows a peak function and Eq. (14) presents a Shaffer’s F6 function.
This experiment uses four typical algorithms for optimization experiments. The purpose is to prove
that the improved QPSO algorithm proposed by this research is the best and the efficiency is the
highest. The author uses Eqs. (12)–(14) three test functions have verified the following algorithms:
the first is the basic quantum particle swarm optimization algorithm, the second is the basic
particle swarm optimization algorithm, the third is the fuzzy algorithm, and the second is the
basic particle swarm optimization algorithm. The four are the improved quantum particle swarm
optimization algorithms proposed by this research. Eq. (12) is a Schaeffer’s F6 function, Eq. (13)
is a number ball function and Eq. (14) is a peak function.

E1(x,y)= 0.32+
sin2

(√
x2 + y2

)
− 0.32

[1+ 0.052 · (x2+ y2)]2
(12)

E2(x)=
n∑
i=1

x2i × (n+ 1) (13)

E3(x,y)= 5(1−x)2e−(x+1)2−(y+1)2 − 8
(x
3
−x2 − y4

)
e−x

2−y2 − 1
6
e−(x+1)3−y2 (14)

In this experiment, Tab. 3 is the basic description of the three test equations, in which f3 and
f2 are both test minimum problems, and f1 is test maximum problems.

Table 3: Basic description of the three test equations

Test function Dimension Search interval Optimal extreme point Optimal target

E1 2 [−12, 6] (0.2, 0.3) 15
E2 2 [−6, 9] (0.1, 0.4) 6
E3 2 [−7, 11] (0.2, 0.3) 12

Letting the maximum number of iterations Tmax = 100, the particle swarm size n = 10 and
the Particle dimension m= 2, a performance measure is defined as

In this experiment, the author set the maximum number of iterations Tmax= 350, the number
of data items is n= 50 and the particle size m= 5. This experiment defines the error between the
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expected output value and the actual output value as a performance indicator, such as Eq. (15)
shows:

e= 1
(n+ 2)

√√√√ n∑
i=1

(xi− x̂i)
2× (n+ 1) (15)

In this experiment, Figs. 19a–19c are the comparison graphs of the calculation results of the
four algorithms. Among them, the method proposed by this research is the best, and the others
are leading each other. The value in the curve represents the accuracy of the data at the earliest
convergence within 350 iterations.

Figure 19: In this experiment, four algorithms (1.QPSO, 2.PSO, 3.Fuzzy, 4.IPSO-this study pro-
posed) are compared with the results of the three equations: (a) Schaffer’s f6 functions (b) Spheres
(c) Peaks

9 Conclusions and Future Work

This work presents an IoT-based monitoring system by means of a ZigBee wireless sensor
network. Using a TI CC2530 development kit, respective smart monitoring systems are built with
a light sensor, a 3-axis accelerometer module and a temperature/humidity sensor module mounted
on sensing nodes. This smart system is applied to a simulation experiment, namely a basketball
court lighting system for demonstration purposes, and extended applications can be found in
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hospital, household, street, tunnel, parking lot lighting facilities, etc. Hence, this smart monitoring
system does as intend achieve the aim of electricity consumption reduction.

This research is designed for the monitoring function of the remote care system. The intended
care recipients are infants and young children, the elderly and the sick. If the patient is affected,
attach this device to the waist of the care recipient. If the care recipient has an emergency, such
as a child in a dangerous sleeping position or an accidental fall of the elderly, the monitoring
center will immediately issue an alarm to the medical or security personnel. Crisis management
and first aid for care recipients. At present, the global COVID-19 situation is very severe. Many
people diagnosed with mild symptoms are promptly accommodated and quarantined because of
hospital beds and no rafts. They can only wait at home. The results of this study will be applied to
patients’ homes. The surveillance and care system during isolation allows remote medical personnel
to grasp the immediate status of patients in real time to reduce the possibility of sudden death.
When the results of this research are applied to end-of-care care, it will reduce manpower shortage
and improve the quality of medical services. This research uses an improved QPSO algorithm
to solve the problem of thermal comfort optimization, and collects many indoor and outdoor
temperature/humidity environmental values through the IoT system, which are used as the basis
for the adjustment and reference setting of the best comfort of the subsequent smart life.

A greater number of routers are expected to be integrated into a monitoring network, either in
a tree or mesh topology, for providing more services. Besides, featuring the measurements of blood
pressure, blood glucose concentration, heartbeat, body weight, etc., a health management system is
expected to be built for heavily loaded employees. Users can be identified using RFID technique,
and automated warning messages as well as reminders can be provided for health concerns.
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