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Abstract: As a large amount of data needs to be processed and speed needs
to be improved, edge computing with ultra-low latency and ultra-connectivity
is emerging as a new paradigm. These changes can lead to new cyber risks,
and should therefore be considered for a security threat model. To this end,
we constructed an edge system to study security in two directions, hard-
ware and software. First, on the hardware side, we want to autonomically
defend against hardware attacks such as side channel attacks by configuring
field programmable gate array (FPGA) which is suitable for edge computing
and identifying communication status to control the communication method
according to priority. In addition, on the software side, data collected on the
server performs end-to-end encryption via symmetric encryption keys. Also,
we modeled autonomous defense systems on the server by using machine
learning which targets to incoming and outgoing logs. Server log utilizes
existing intrusion detection datasets that should be used in real-world environ-
ments. Server log was used to detect intrusion early by modeling an intrusion
prevention system to identify behaviors that violate security policy, and to
utilize the existing intrusion detection data set that should be used in a real
environment. Through this, we designed an efficient autonomous defense sys-
tem that can provide a stable system by detecting abnormal signals from the
device and converting them to an effective method to control edge computing,
and to detect and control abnormal intrusions on the server side.

Keywords: Autonomous defense; side channel attack; intrusion prevention
system; edge computing; machine learning

1 Introduction

Centralized computing structures have large data volumes such as smart factories, smart
farms, and self-driving cars. Also, there is a problem to ask for real-time processing, such as
overloading cloud servers due to network traffic. To solve this problem, edge computing tech-
nologies that process data in real-time or near-field are gaining attention [1]. However, as the
utilization of edge computing facilitates smart convergence across the infrastructure, the surface
of cybersecurity expands [2–4]. It also increases the threat posed by cyberattacks such as system
compromise, service interruption, and information leakage [5,6]. In particular, the possibility of
cyberattacks on drones and self-driving cars along with IoT is expanding beyond the scope of
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existing cybersecurity areas such as information corruption, leakage, and service interference [7,8].
It is even expanding into areas where safety of human life and property must be guaranteed.
Security technologies for these cyberattacks have evolved primarily on a software basis and
hacking incidents at various institutions have raised significant problems with software security
systems [9,10]. Recently, various hardware security systems have been proposed to complement
the limitations of these software security systems. In this paper, we conduct a two-direction study
on the security of edge computing. Security at the field programmable gate array (FPGA) in
hardware and Intrusion Prevention System (IPS) on software basis was introduced. Through this,
we propose ways to enhance the security of the system.

First, in hardware, security in FPGA was studied. With increasing reliance on hardware
acceleration to improve the performance and energy efficiency of computing systems, FPGA has
recently been widely adopted as a system that has to handle large amounts of data, such as edge
computing. Since such FPGA is designed by hardware manufacturers, third parties, consignees,
etc., there is a possibility of being attacked for malicious purposes during the development and
deployment phase of the FPGA [11]. Especially, in edge computing, many edge devices are located
outside the secure data center. So physical security levels are not the same as servers in the
data center. If an attack is made against such an FPGA, the actual system could suffer damage
such as a service outage. In addition, when FPGA is adopted in the cloud and data center or
integrated into system-on-a-chip (SoC), an attacker may perform remote side channel attacks
without physical access or close proximity to hardware. To complement this, we study to increase
the security of hardware by detecting power anomalies, signal anomalies, and clock(clk) anomalies
in FPGA and controlling communication methods according to priorities.

Second, for software, we study IPS methods and apply them to security. Edge computing
devices with insufficient configuration or security provide an opportunity for attackers to dis-
rupt operations and gain extensive access to enterprise networks [12]. Computing and storage
capabilities mounted on edge servers are being strengthened, connected to network, and handling
sensitive data for many reasons. An attacker can target this system to steal data or use it as
a springboard for other attacks by such as Distributed Denial of Service (DDoS) attack. In
particular, basic security mistakes, such as using pre-set passwords or deploying systems without
multiple authentication, can have significant consequences.

Therefore zero-trust and anomaly detection capabilities are critical in edge computing envi-
ronments [13]. To this end, we study the IPS scheme to prevent unauthorized users from accessing
the system and to protect the information. We detect suspicious network activity while monitoring
already known attack signatures as well as restrictive blocking of known attacks. It finds an attack
signature that might have found suspicious network activity during the detection process. We then
observe the traffic on the network and extract the feature for the attack signature from IPS’s
method on packets with suspicious activity. Finally, it detects the attack method and is designed
to be autonomous defense by using AI.

2 Materials and Methods

As shown in Fig. 1, developed IoT process network system consists of devices, network and
cloud. Where device part is designed with edge controller and network includes WiFi, Long Range
(LoRa), Narrowband-Internet of Things (NB-IoT), Long Term Evolution (LTE). Cloud integrates
data collection, process and analysis. Intrusion prevention system is applied to deal with security
problems in OSI (Open Systems Interconnection) network layer [14]. This session introduces the
device part, the network part, and finally the experimental setup.
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Figure 1: Architecture of IoT system comparing OSI network layer

2.1 Security in Hardware
2.1.1 FPGA with Edge Device

FPGA is a device that combines some of the advantages of software such as rapid devel-
opment, low initial technology cost, no repetitive additional costs, hardware advantages of high
performance and high-power efficiency. In particular, FPGA can adapt to all algorithmic prop-
erties due to hardware flexibility, which is different from Central Processing Unit (CPU) and
Graphics Processing Unit (GPU) that mainly utilize spatial parallel processing. Thus, FPGA is
adopted as a model suitable for edge computing, with more granular and large-scale utilization
of spatial and temporal parallel processing. In addition, GPU and CPU are optimized for batch
processing of memory in applications that require large amounts of data processing, such as
embedded system design, routing, signal processing, or encryption. On the other hand, FPGA is
inherently appropriate to accelerate streaming applications. A pipeline streaming architecture with
data flow control is easily built on the FPGA to handle data and command streams and generate
output results at a constant throughput. Above all, the most important characteristics that distin-
guish FPGA from other semiconductors are cost, flexibility, and heterogeneous parallel processing.
Compared to Application Specific Integrated Circuit (ASIC) and GPU, there is no additional
power consumption cost due to low heat generation problems. And it can be responded only
by changing logic design with greater flexibility. In addition, unlike CPUs, it has heterogeneous
parallelism and plays a key role in artificial intelligence technology with fast computation [15].

The FPGA chip has Optional Mask Programmable Memory (MPM) and supports LVDS
600 Mbps per lane with up to 6 TX pairs and 6 RX pairs. And this board can synthesize
clock signals using PLL. The operation method of FPGA and Microcontroller Unit (MCU)
is explained in terms of Local Area Network (LAN) selection algorithm, anomaly correction,
firmware management, resource management and device management [16].

2.1.2 Types of Attacks in FPGAs
Hardware Trojan (HT) in FPGA can be introduced through multiple hardware design-

ers, third-party intelligent property (3PIP) providers, and outsourcing companies during the
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development phase. HT typically consists of triggers and payloads [17]. Triggers activate payloads
when certain conditions are met. Then payloads are inserted into the circuit in the malicious
behavior intended by the attacker to perform malicious functions such as Denial of Service,
functional changes, degradation, and sensitive information leakage. Unlike payloads distributed
across multiple modules, triggers are implemented in one module and complex conditions are used
to prevent payloads from being activated during the test phase [18]. These HTs allow attackers to
insert HT into the entire development process of FPGA, i.e., design, synthesis, and deployment.
Also, RTL and 3PIP can be converted to a batch and 3PIP completed netlist, and outsourcing
companies provide hardware design in netlist form.

Reverse engineering mainly includes gate-level netlist reverse engineering and image
processing-based reverse engineering by removing packages of chips and each layer of chips,
taking layouts and analyzing computer-acquired layouts [19]. In gate-level netlist reverse engi-
neering, an attacker can extract high-level feature information from a gate-level netlist, such
as Register Transfer Level (RTL) or structural-level descriptions. X-ray tomography is a non-
destructive method that can provide a layer-specific image of a chip and is often used in the
analysis of internal via, traces, wire bonding, capacitors, contacts, or resistors. The destructive
method is to etch and grind all layers. It can obtain all layout information inside the chip, and
depending on the technology, it is possible to remove only external packages while the chip is
operating and observe the signal wherever you want. Intellectual Property (IPs) such as memory
and cores are easily distinguishable when internal layouts are acquired by reverse engineering. So,
buses connected to these IPs can also be easily found. Reverse engineering makes it possible to
observe the bus inside the SoC and extract data traveling through the bus [20]. In a similar way,
not only internal code but also moving key values can be extracted via bus. Especially, there are
vulnerabilities that can easily decode internal secret information or falsify signatures when a key
is exposed.

Side channel attack is a method of attacking information such as power, signal, heat, and
computational time that changes when a chip is operating [21]. This attack can collect and
analyze side channel information to extract key security information, such as secret data and keys.
And it requires relatively little time and cost because it uses only interfaces that are accessible
from the outside of the chip. Because of these features, side channel attacks are powerful non-
invasive attacks that exploit the leakage of physical information when cryptographic algorithms
run in a system. And side channel attacks are powerful attacks that leave no trace or destroy
encryption devices because they exploit accessible data, clocks, and voltage interfaces on the target
device [22,23]. Thus, side channel attacks have become a major threat to current cryptographic
devices Fault injection attacks are one of the most effective sub-channel attacks, which use voltage
glitches, clock glitches, and laser pulses to inject faults that interfere with the operational state of
a cryptographic device or chip and generate controllable faults [24]. Incorrect information can be
exploited to compute keys via differential encryption analysis.

2.1.3 LAN Network Selection Algorithm
Each consists of LAN network selection algorithms for high-level network access, and all

LAN ports are connected to the Ethernet Physical layer (PHY) chip through FPGA. LAN
network selection algorithms are composed of LoRa, WiFi, LTE, NB-IoT (5G capable) external
modem.

The FPGA detects the activity of the 4 LAN ports in real time (alert detection). The FPGA
available of high-speed operation is capable of high-speed data processing for several. By using
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this feature, it is possible to detect failure of the operating LAN port at high speed. Detections
include link detection, communication signal detection and power status detection.

As a countermeasure in case of a communication line problem, first, when a communication
line problem is detected, automatic port transfer according to priority. When the line is changed,
the current main line server and the failure detection line server are notified. During normal
operation of 4 lines, it can be operated as a server at the same time, and when a failure of one line
is detected, a MAC IC communication error is determined as a MAC (Media Access Controller)
Integrated Circuit (IC) error, and a PHY IC communication error is determined as a PHY IC
error.

Algorithm switching is divided into self-determination algorithm switching method and server
algorithm switching. In the self-determination algorithm switching, when operating individual
ports, the line priority is operated in the order of ports 1, 2, 3, and 4. Server Algorithm Switching
is based on the artificial intelligence optimization algorithm of the server, and if it is necessary
to change the current operation port, it is possible to change the operation port after receiving a
server message. Fig. 2 shows the LAN network selection algorithm.

Figure 2: Algorithm of LAN network selection

2.1.4 Wifi, LTE, NB-IoT, Lora External Network Configuration
The external network connected to the device consists of four external networks: an external

LTE modem, an external WiFi client, an NB-IoT external modem, and an external LoRa modem.
To implement such a communication method, a signal connection is made through an FPGA and
a power fault detection is monitored in real time using MCU, Analog-digital converter (ADC).
NB-IoT is an Attention (AT) command method using RS-232, which does not require Media
Access Control (MAC) or Physical layer (PHY) devices. By default, active networks are used, but
when multiple networks are present, network priorities are operated in the order of WiFi, LTE,
NB-IoT, and LoRa. Prioritization was determined by considering the stability of the network, the
size of the Payload, and the cost.

2.1.5 Fault Detection
• Link Fault Detection
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PHY chip and link connection status of WiFi and LTE external modems are notified to
FPGA. NB-IoT does not have MAC or PHY, so if there is no response when AT command
communicating with an external NB-IoT modem in the MCU, it determines that it is a link fault
(external modem fault) and notifies FPGA as shown in Fig. 3.

• Communication Signal Fault Detection

Figure 3: Link fault detection

All signals of LAN1 and LAN2 using MAC and PHY are connected by FPGA and the state
of signals necessary for communication such as clock and control signals is detected in the FPGA
in real time to determine whether there is a fault. The communication signal fault conditions are
when there is no clock and the control signal is not operating in Fig. 4. LAN1 and LAN2 have
a maximum speed signal of 50 MHz and detect real-time communication signal fault in 10nsec
units using 100 MHz PLL inside the FPGA.
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• Power Fault Detection

Figure 4: Communication signal fault detection

WiFi, LTE, and NB-IoT each make 3.3 Vs using separate Low Drop-Output (LDO)s and
individual 3.3 Vs determine fault in real time using MCU ADCs. If a voltage of less than 3 V is
detected due to a physical fault of the MAC and PHY chips, the MCU notifies the FPGA and
the FPGA performs network switching according to priority as shown in Fig. 5.
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Figure 5: 3.3 V power fault detected by communication method

2.1.6 Operation Network Switch
• MCU, FPGA Information Exchange

The exchange of information such as fault status and operation network between MCU and
FPGA is performed by communicating with each other using SPI (Serial Peripheral Interface)
protocol in Fig. 6. Depending on the link failure, communication failure, power failure, operating
network, etc., the FPGA internal registers are allocated as shown in Tab. 1, and the bit values by
address are as shown in Tab. 2.

• Action by Switching Method
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Figure 6: Configuration diagram of information exchange between MCU and FPGA

Table 1: FPGA internal register

Address R/W Register name Function

0 × 01 R/W Link Fault Detection The MCU checks the link
fault status and notifies the
NB-IoT link fault.

0 × 02 Read Communication Signal Fault
Detection

The MCU checks the
communication signal fault
status.

0 × 03 Write Power Fault Register The power fault status is
reported from the MCU to
the FPGA.

0 × 04 R/W Operation Network Register Network currently in
operation

Table 2: Address (0x01 ∼ 0x04)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 - - - - - NB-IoT normal LTE normal WiFi normal
1 - - - - - NB-IoT fault LTE fault WiFi fault

In the case of communication networks where fault is detected in FPGA, they are automati-
cally switched by prioVrity. MCU periodically (100 milliseconds) checks the results determined by
FPGA and notifies the server.

If the server algorithm requires switching the operation network, use the 0x04 operation
network register. The contents of packets notified by the server are written in the FPGA internal
register, and FPGA switches the operation communication network based on this. In this case,
the switch to the operation network where the FPGA has detected a fault is not carried out.

In the case of the internal operation of the FPGA when switching the operation network, the
RS-232 for communication connected to the MCU automatically connects to the corresponding
communication device inside the FPGA, and the FPGA initializes the newly connected device. If
the MCU is sending a message to the server, the MCU sends the packet back to the server when
an operation network switch occurs.
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2.2 Security in Software
The core of a network is to provide a variety of services seamlessly in a single network. In

order to support various services, we are preparing various technologies for mobile communication
such as NB-IoT, LTE, WiFi, and LoRa. The network part of our system transmits and receives 5
types of information (data, firmware, resource, device, network) confirmed from the control unit.
Also, security in the network is an important issue. In addition to transmitting data encrypted
(Advanced Encryption Standard Algorithm, AES) using edge computing in the device part, an
intrusion prevention system was applied as a security problem in the process of transmission to
the network server.

2.2.1 Intrusion Prevention System
Intrusion prevention systems are software applications that monitor for malicious activity or

unauthorized access on a network [25]. IPS acts on suspicious packets and automatically halts
execution if server takes unusual actions by detecting attack signatures and observing traffic on
the network. This is necessary in edge computing to prevent attackers by passing edge servers to
break into the main network and seizing information. IPS is largely divided into host-based and
network-based systems. First, the technical characteristics of host-based IPS are largely separated
by the way it works with the kernel to intercept and handle kernel events. The technical features
of host-based IPS are largely distinguished by the way it works with the kernel to intercept kernel
events and the way it operates independently of the kernel. The former can be classified as Trust
Operating System products with access control capabilities, and the latter can be classified as
products that filter events that violate certain rules using signatures and behavior-based analytics
algorithms.

The technical features of network-based IPS consist of real-time packet processing, techniques
to minimize misdetection, detection techniques of variant and misuse attacks, and real-time
response techniques for each situation [26]. It is also essential to block malicious sessions through
various kinds of prevention methods and methods (signature, anomaly detection on protocol) as
a system capable of supporting session-based detection.

The biggest advantage of IPS is that it is an active security measure that can minimize attack
damage by actively blocking attacks before an attack can cause damage. In addition, IPS provides
higher security because it proactively complements vulnerabilities in OS or applications and can
block worms or overflows, especially Anomaly traffic or unknown attacks.

We trained a machine learning approach to monitor malicious activity in real time using that
model. The proposed system modeling includes 5 stages of data collection, preprocessing, feature
selection, model selection, training and testing, and result evaluation. Fig. 7 below is a flowchart
of the proposed intrusion prevention system.

2.2.2 Data Collection
The KDD data set is well known in intrusion detection technology research [27].

A lot of research is going on to improve intrusion detection, and the study of data
used to train, and test detection models is a major issue because better data quality
can improve offline intrusion detection. This data set is mainly used in intrusion pre-
vention system. KDD dataset contains 41 features and class label that is normal or
attack. It is more efficient in the method with detection rate than KDD by using the
NSL-KDD data set in which duplicate items are removed from the KDD dataset [28].
The NSL-KDD data set includes KDDTrain+.ARFF for training and KDDTest+.ARFF
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for testing. ARFF is used to test binary category problems. And KDDTrain+.TXT and
KDDTest +.TXT, which contain 5 categories (normal and 4 types of attacks: Dos, Probe, R2L,
U2R), are used to train and test the dataset, respectively.

Figure 7: Proposed intrusion prevention system model

In the attack type, DoS is a denial-of-service attack, which depletes the victim’s resources and
makes it impossible to process legitimate requests. Relevant features include “source bytes” and
“percent packets with errors”. Probe is to obtain information about remote victims by surveillance
and other investigation attacks. Relevant features are “duration” and “source byte”. U2R is a type
of attack that provides unauthorized access to local superuser (root) privileges. An attacker logs
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in to the victim’s system using a generic account and attempts to gain administrator privileges by
exploiting some of the victim’s vulnerabilities. Relevant features include “number of file creations”
and “number of shell prompts called.” R2L is a type of attack that gains unauthorized access
to a remote system and local access to the victim system. Relevant features include “duration”,
“service requested”, and “number of failed login attempts”.

2.2.3 Preprocessing
The data set contains numeric and non-numeric features. Types with non-numeric properties

such as protocol type, service, and flag must be converted to numeric features in preparation for
the next step used as training and test input. It also must convert Normal and 4 types of attacks
(DoS, Probe, R2L, U2R) belonging to the class characteristics into numeric types. This conversion
is done in the preprocessing stage.

2.2.4 Feature Selection
Feature selection is important for both training and classification processes that effectively

reduce the amount of data required for processing, memory and CPU usage. Among the 41
features included in the KDD dataset, it is necessary to exclude features that do not significantly
affect intrusion prevention.

In addition, among the many studies that selected features related to the four attack groups
included in the KDD dataset [29–31] selected by the voting system for features that were used
most among these studies were referenced. Feature numbers 2, 4, 5, 21 were selected for all
experiments, and added feature numbers 10, 14, 21, 22, 28, 36, 40, 41 for Feature 12 and 1, 4,
7, 8, 11, 16, 23, 24, 27, 29, 30 and 37 for feature 24. And 41 features were also used in the
experiment to compare the execution time of machine learning. Tab. 3 shows the main features
related to the for attack groups. Features not included in the attack type were deleted.

Table 3: Important features related to the four attack groups

No. Feature
paper

Kayacik
et al. [29]

Tang
et al. [30]

Olusola
et al. [31]

Amiri
et al. [28]

Zargari
et al. [32]

1 duration - - - R2L -
3 service R2L R2L R2L R2L voted
4 flag Probe Probe - - -
5 source_bytes Normal,

DoS, R2L,
U2R

Normal,
DoS, R2L,
U2R

DoS, Probe R2L voted

6 destination_-
bytes

DoS, R2L,
U2R

DoS, R2L,
U2R

R2L DoS, R2L voted

7 land DoS DoS DoS
10 hot - - - R2L -
11 failed_logins - - R2L - -
14 root_shell - - U2R U2R -
16 num_root U2R U2R - - -

Continued)
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Table 3: Continued

No. Feature
paper

Kayacik
et al. [29]

Tang
et al. [30]

Olusola
et al. [31]

Amiri
et al. [28]

Zargari
et al. [32]

21 is_hot_login - - - U2R -
22 is_guest_-

login
- - - R2L -

23 count - - R2L - -
24 srv_count - - U2R - -
27 rerror_rate Probe Probe - - -
28 srv_rerror_-

rate
- - Probe Probe -

29 same_srv_-
rate

- - Normal - -

30 diff_srv_rate DoS DoS Probe - -
34 dst_host_-

same_src_-
port_rate

- - Probe, U2R DoS

35 dst_host_-
srv_diff_-
host_rate

Probe Probe - - -

38 dst_host_-
srv_serror_-
rate

R2L R2L R2L DoS voted

40 dst_host_-
rerror_rate

- - - Probe -

41 dst_host_-
srv_rerror_-
rate

- - - Probe -

2.2.5 Model Selection
The program first distinguishes Normal/Abnormal data using Multi Layer Perceptron (MLP),

K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) models. The models use
training data consisting of normal traffic and known attack traffic. The next step is to distinguish
between unknown and known attacks among abnormal data. Among machine learning techniques,
we train using Decision Tree, Random Forest, KNN, Naïve Bayes, and SVM, which are well
known as supervised learning.

MLP is called Feed-forward Neural Network, or Neural Network, and it is a generalized form
of Linear Model that makes decisions through several steps. In the MLP, the process of creating
the sum of weights is repeated several times. First, the hidden unit constituting the intermediate
step is calculated, and the sum of weights is calculated again to calculate the final result using
this. KNN is one of the simplest learning algorithms and classifies each data into one of k sets by
measuring the distance of data in a short time. The training data is a vector in a multidimensional
feature space, each with an item class name, and the training step of the algorithm is to store
only the feature vector and item class name of the training sample. SVM is one of the fields of
machine learning, a supervised learning model for pattern recognition and data analysis. And it
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is mainly used for classification and regression analysis. Given a data set belonging to one of the
two categories, the SVM algorithm creates a non-probabilistic binary linear classification model
that determines which category the new data belongs to and is expressed as a boundary in the
mapped space. Decision Tree (DT) is one of the most widely used classification algorithms in
data mining. It operates in a split-and-conquer method, and recursively splits the training data set
based on attributes until the stopping condition is satisfied. Each node has several corners that
specify the possible values or ranges of values for the selected attribute in the node, specifying
the attributes that best divide the DT’s data set into classes. The most important issue when
constructing DT is the value chosen to divide the tree node. Random Forest (RF) is an ensemble
classifier used to improve accuracy. RF consists of many decision trees and has lower classification
errors compared to other existing classification algorithms. The advantage of RF is that the
generated forest can be saved for future reference, overcomes fitting problems, and is automatically
generated in RF accuracy and variable importance. Naïve Bayes (NB) algorithm is an algorithm
based on Bayes’ theorem that can be used for classification data sets. This algorithm is based on
a simple assumption that attribute values with conditions independent of the target variable are
considered. NB provides a systematic method for the data analysis process with a probabilistic
model.

2.2.6 Training and Testing
Run the training dataset as input to machine learning and use the test dataset to test the

training model’s ability to generalize. Tab. 4 describes the attack class and the number of patterns
per class. The proposed algorithm is used to train the pattern selected as 125973 in the NSL-KDD
data set and test the 22,544 patterns.

Table 4: Number of patterns by attack type

Training data set Testing data set

Class Number of patterns Class Number of patterns

Normal 67,343 Normal 9,711
DoS 45,927 DoS 7,458
Probe 11,656 Probe 2,421
R2L 995 R2L 2,754
U2R 52 U2R 200
Total 125,973 Total 22,544

2.2.7 Model Evaluation
In evaluating an intrusion prevention system, there is an accuracy limit that is inappropriate

to use only classification accuracy as an evaluation index. So, it must be applied together with
several classification indexes to overcome. The Confusion Matrix is an index that shows how much
confusion can occur when a learned classification model performs prediction as a method that
is well used as a performance index in classification (Shown in Tab. 5). In order to objectively
evaluate the predictive and generalization ability of the model, the precision, recall, False Positive
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Rate (FPR), accuracy, and F1 score of abnormal behavior detection are used as evaluation
indicators.

Table 5: Confusion matrix

Attack Actual class Measure

YES (True) NO (False)

Predicted class Yes (positive) TP or DR FP Precision
TP/(TP∗FP)

No (Negative) FN TN -
Measure Recall,

Sensitivity
TP/(TP∗FN)

Specificity,
True Negative
Rate = TN/
(TN∗FP)

Accuracy =
(TP∗TN)/
(TP∗TN∗
FP∗FN)

Precision is the probability that the model’s prediction result is positive, and the actual value
is positive. It is also called Positive Predictive Value (PPV) as an indicator of how well you match
your positives.

2.3 Machine Learning
The process of predicting the cyberattack is used not only for securing reliability of the

existing data and defining the cause of faults that had already occurred also in forecasting future
to detect the user’s risk in advance [33]. This is a list of the machine learning classifiers used
in this experiment to increase the efficiency of detection of network anomalies and attacks [34]:
SVM, KNN, MLP, Naïve Bayes and Random Forest. SVM technique is well-developed supervised
learning model for pattern recognition and data analysis as one of the fields of machine learning,
and mainly used for classification and regression analysis [35,36] proposed a DDoS anomaly
and attack detection technique based on SVM. This scheme shows that values such as source
IP, source port and flow item speed, flow packet standard deviation, flow byte deviation, and
pair ratio are extracted from the switch flow table of the SDN architecture related to DDoS
attacks. Network DoS attack and malicious code detection [37] and network intrusion [38] can
be confirmed by using KNN technique [39,40]. The experiment was conducted by classifying the
network state into two (attack or normal) or three (DDoS source, victim, normal) using the
MLP technique [41]. This makes it possible to classify attacks with a high true positive rate while
keeping the false positive rate low. The study to confirm the presence or absence of intrusion
prevention was conducted by introducing three well-known classification techniques, MLP, NB and
Random Forest, among which MLP detected invasion with the highest accuracy [42]. Random
Forest is a machine learning classifier made up of a number of decision trees that operate as
a group, where the most voted prediction is accepted [43]. While the Multi Class Classifier and
Random Forest algorithms detected 100% of all web-based attacks, the Naïve Bayes and Naïve
Bayes Updatable algorithms detected only HTTP Flood among the four attacks, and a 96% rate
was detected [44].
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3 Results

3.1 Fault Detection Using FPGA
Using the fabricated FPGA board, we checked the operation in the situation of link fault

detection, communication signal fault detection, and power fault detection. We implemented
FPGA by synthesizing EFINIX TRION T8Q144C3 FPGA using EFINIX Efinity 2020.1 tools
and TRION T8Q144C3. And the Tab. 6 below is the description of each input/output of the
FPGA.

Table 6: Description of FPGA

Name Description

clk FPGA internal reference clk (40nsec)
mac_rxclk Communication clk to the upper MAC

of the FPGA
mac_rxd Communication data to the upper

MAC of the FPGA
wifi_rxclk Communication input from WiFi in

FPGA
wifi_rxd Communication data input from WiFi

in FPGA
lte_rxclk Communication input from LTE in

FPGA
lte_rxd Communication data input from LTE

in FPGA
spi_clk, spi_cs, spi_mosi Signal from MCU to communicate

with FPGA
wifi_link_fail, lte_link_fail, nb_iot_link_fail External communication device cable

or device error
wifi_comm_fail, lte_comm_fail Communication signal error
reg_5_out FPGA internal registers (display the

operating device)
- 00000001: WiFi
- 00000010: LTE
- 00000100: NB-IoT
- 00001000: LoRa

Fig. 8a is a normal state and WiFi with high priority is basically connected. In the case
of link fault detection as shown in Fig. 8b, when a link failure occurs for each communication,
the process of switching after detecting the relevant situation is shown. First, as the WiFi_link_-
fail signal fell from high to low, the abnormal state is detected, and then the communication is
switched from WiFi to LTE. When an abnormal state is detected for each communication, it is
connected to the next communication according to the priority. And the WiFi_link_fail signal
returns to normal, the communication from LoRa to WiFi is restored.
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Figure 8: Timing diagram for each fault detection: (a) Normal state, (b) Link fault detection, (c)
Communication signal fault detection, (d) Power fault detection

For communication signal fault detection, the process of switching communication from WiFi
to LTE after detecting an abnormality in the WiFi communication signal through the WiFi_rxclk
signal in the FPGA is shown in Fig. 8c. When a power fault is detected as shown in Fig. 8d, the
MCU detects a WiFi power error and informs the FPGA through SPI communication. And the
signal is transferred from WiFi to LTE by writing the communication detected for power failure
in the FPGA internal register 0x03 indicating power fault detection.
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3.2 Autonomous Defense System Using Machine Learning
It is an excellent intrusion prevention system with high accuracy and detection speed but low

false positive rate. The false alarm rate is proportional to the misclassification rate.

First, we used the SVM, MLP, and KNN methods to classify them into Normal and Abnor-
mal data. Classification for the three models using NSL-KDD data shows an accuracy of 91%
in KNN, 85% in MLP, and 52% in SVM. In the case of SVM, the accuracy differs significantly
depending on the kernel types. RBF was used because the data set used in this study did not
match linear. The parameters used at this time are C and gamma, and the values are 1.0 and 0.1.
Because the misclassification was not strictly managed by giving a large C value, the model shows
a relatively low prediction rate.

In the dataset classified as abnormal data, the attack types that are not included in the
training are compared. In case of an unknown type, an alarm is given. And in case of a known
attack, five machine learning methods are trained and tested, and the predicted results are output.
However, in trivial classes such as U2R attacks, especially in the case of DT and RF, the result
of 4 features shows a higher F1 score than when 8 is selected. These methods show that the
classification is poor due to the data characteristics of a larger number of features added to the
classification through pruning. The reason why the NB method yields a value of 0 is that this
method determines the classification in a relatively simple method compared to other models. This
method can be used to judge features of low importance and high features equally, leading to
results that are not suitable for the model.

Fig. 9 show the execution time of the five models. The amount of time change according to
the number of features is the smaller the feature in the order of DT, NB, and SVM, the more
effectively the time was shortened. In comparison by model, the execution time was shortened in
the order of NB, DT, RF, and KNN, and the execution time of SVM was the longest which is
plotted as a log scale graph. SVM takes a lot of time when processing large datasets. In the SVM
method, it can avoid wasting time resources by selecting fewer features.

Figure 9: Executions time by ML model
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The Receiver Operating Characteristics (ROC) curve which draws the relationship between
False Positive Rate (FPR) and True Positive Rate (TPR). (For FPR), as shown in Fig. 10 and
Tab. 7. The ROC curve has the advantage which is not sensitive to the class distribution. Also,
performance can be compared with the Area Under Curve (AUC) value obtained from the ROC
curve. AUC has a value from 0 to 1, and the larger the better.

Figure 10: ROC curve with random forest

Tab. 8 shows the values of FPR, and TPR for dos, probe, u2r, and r2 l predicted by five
machine learning techniques as shown in Fig. 10. We classified the TPR/FPR that can be extracted
from the actual network attack situation using the KDD Dataset. And we confirmed that the IPS
can detect and block external intrusion.

4 Discussion

We build edge computing system and control it with FPGA, MCU to prioritize four commu-
nication methods. This configured an edge system in the sensing part, reducing the load on the
server and ensuring communication stability. The data collected to the server was considered by
performing end-to-end encryption, and Autonomous defense systems were modeled on the server
using machine learning to target the server’s incoming and outgoing logs. Server logs leverage
existing intrusion prevention datasets, which need to be used in real-world environments.

Machine learning modeling for intrusion anomaly detection showed relatively good results in
RF, but poor performance in various other algorithms. To improve this, future studies need to
consider more accurate properties and counts in feature selection, and the appropriate amount of
data and parametric coefficient adjustments are required for SVM models in machine learning.
Furthermore, KNN is an effective algorithm when the number of learning data is high, but it
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is unclear how many optimal neighbors (k) and which distance scales are suitable for analysis,
requiring selection for each characteristic of the data.

In this paper, we have seen many possibilities that can be effective in detecting anomalies and
preventing intrusion through various machine learning methods. To specify the method, run the
Data set in the future by bootstrap to add content. And it is necessary to increase accuracy by
using Stratified k-fold-cross-validation. So, we need to conduct future experiments to coordinate
this hybrid method for better accuracy. We then have to experiment with contextual optimization
algorithms by collecting data from live networks.

Table 7: AUC with (a) DT, (b) KNN, (c) SVM, (d) NB

(a) Decision tree

Features AUC

4 0.78
12 0.81
24 0.83
41 0.85

(b) KNN

Features AUC

4 0.83
12 0.86
24 0.85
41 0.83

(c) SVM

Features AUC

4 0.78
12 0.78
24 0.77
41 0.78

(d) Naïve bayes

Features AUC

4 0.64
12 0.64
24 0.74
41 0.74
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Table 8: TPR and FPR value of four class classifications with 41 features. (a) Random forest, (b)
KNN, (c) Decision tree, (d) Naïve bayes, (e) SVM

(a) Random forest

Attack type TPR FPR

dos 99.43 0.12
probe 40.75 0.17
u2r 54.05 0.11
r2l 100 16.64

(b) KNN

Attack type TPR FPR

dos 96.46 17.59
probe 5.82 0.24
u2r 35.14 0.16
r2l 83.27 23.35

(c) Decision tree

Attack type TPR FPR

dos 99.4 0.30
robe 34.51 0.05
u2r 56.76 0.42
r2l 99.91 13.88

(d) Naïve bayes

Attack type TPR FPR

dos 93.94 92.7
probe 10.23 5.12
u2r 29.73 0.02
r2l 0 0

(e) SVM

Attack type TPR FPR

dos 100 100
probe 0 0
u2r 0 0
r2l 0 0

5 Conclusion

With the advent of the 5G era, we designed and implemented a mobile IoT edge computing
system and studied how to enhance security in hardware and software. For this, we have secured
the stability and security of communication through the priority of four communication methods
through FPGA and MCU. Server logs were utilized to model intrusion prevention systems to
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identify behaviors that violate security policies to detect intrusions early. This autonomous defense
system performs control over edge computing and predicts abnormal intrusions in the server side
as well.

This is due to the importance of network security in this system. Leveraging the NSL-KDD
dataset, we test by feature count using five machine learning methods to avoid wasting resources
and find models suitable for attack detection and classification. As a result, the selection of fea-
tures that are highly relevant to intrusion prevention characteristics is important. The performance
of classification algorithms according to their characteristics showed that RF performed best on
the ROC curve and SVM were the worst in terms of execution time. We also used a learning
algorithm by creating a dataset targeting server logs, which we confirm can detect/control external
attacks and build an autonomous defense system through this way.
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