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ABSTRACT

In this study, we examine the possible relations between the Frenet planes of any given two curves in three
dimensional Lie groups with left invariant metrics. We explain these possible relations in nine cases and then
introduce the conditions that must be met to coincide with the planes of these curves in nine theorems.
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1 Introduction

The theory of curves has an important role in differential geometry studies. In the theory of curves,
one of the interesting problems is to investigate the relations between two curves. The Frenet elements
of the curves have an effective role in the solution of the problem.

For example, if the principal normal vectors coincide at the corresponding points of the curves α

and β, the curve couple {α, β} is called the Bertrand curve couple in a three-dimensional Euclidean
space [1,2]. Similarly, if tangent vectors coincide, the curve couple {α, β} is called the involute-evolute
curve couple. Also, if the normal vector of the curve α coincides with the bi-normal vector of the curve
β, the curve couple {α, β} is called the Mannheim curve couple [3].

In a three-dimensional Lie group G with a bi-invariant metric, Çiftçi has defined general helices
[4]. Also Okuyucu et al. have obtained slant helices and Bertrand curves in G [5,6]. Gök et al. have
investigated Mannheim curves in G [7]. Recently, Yampolsky et al. have examined helices in three
dimensional Lie group G, with left-invariant metric [8]. Also, many applications of curves theory are
studied and still have been investigated in three dimensional Lie groups (see [9–12], etc.).

Karakuş et al. have examined the possibility of whether any Frenet plane of a given space curve
in a three-dimensional Euclidean space is also any Frenet plane of another space curve in the same
space [13].

In this study, we examine the possible relations between the Frenet planes of given two curves in
three dimensional Lie groups with left invariant metrics.

http://dx.doi.org/10.32604/cmes.2022.021081
mailto:osman.okuyucu@bilecik.edu.tr


654 CMES, 2022, vol.133, no.3

2 Preliminaries

Let G be a three dimensional Lie group with left-invariant metric 〈, 〉 and let g denote the Lie
algebra of G which consists of the all smooth vector fields of G invariant under left translation. There
are two classes of three dimensional Lie groups:

1. If the group is unimodular, we have a (positively oriented) orthonormal frame of left-invariant
vector fields {e1, e2, e3}, such that the brackets satisfy

[e1, e2] = λ3e3, [e1, e3] = λ2e2, [e2, e3] = λ1e1,

where λi are called structure constants. The constants

μi = 1
2
(λ1 + λ2 + λ3) − λi,

are called connection coefficients.

2. If the group is nonunimodular, we have an othonormal frame {e1, e2, e3}, such that

[e1, e2] = αe2 + βe3, [e1, e3] = −βe2 + δe3, [e2, e3] = 0,

see [14].

Using the Koszul formula the covariant derivatives ∇ei ej can be found as in the following tables:

for unimodular and nonunimodular cases, respectively.

The cross-products of the vectors e1, e2, e3 are defined by the following equalities:

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2,

in three dimensional case. For unimodular and nonunimodular groups, we have ∇ei ek = μ(ei) × ek,
and so

∇X ek = μ(X) × ek,

for any vector field X , where μ is a affine transformation as follows:

μ(X) =
{
μ1X 1e1 + μ2X 2e2 + μ3X 3e3,
βX 1e1 + δX 3e2 − αX 2e3,

for unimodular and nonunimodular cases, respectively (see [8]).

We have ∇ei ek = μ(ei) × ek for both groups, and so

∇X ek = μ(X) × ek, (1)

for any vector field X .

Let γ be an arc-lengthed curve on the group and T = γ̇ be the unit tangent vector field. For any
vector field ξ ◦ γ , using the Eq. (1), we get
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∇Tξ = ξ̇ kek + μ(T) × ξ , (2)

where the vector field ξ̇ = dξi

ds
ei is dot-derivative of the vector field ξ along the curve γ . If ξ is the

restriction of a left-invariant vector field to the curve γ the ξ̇ = 0 (see [8]).

Let T , N and B be the vectors of the standard Frenet frame of the curve γ . We get the following
equations with the help of Eq. (2):

∇TT = Ṫ + μ(T) × T , ∇TB = Ḃ + μ(T) × B, ∇TN = Ṅ + μ(T) × N. (3)

Along the curve γ , we can define a new frame {τ , v, β}, which is called dot-Frenet Frame, by

τ = T , v = 1
k0

τ̇ , β = τ × v,

where k0 = |Ṫ |. By definition 	0 = |β̇|.
Proposition 2.1. The dot-Frenet frame {τ , v, β} satisfies dot-Frenet formulas, namely

τ̇ = kov, v̇ = −k0τ + 	0β, β̇ = −	0v.

The Frenet and the dot-Frenet frames are connected by

τ = T , v = cos αN + sin αB, β = − sin αN + cos αB,

where α = α(s) is the angle function (see [8]).

Proposition 2.2. The transformation μ(T) can be given by

μ(T) = (	 + α̇ − 	0)T + k0sinαN + (k − k0cosα)B, (4)

with respect to the Frenet frame {T , N, B}.
Define a group-curvature kG and a group-torsion 	G of a curve by

kG = |μ(T) × T |, 	G = |μ(T) × B|,
respectively. As a consequence of (4), the dot-curvature and the dot-torsion of a curve can be expressed
in terms of the group-curvature kG, group-torsion 	G of a curve, and angle function α by

k2
G = (k − k0)

2 + 4kk0sin2(α/2), 	2
G = k2

0sinα2 + (	 − 	0 + α̇)2

(see [8]).

3 Frenet Curve Couples in Three Dimensional Lie Groups

Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be curves with arc-length parameter s and s̄, respectively,
in three dimensional Lie group G with left-invariant metric. We denote Frenet apparatus of the curves
ζ and η with {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively. We know that Sp{T , N}, Sp{N, B}
and Sp{T , B} are the osculating plane, the normal plane and the rectifying plane of the curve ζ ,
respectively. And similarly, Sp{T̄ , N̄}, Sp{N̄, B̄} and Sp{T̄ , B̄} are the osculating plane, the normal
plane and the rectifying plane of the curve η, respectively. Now we investigate the possible cases and
the relations between the Frenet planes of any given two curves in three dimensional Lie groups with
left invariant metrics in a step by step manner:
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Case 1: We assume that, osculating plane of the curve ζ is the osculating plane of the curve η, that
is Sp{T , N} = Sp{T̄ , N̄}. As in Fig. 1, this relationship exists at the corresponding points of along the
curves ζ and η.

Figure 1: Osculating planes of the curves ζ and η

So we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aT(s) + bN(s), a �= 0, b �= 0, (5)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (5) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 + ȧ − bk0cosα)
1
r

T(s) + (ak0cosα + ḃ)
1
r

N(s) + (ak0sinα + b(−α̇ + 	0))
1
r

B(s), (6)

where r = ds̄
ds

.

We know that B is parallel to B̄, since B⊥ = Sp{T , N} = Sp{T̄ , N̄} = B̄⊥. If we multiply the Eq. (6)
with B, we get

(ak0sinα + b(−α̇ + 	0))
1
r

= 0 or ak0sinα + b(−α̇ + 	0) = 0.

And so, we have

T̄(s̄) = (1 + ȧ − bk0cosα)
1
r

T(s) + (ak0cosα + ḃ)
1
r

N(s). (7)

By using Eq. (7), we can set

T̄(s̄) = cos ψ(s)T(s) + sin ψ(s)N(s),
N̄(s̄) = − sin ψ(s)T(s) + cos ψ(s)N(s),

(8)

where ψ is smooth angle function between T and T̄ on I and

cos ψ(s) = (1 + ȧ − bk0cosα)
1
r

, (9)

sin ψ(s) = (ak0cosα + ḃ)
1
r

. (10)
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By using the Eqs. (9) and (10), we obtain

r =
√

(1 + ȧ − bk0cosα)
2 + (ak0cosα + ḃ),

2

and

bk0 cos α − ȧ + cot ψ(ak0 cos α + ḃ) = 1.

Calculating the dot-derivative of the Eq. (8) with the help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄ + k̄0 sin ᾱB̄) =(−ψ̇ sin ψ − sin ψk0 cos α)T

+ (cos ψk0 cos α + ψ̇ cos ψ)N

+ (cos ψk0 sin α + sin ψ(−α̇ + 	0))B. (11)

If we multiply the Eq. (11), with N̄ and B̄, respectively, we get

rk̄0 cos ᾱ = ψ̇ + k0 cos α, (12)

rk̄0 sin ᾱ = cos ψk0 sin α + sin ψ(−α̇ + 	0). (13)

By using Eqs. (12) and (13), we obtain

ψ̇ + k0 cos α − cot ᾱ(cos ψk0 sin α + sin ψ(−α̇ + 	0)) = 0.

Thus we introduce the following theorem:

Theorem 3.1. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The osculating planes of these curves coincide if and only if there
exist real valued non-zero functions a and b on I , such that

ak0sinα + b(−α̇ + 	0) = 0, (i)

(1 + ȧ − bk0cosα)
2 + (ak0cosα + ḃ)

2 �= 0, (ii)

bk0 cos α − ȧ + cot ψ(ak0 cos α + ḃ) = 1, (iii)

ψ̇ + k0 cos α − cot ᾱ(cos ψk0 sin α + sin ψ(−α̇ + 	0)) = 0. (iv)

where ψ is the angle between T and T̄ at the corresponding points of ζ and η.

Case 2: We assume that, osculating plane of the curve ζ is the normal plane of the curve η, that
is Sp{T , N} = Sp{N̄, B̄}. As in Fig. 2, this relationship exists at the corresponding points of along the
curves ζ and η.

Thus, we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aT(s) + bN(s), a �= 0, b �= 0, (14)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (14) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 + ȧ − bk0cosα)
1
r

T(s) + (ak0cosα + ḃ)
1
r

N(s) + (ak0sinα + b(−α̇ + 	0))
1
r

B(s), (15)
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where r = ds̄
ds

.

Figure 2: Osculating plane of the curve ζ and normal plane of the curve η

We know that B is parallel to T̄ , since B⊥ = Sp{T , N} = Sp{N̄, B̄} = T̄⊥. If we multiply the
Eq. (15) with T , N and B, respectively, we get

1 + ȧ − bk0cosα = 0,

ak0cosα + ḃ = 0,

ak0sinα + b(−α̇ + 	0) = r.

And so, we have the equation T̄(s̄) = B(s). If we calculate the dot-derivative of this equation with
the help of Eqs. (3) and (4), we get

r(k̄0cosᾱN̄ + k̄0sinᾱB̄) = (α̇ − 	0)N − k0sinαT . (16)

If we multiply the Eq. (16) with N̄ and B̄, respectively, we get

rk̄0cosᾱ = sin ψ(α̇ − 	0) − cosψk0sinα, (17)

rk̄0sinᾱ = cos ψ(α̇ − 	0) + sinψk0sinα, (18)

where ψ is the smooth angle function between T and N̄. By using the Eqs. (17) and (18), we obtain

cotᾱ = sin ψ(α̇ − 	0) − cosψk0sinα

cos ψ(α̇ − 	0) + sinψk0sinα

that is

sin ψ(α̇ − 	0) − cosψk0sinα − cotᾱ(cos ψ(α̇ − 	0) + sinψk0sinα) = 0.

Thus we introduce the following theorem:

Theorem 3.2. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The osculating plane of the curve ζ and the normal plane of the
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curve η coincide if and only if there exist real valued non-zero functions a and b on I , such that:

1 + ȧ − bk0 cos α = 0, (i)

ak0 cos α + ḃ = 0, (ii)

ak0 sin α + b(−α̇ + 	0) �= 0, (iii)

sin ψ(α̇ − 	0) − cos ψk0 sin α − cot ᾱ(cos ψ(α̇ − 	0) + sin ψk0 sin α) = 0, (iv)

where ψ is the angle between T and N̄ at the corresponding points of ζ and η.

Case 3: We assume that, osculating plane of the curve ζ is the rectifying plane of the curve η, that
is Sp{T , N} = Sp{T̄ , B̄}. As in Fig. 3, this relationship exists at the corresponding points of along the
curves ζ and η.

Figure 3: Osculating plane of the curve ζ and rectifying plane of the curve η

Thus, we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aT(s) + bN(s), a �= 0, b �= 0, (19)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (19) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 + ȧ − bk0cosα)
1
r

T(s) + (ak0cosα + ḃ)
1
r

N(s) + (ak0sinα + b(−α̇ + 	0))
1
r

B(s), (20)

where r = ds̄
ds

.

We know that B is parallel to N̄, since B⊥ = Sp{T , N} = Sp{T̄ , B̄} = N̄⊥. If we multiply the
Eq. (20) with B, we get

(ak0sinα + b(−α̇ + 	0))
1
r

= 0 or ak0sinα + b(−α̇ + 	0) = 0.

And so, we have

T̄(s̄) = (1 + ȧ − bk0cosα)
1
r

T(s) + (ak0cosα + ḃ)
1
r

N(s). (21)

By Eq. (21), we can set

T̄(s̄) = cos ψ(s)T(s) + sin ψ(s)N(s),
B̄(s̄) = − sin ψ(s)T(s) + cos ψ(s)N(s),

(22)
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where ψ is smooth angle function between T and T̄ on I and

cos ψ(s) = (1 + ȧ − bk0cosα)
1
r

, (23)

sin ψ(s) = (ak0cosα + ḃ)
1
r

. (24)

By using the Eqs. (23) and (24), we obtain

r =
√

(1 + ȧ − bk0cosα)
2 + (ak0cosα + ḃ)

2

and

bk0 cos α − ȧ + cot ψ(ak0 cos α + ḃ) = 1.

Calculating the dot-derivative of the Eq. (22) with the help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄ + k̄0 sin ᾱB̄) = (−ψ̇ sin ψ − sin ψk0 cos α)T

+ (cos ψk0 cos α + ψ̇ cos α)N

+ (cos ψk0 sin α + sin ψ(−ᾱ + 	0))B. (25)

If we multiply the Eq. (25), with N̄ and B̄, respectively, we get

rk̄0 cos ᾱ = cos ψk0 sin α + sin ψ(−α̇ + 	0), (26)

rk̄0 sin ᾱ = ψ̇ + k0 cos α. (27)

By using Eqs. (26) and (27), we obtain

cos ψk0 sin α + sin ψ(−α̇ + 	0) − cot ᾱ(ψ̇ + k0 cos α) = 0.

Thus we introduce the following theorem:

Theorem 3.3. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The osculating plane of the curve ζ and the rectifying plane of the
curve η coincide if and only if there exist real valued non-zero functions a and b on I , such that

ak0sinα + b(−α̇ + 	0) = 0, (i)

(1 + ȧ − bk0cosα)
2 + (ak0cosα + ḃ)

2 �= 0, (ii)

bk0 cos α − ȧ + cot ψ(ak0 cos α + ḃ) = 1, (iii)

cos ψk0 sin α + sin ψ(−α̇ + 	0) − cot ᾱ(ψ̇ + k0 cos α) = 0, (iv)

where ψ is the angle between T and T̄ at the corresponding points of ζ and η.

Case 4: We assume that, normal plane of the curve ζ is the osculating plane of the curve η, that
is Sp{N, B} = Sp{T̄ , N̄}. As in Fig. 4, this relationship exists at the corresponding points of along the
curves ζ and η.
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Figure 4: Normal plane of the curve ζ and osculating plane of the curve η

So we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aN(s) + bB(s), a �= 0, b �= 0, (28)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (28) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 − ak0cosα − bk0 sin α)
1
r

T(s) + (ȧ + b(α̇ − 	0))
1
r

N(s) + (a(−α̇ + 	0) + ḃ)
1
r

B(s), (29)

where r = ds̄
ds

.

We know that T is parallel to B̄, since T⊥ = Sp{N, B} = Sp{T̄ , N̄} = B̄⊥. If we multiply the
Eq. (29) with T , we get

(1 − ak0cosα − bk0 sin α)
1
r

= 0 or ak0cosα + bk0 sin α = 1.

And so, we have

T̄(s̄) = (ȧ + b(α̇ − 	0))
1
r

N(s) + (a(−α̇ + 	0) + ḃ)
1
r

B(s). (30)

By the Eq. (30), we can set

T̄(s̄) = cos ψ(s)N(s) + sin ψ(s)B(s),
N̄(s̄) = − sin ψ(s)N(s) + cos ψ(s)B(s),

(31)

where ψ is smooth angle function between T̄ and N on I and

cos ψ(s) = (ȧ + b(α̇ − 	0))
1
r

, (32)

sin ψ(s) = (a(−α̇ + 	0) + ḃ)
1
r

. (33)

By using Eqs. (32) and (33), we obtain

r =
√

(ȧ + b(α̇ − 	0))
2 + (a(−α̇ + 	0) + ḃ)

2

and

ȧ + b(α̇ − 	0) + cot ψ(a(−α̇ + 	0) + ḃ) = 0.
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Calculating the dot-derivative of the Eq. (31) with the help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄ + k̄0 sin ᾱB̄) = (− cos ψk0 cos α − sin ψk0 sin α)T

+ (−ψ̇ sin ψ + sin ψ(α̇ − 	0))N

+ (cos ψ(−α̇ + 	0) + ψ̇ cos ψ)B. (34)

If we multiply the Eq. (34), with N̄ and B̄, respectively, we get

rk̄0 cos ᾱ = ψ̇ + (−α̇ + 	0), (35)

rk̄0 sin ᾱ = − cos ψk0 cos α − sin ψk0 sin α. (36)

By using Eqs. (35) and (36), we obtain

ψ̇ + (−α̇ + 	0) + cot ᾱk0 cos(ψ − α) = 0.

Thus we introduce the following theorem:

Theorem 3.4. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The normal plane of the curve ζ and the osculating plane of the
curve η coincide if and only if there exist real valued non-zero functions a and b on I , such that

ak0cosα + bk0 sin α = 1, (i)

(ȧ + b(α̇ − 	0))
2 + (a(−α̇ + 	0) + ḃ)

2 �= 0, (ii)

ȧ + b(α̇ − 	0) + cot ψ(a(−α̇ + 	0) + ḃ) = 0, (iii)

ψ̇ + (−α̇ + 	0) + cot ᾱk0 cos(ψ − α) = 0, (iv)

where ψ is the angle between T̄ and N at the corresponding points of ζ and η.

Case 5: We assume that, normal plane of the curve ζ is the normal plane of the curve η, that is
Sp{N, B} = Sp{N̄, B̄}. As in Fig. 5, this relationship exists at the corresponding points of along the
curves ζ and η.

Figure 5: Normal planes of the curves ζ and η
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Thus, we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aN(s) + bB(s), a �= 0, b �= 0, (37)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (37) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 − ak0cosα − bk0 sin α)
1
r

T(s) + (ȧ + b(α̇ − 	0))
1
r

N(s) + (a(−α̇ + 	0) + ḃ)
1
r

B(s), (38)

where r = ds̄
ds

.

We know that T is parallel to T̄ , since T⊥ = Sp{N, B} = Sp{N̄, B̄} = T̄⊥. If we multiply the
Eq. (38) with T , N and B, respectively, we get

ak0 cos α + bk0 sin α = 1 − r,

ȧ + b(α̇ − 	0) = 0,

a(−α̇ + 	0) + ḃ = 0.

And so, we have the equation T̄ = T . If we calculate the dot-derivative of this equation with the
help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄ + k̄0 sin ᾱB̄) = k0 cos αN + k0 sin αB. (39)

If we multiply the Eq. (39) with N̄ and B̄, respectively, we get

rk̄0 cos ᾱ = cos ψk0 cos α + sin ψk0 sin α, (40)

rk̄0 sin ᾱ = − sin ψk0 cos α + cos ψk0 sin α, (41)

where ψ is the smooth angle function between N and N̄. By using the Eqs. (40) and (41), we obtain

cot ᾱ = cos ψk0 cos α + sin ψk0 sin α

− sin ψk0 cos α + cos ψk0 sin α

that is

cot ᾱ = cos(ψ − α)

sin(α − ψ)
.

This means that,

α − ψ = ᾱ + kπ , k ∈ Z.

Thus we introduce the following theorem:

Theorem 3.5. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves
with the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional
Lie group G with left-invariant metric. The normal planes of these curves coincide if and only if there



664 CMES, 2022, vol.133, no.3

exist real valued non-zero functions a and b on I , such that:

1 − ak0cosα − bk0 sin α �= 0, (i)

ȧ + b(α̇ − 	0) = 0, (ii)

a(−α̇ + 	0) + ḃ = 0, (iii)

α − ψ = ᾱ + kπ , k ∈ Z, (iv)

where ψ is the angle between N and N̄ at the corresponding points of ζ and η.

Case 6: We assume that, normal plane of the curve ζ is the rectifying plane of the curve η, that
is Sp{N, B} = Sp{T̄ , B̄}. As in Fig. 6, this relationship exists at the corresponding points of along the
curves ζ and η.

Figure 6: Normal plane of the curve ζ and rectifying plane of the curve η

Thus, we have following relations between the curves ζ and η:

η(s̄) = ζ(s) + aN(s) + bB(s), a �= 0, b �= 0, (42)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (42) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 − ak0cosα − bk0 sin α)
1
r

T(s) + (ȧ + b(α̇ − 	0))
1
r

N(s) + (a(−α̇ + 	0) + ḃ)
1
r

B(s), (43)

where r = ds̄
ds

.

We know that T is parallel to N̄, since T⊥ = Sp{N, B} = Sp{T̄ , B̄} = N̄⊥. If we multiply the
Eq. (43) with T , we get

(1 − ak0cosα − bk0 sin α)
1
r

= 0 or ak0cosα + bk0 sin α = 1.

And so, we have

T̄(s̄) = (ȧ + b(α̇ − 	0))
1
r

N(s) + (a(−α̇ + 	0) + ḃ)
1
r

B(s). (44)

By the Eq. (44), we can set

T̄(s̄) = cos ψ(s)N(s) + sin ψ(s)B(s),
B̄(s̄) = − sin ψ(s)N(s) + cos ψ(s)B(s),

(45)
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where ψ is smooth angle function between T̄ and N on I and

cos ψ(s) = (ȧ + b(α̇ − 	0))
1
r

, (46)

sin ψ(s) = (a(−α̇ + 	0) + ḃ)
1
r

. (47)

By using Eqs. (46) and (47), we obtain

r =
√

(ȧ + b(α̇ − 	0))
2 + (a(−α̇ + 	0) + ḃ)

2

and

ȧ + b(α̇ − 	0) + cot ψ(a(−α̇ + 	0) + ḃ) = 0.

Calculating the dot-derivative of the Eq. (45) with the help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄ + k̄0 sin ᾱB̄) =(− cos ψk0 cos α − sin ψk0 sin α)T

+ (−ψ̇ sin ψ + sin ψ(α̇ − 	0))N

+ (cos ψ(−α̇ + 	0) + ψ̇ cos ψ)B. (48)

If we multiply the Eq. (48), with N̄ and B̄, respectively, we get

rk̄0 cos ᾱ = − cos ψk0 cos α − sin ψk0 sin α, (49)

rk̄0 sin ᾱ = ψ̇ + (−α̇ + 	0). (50)

By using Eqs. (49) and (50), we obtain

k0 cos(ψ − α) + cot ᾱ(ψ̇ + (−α̇ + 	0)) = 0.

Thus we introduce the following theorem:

Theorem 3.6. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The normal plane of the curve ζ and the rectifying plane of the
curve η coincide if and only if there exist real valued non-zero functions a and b on I , such that:

ak0cosα + bk0 sin α = 1, (i)

(ȧ + b(α̇ − 	0))
2 + (a(−α̇ + 	0) + ḃ)

2 �= 0, (ii)

ȧ + b(α̇ − 	0) + cot ψ(a(−α̇ + 	0) + ḃ) = 0, (iii)

k0 cos(ψ − α) + cot ᾱ(ψ̇ + (−α̇ + 	0)) = 0, (iv)

where ψ is the angle between T̄ and N at the corresponding points of ζ and η.

Case 7: We assume that, rectifying plane of the curve ζ is the osculating plane of the curve η, that
is Sp{T , B} = Sp{T̄ , N̄}. As in Fig. 7, this relationship exists at the corresponding points of along the
curves ζ and η.
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Figure 7: Rectifying plane of the curve ζ and osculating plane of the curve η

So we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aT(s) + bB(s), a �= 0, b �= 0, (51)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (51) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 + ȧ − bk0 sin α)
1
r

T(s) + (ak0 cos α + b(α̇ − 	0))
1
r

N(s) + (ak0 sin α + ḃ)
1
r

B(s), (52)

where r = ds̄
ds

.

We know that N is parallel to B̄, since N⊥ = Sp{T , B} = Sp{T̄ , N̄} = B̄⊥. If we multiply the
Eq. (52) with N, we get

(ak0 cos α + b(α̇ − 	0)
1
r

= 0 or ak0 cos α + b(α̇ − 	0) = 0.

And so, we have

T̄(s̄) = (1 + ȧ − bk0 sin α)
1
r

T(s) + (ak0 sin α + ḃ)
1
r

B(s). (53)

By the Eq. (53), we can set

T̄(s̄) = cos ψ(s)T(s) + sin ψ(s)B(s),
N̄(s̄) = − sin ψ(s)T(s) + cos ψ(s)B(s),

(54)

where ψ is smooth function between T and T̄ on I and

cos ψ(s) = (1 + ȧ − bk0 sin α)
1
r

, (55)

sin ψ(s) = (ak0 sin α + ḃ)
1
r

. (56)

By using Eqs. (55) and (56), we obtain

r =
√

(1 + ȧ − bk0 sin α)
2 + (ak0 sin α + ḃ)

2

and

bk0 sin α − ȧ + cot ψ(ak0 sin α + ḃ) = 1.
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Calculating the dot-derivative of the Eq. (54) with the help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄ + k̄0 sin ᾱB̄) =(−ψ̇ sin ψ − sin ψk0 sin α)T

+(cos ψk0 cos α + sin ψ(α̇ − 	0))N

+(cos ψk0 sin α + ψ̇ cos ψ)B. (57)

If we multiply the Eq. (57) with N̄ and B̄, respectively, we get

rk̄0 cos ᾱ = ψ̇ + ko sin α, (58)

rk̄0 sin ᾱ = cos ψk0 cos α + sin ψ(α̇ − 	0). (59)

By using Eqs. (58) and (59), we obtain

ψ̇ + ko sin α − cot ᾱ(cos ψk0 cos α + sin ψ(α̇ − 	0)) = 0.

Thus we introduce the following theorem:

Theorem 3.7. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The rectifying plane of the curve ζ and the osculating plane of the
curve η coincide if and only if there exist real valued non-zero functions a and b on I , such that:

ak0 cos α + b(α̇ − 	0) = 0, (i)

(1 + ȧ − bk0 sin α)
2 + (ak0 sin α + ḃ)

2 �= 0, (ii)

bk0 sin α − ȧ + cot ψ(ak0 sin α + ḃ) = 1, (iii)

ψ̇ + ko sin α − cot ᾱ(cos ψk0 cos α + sin ψ(α̇ − 	0)) = 0, (iv)

where ψ is the angle between T and T̄ at the corresponding points of ζ and η.

Case 8: We assume that, rectifying plane of the curve ζ is the normal plane of the curve η, that
is Sp{T , B} = Sp{N̄, B̄}. As in Fig. 8, this relationship exists at the corresponding points of along the
curves ζ and η.

Figure 8: Rectifying plane of the curve ζ and normal plane of the curve η



668 CMES, 2022, vol.133, no.3

Thus, we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aT(s) + bB(s), a �= 0, b �= 0, (60)

where a and b are real valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (60) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 + ȧ − bk0 sin α)
1
r

T(s) + (ak0 cos α + b(α̇ − 	0))
1
r

N(s) + (ak0 sin α + ḃ)
1
r

B(s), (61)

where r = ds̄
ds

.

We know that N is parallel to T̄ , since N⊥ = Sp{T , B} = Sp{N̄, B̄} = T̄⊥. If we multiply the
Eq. (61) with T , N and B, respectively, we get

bk0 sin α − ȧ = 1,

ak0 cos α + b(α̇ − 	0) = r,

ak0 sin α + ḃ = 0.

And so, we have the equation T̄(s̄) = N(s). If we calculate the dot derivative of this equation with
the help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄) + k̄0 sin ᾱB̄) = (−α̇ + 	0)B − k0 cos αT . (62)

If we multiply the Eq. (62) with N̄(s̄) and B̄(s̄), respectively, we get

rk̄0 cos ᾱ = sin ψ(−α̇ + 	0) − cos ψk0 cos α, (63)

rk̄0 sin ᾱ = cos ψ(−α̇ + 	0) + sin ψk0 cos α, (64)

where ψ is the smooth angle function between the T and N̄. By using Eqs. (63) and (64), we obtain

cot ᾱ = sin ψ(−α̇ + 	0) − cos ψk0 cos α

cos ψ(−α̇ + 	0) + sin ψk0 cos α

that is

sin ψ(−α̇ + 	0) − cos ψk0 cos α − cot ᾱ(cos ψ(−α̇ + 	0) + sin ψk0 cos α) = 0.

Thus we introduce the following theorem:

Theorem 3.8. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The rectifying plane of the curve ζ and the normal plane of the
curve η coincide if and only if there exist real valued non-zero functions a and b on I , such that

bk0 sin α − ȧ = 1, (i)

ak0 cos α + b(α̇ − 	0) �= 0, (ii)

ak0 sin α + ḃ = 0, (iii)

sin ψ(−α̇ + 	0) − cos ψk0 cos α − cot ᾱ(cos ψ(−α̇ + 	0) + sin ψk0 cos α) = 0, (iv)

where ψ is the angle between T and N̄ at the corresponding points of ζ and η.
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Case 9: We assume that, rectifying plane of the curve ζ is the rectifying plane of the curve η, that
is Sp{T , B} = Sp{T̄ , B̄}. As in Fig. 9, this relationship exists at the corresponding points of along the
curves ζ and η.

Figure 9: Rectifying planes of the curves ζ and η

Thus, we have following relation between the curves ζ and η:

η(s̄) = ζ(s) + aT(s) + bB(s), a �= 0, b �= 0, (65)

where a and b are real-valued non-zero functions of s.

Calculating the dot-derivative of the Eq. (65) with the help of Eqs. (3) and (4), we get

T̄(s̄) = (1 + ȧ − bk0 sin α)
1
r

T(s) + (ak0 cos α + b(α̇ − 	0))
1
r

N(s) + (ak0 sin α + ḃ)
1
r

B(s), (66)

where r = ds̄
ds

.

We know that N is parallel to N̄, since N⊥ = Sp{T , B} = Sp{T̄ , B̄} = B̄⊥. If we multiply the
Eq. (66) with N, we get

(ak0 cos α + b(α̇ − 	0)
1
r

= 0 or ak0 cos α + b(α̇ − 	0) = 0.

And so, we have

T̄(s̄) = (1 + ȧ − bk0 sin α)
1
r

T(s) + (ak0 sin α + ḃ)
1
r

B(s) (67)

By the Eq. (67), we can set

T̄(s̄) = cos ψ(s)T(s) + sin ψ(s)B(s),
B̄(s̄) = − sin ψ(s)T(s) + cos ψ(s)B(s),

(68)

where ψ is smooth angle function between T and T̄ on I and

cos ψ(s) = (1 + ȧ − bk0 sin α)
1
r

, (69)

sin ψ(s) = (ak0 sin α + ḃ)
1
r

. (70)

By using Eqs. (69) and (70), we obtain

r =
√

(1 + ȧ − bk0 sin α)
2 + (ak0 sin α + ḃ)

2
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and

bk0 sin α − ȧ + cot ψ(ak0 sin α + ḃ) = 1.

Calculating the dot-derivative of the Eq. (68) with the help of Eqs. (3) and (4), we get

r(k̄0 cos ᾱN̄ + k̄0 sin ᾱB̄) =(−ψ̇ sin ψ − sin ψk0 sin α)T

+(cos ψk0 cos α + sin ψ(α̇ − 	0))N

+(cos ψk0 sin α + ψ̇ cos ψ)B. (71)

If we multiply the Eq. (71) with N̄ and B̄, respectively, we get

rk̄0 cos ᾱ = cos ψk0 cos α + sin ψ(α̇ − 	0), (72)

rk̄0 sin ᾱ = ψ̇ + ko sin α. (73)

By using Eqs. (72) and (73), we obtain

cos ψk0 cos α + sin ψ(α̇ − 	0) − cot ᾱ(ψ̇ + ko sin α) = 0.

Thus we introduce the following theorem:

Theorem 3.9. Let ζ : I ⊆ R → G and η : Ī ⊆ R → G be two arc-length parametrized curves with
the Frenet apparatus {T , N, B, k0, 	0, α} and {T̄ , N̄, B̄, k̄0, 	̄0, ᾱ}, respectively, in three dimensional Lie
group G with left-invariant metric. The rectifying planes of these curves coincide if and only if there
exist real valued non-zero functions a and b on I , such that

ak0 cos α + b(α̇ − 	0) = 0, (i)

(1 + ȧ − bk0 sin α)
2 + (ak0 sin α + ḃ)

2 �= 0, (ii)

bk0 sin α − ȧ + cot ψ(ak0 sin α + ḃ) = 1, (iii)

cos ψk0 cos α + sin ψ(α̇ − 	0) − cot ᾱ(ψ̇ + ko sin α) = 0, (iv)

where ψ is the angle between T and T̄ at the corresponding points of ζ and η.

4 Conclusions

It is well known that every smooth curves have a moving Frenet frame. This paper examines
the relations between Frenet planes of two smooth curves in three dimensional Lie groups with left-
invariant metric. There are nine possible relations that can occur. For each cases, we give conditions
by nine theorems as above. These results are generalizations for relations between Frenet planes of
two curves in three dimensional Euclidean spaces. By the paper’s results, one will be able to investigate
of special curve couples in three-dimensional Lie groups with left-invariant metric and correlate their
results.
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