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ABSTRACT

In recent years, the Internet of Things (IoT) technology has been considered one of the most attractive fields for
researchers due to its aspirations and implications for society and life as a whole. The IoT environment contains
vast numbers of devices, equipment, and heterogeneous users who generate massive amounts of data. Furthermore,
things’ entry into and exit from IoT systems occur dynamically, changing the topology and content of IoT networks
very quickly. Therefore, managing IoT environments is among the most pressing challenges. This paper proposes
an adaptive and dynamic scheme for managing IoT environments is proposed. This management scheme depends
on the use of previous management methodologies, considering two main factors. The first factor is network
status, which is determined in real-time. The second factor is a management method’s suitability according to
its desired administration. To test the proposed management scheme, a simulation environment is created using
NS3. The metrics used to measure the management scheme performance are bandwidth consumption, energy
consumption, packet loss, throughput, delay, usage rate of individual management techniques, and transformation.
The simulation results prove that the proposed management scheme outperformed the individual 6LowPAN-
SNMP, CoAP, and LWM2M management schemes.
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1 Introduction

Network management has become a necessity for all network systems because this management
provides multiple methods to monitor network performance, detect faults, gather information about
a network, control its operations, as well as other functions. The network management process
generally requires a set of methods and protocols that support all types of networks and their
components in addition to allowing exchanges of information between managers and agents. Due to
great developments and diversity in communication devices and network systems, as well as an increase
in internet speed and availability in most places, networks’ components and characteristics may have
changed rapidly in terms of storage, processing capabilities, power consumption, number of users,
types of devices, and other elements. Devices in network management are classified as unconstrained
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or constrained. Unconstrained devices do not have any restrictions that limit their processing, such
as power and storage resources, and these devices are usually found in traditional networks that are
typically managed—such as routers, switches, and servers. Constrained devices have limited resources,
such as peripherals, sensors, and mobile devices. There are many types of network management—such
as performance, security, and configuration—which must be highly accurate and operate smoothly
with heterogeneous technologies and network components [1–4].

Recently, a new technology called the internet of things (IoT) has been developed. The IoT
environment contains billions of different nodes and users in addition to heterogeneous networks.
Also, it incorporates different techniques into databases, computations, and equipment. The network
management success factors in any environment lie in a network ability to deal with heterogeneous
components. Therefore, creating a complete network management system in an IoT environment that
relies primarily on different technologies is among the most important challenges. Configuration,
authentication, monitoring, maintenance, and provisioning are considered the tasks of IoT manage-
ment devices [5–7].

There are two options with which to address the network management challenge in the IoT
environment. The first option is to create an integrated network management model that considers
all the complex characteristics of IoT environments. This option is difficult (if not impossible) due to
such environments changing and escalating complexity. The second option is to use a set of available
network management methods, one of which is applied according to a network status and user needs.
Therefore, this paper’s motivation is to propose a scheme with which to measure network performance
metrics in real-time and compare these performance metrics with the approximated requirements
of corresponding metrics of available management methods. Next, a suitable management method
is selected after considering the primary management targets for the IoT environment, such as
performance enhancement and security guarantee. Hence, the proposed management scheme will be
able to deal with all IoT cases by choosing an optimal management technique and synthesizing it
according to the network condition in real-time, which will positively affect the performance of the
IoT system.

The paper offers the following contributions:

• It proposes a network management scheme to select the most suitable network management
methodology for the IoT environment.

• It simulates an IoT environment to test the proposed management scheme.

• It presents and discusses the simulation results.

The remainder of this paper is structured as follows. Section 2 introduces the paper-related works.
Section 3 demonstrates and discusses the proposed management scheme. Section 4 introduces the
simulation environment structure. Section 5 presents and discusses the simulation results. Finally,
Section 6 presents this paper’s conclusion and its future work.

2 Related Works

The researches related to the paper are summarized as follows: Ramírez et al. [8] proposed
a management system for IoT environments based on artificial intelligence (AI). This system is
centralized and based on machine learning. The proposed system has mainly been used for resource
discovery and allocation. Its main weakness is its performance measurement. Kamienski, introduced
a management framework for context life cycles. This framework is used by administrators and
developers to harness the wealth of information generated by IoT systems. Its main weaknesses are
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its performance measurement and its neglect of the IoT real-time status [9]. Novo, introduced a
management system for IoT environments. This system has been distributed and used for security
issues. It uses blockchain technology. The system’s main weakness is its neglect of IoT environment
statuses [10]. Wu et al. [11] proposed an overlay structure based on distributed hashing technology.
This structure has been used to control scalability, load balance, and fault tolerance issues. However,
this simulation infrastructure did not represent the scalability issue accurately, so its results cannot
be considered for large-scale IoT environments. Chen et al. [12] presented a protocol to manage
large-scale cloud IoT systems. It permits users to submit their experiences with IoT systems’ services.
This protocol simulation results are insufficient due to a lack of IoT representation and performance
metrics’ measurement. Manogaran et al. [13] developed a management scheme for IoT data handling
to extract user requests that are interpreted incorrectly. This management model uses machine learning
technology, but it has inaccurate proof. Bashir et al. proposed a meta-model to manage big data in IoT
environments. Their meta-model has facilitated cooperation between big-data management models
and analytics ecosystems in smart environments. This model did not consider other big-data effects
on IoT systems, such as storage, processing, and transmission [14]. Zhang et al. [15] introduced a
model that reflects the role of green energy in addition to smart electrical grids. This model has been
used for energy management by mapping link costs with utility functions of energy consumption. The
experiments used to prove this claim were insufficient. Murugesan et al. [16] introduced a management
framework for garbage monitoring in a smart-city, IoT-based system. This framework aims to save
human effort, time, and charges. The framework implementation has faced many shortages, such as
the number of nodes in the IoT system. Narang et al. [17] introduced a management model for IoT
social networks. This model is based on both device intelligence and human intelligence. Additionally,
it uses a mixture of dynamic and static graphs. This framework is considered a particular purpose.
Rahman [18] presented a deep-learning-based architecture for a waste-management IoT system. It
uses a microcontroller and sensors for intelligent trash bin management. Its performance metrics are
insufficient because they only measure accuracy, and real-time metrics are not calculated. Eghbali
et al. [19] introduced an approach to accelerate the management process between devices and clusters
in IoT environments. This approach focuses on the load balancing issue. The experiments used to
test the performance of this approach were inaccurate due to insufficient IoT parameters. Their
simulation results were based on inaccurate environment representation. Kim et al. [20] presented
a new active queue management (AQM) approach for fog/edge nodes. These algorithms are self-
learning. They achieved a trade-off between throughput and queuing delays. The simulation results
of these algorithms are considered inaccurate due to their weak IoT representation. Shayesteh et al.
considered a monitoring service by proposing a hybrid trust computation scheme based on Bayesian
learning. Their simulation experiments require enhancement because IoT networks’ real-time status
was not considered [21]. Alelaiwi [22] introduced a cloud confederation model that determines the best
choices for cloud providers. Also, they demonstrated a multi-objective optimization model to select the
ideal cloud. This model’s main weakness is its neglect of other IoT aspects, such as security. Alshehri
et al. proposed a fuzzy-logic-based model to detect contradictory behavior attacks and malicious
nodes. Moreover, they introduced a secure message system. This model is considered a special-purpose
solution [23]. Jeong et al. [24] proposed another data management model related to IoT security issues.
This model is based on blockchain technology. Antunes et al. [25] presented a management platform
for IoT devices. It operated locally and globally in addition to managing computing issues in an
IoT environment. The model’s primary deficiency is that its performance evaluation lacked accuracy.
Taneja et al. [26] introduced a management model for fog computing assistance in IoT systems to
analyze animal behavior. The model implementation did not consider the different networks that may
be found in an IoT system.



676 CMES, 2022, vol.133, no.3

According to the discussion above, the works related to the current research topic have two
major weaknesses. The first weakness is neglecting the status of IoT networks when applying a
management methodology. Thus, a management methodology may itself represent an overhead in
the IoT system. The second weakness is testing proposed solutions’ performance based on inaccurate
representations of IoT environments that do not reflect such environments’ specifications, such as their
scalability, heterogeneous components, and large-scale communication systems. In addition, minor
works related to this paper have other specific weaknesses. Therefore, a network management model
for IoT environments is proposed. This management model avoids the related work defects that are
mentioned above.

3 Proposed Management Scheme

The first sub-section of the current section discusses this proposed management scheme for IoT
environments. The second sub-section presents a mathematical analysis.

3.1 Proposed Scheme Description
The proposed management scheme comprises four layers. The first layer is called “gather,” and

it is used to determine and collect network management parameters, such as delays, packet loss
ratios, and throughput. The collection process is achieved in real-time using monitor agents’ systems
[27,28] because the parameters of the IoT environment may change periodically. The “gather” layer
is represented as a group of agents collecting and sending data to the lower layer. The second layer is
called “evaluation”, and it is used to analyze network parameters to determine the network status. It is
represented as a neural network that takes the output of the “gather” layer as the input for the neural
network layer and transforms it into quantitative values, which represent the output of the last layer
in this neural network. Several layers are determined between the input and output depending on the
neural network model used. The third layer of the proposed management scheme is called “selection”.
This layer takes the output of the “evaluation” layer and determines the suitable network management
technique, considering the most urgently required management target (i.e., security, quality of services
(QoS), etc.). This layer is represented using smart agents. The fourth layer is called “adaptation”.
This layer is used to adapt the selected network management methodology accomplished by the
“selection” layer. In network bottlenecks or starvation cases, a new version will be generated from
the originally selected method. The adaptation process is simply achieved by deleting some functions
or fields and controlling the management process, such as sending or receiving messages (numbers
or times), provided that the new version has not negatively affected the original version’s general
efficiency. This layer is represented using a mapping process between the network status and the
required parameters for network management methodologies. Fig. 1 demonstrates an overall view of
the proposed management scheme. Fig. 2 shows the flow of processes in the proposed management
scheme.
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Figure 1: An overall view of the proposed management scheme

3.1.1 Gather Layer

The “gather” layer collects information from different networks in an IoT environment. This
information pertains to the predetermined performance metrics. Each IoT performance metric
corresponds with an importance level. This level changes periodically, according to the current
IoT status. For example, when the data type that is exchanged through the IoT environment is
multimedia, the delay performance metric will have a first importance level. This ranking is explained
by multimedia data having a high sensitivity to delays. The prioritization process of the performance
metrics is determined using the technique stated by [29]. Each agent is responsible for gathering
information about a performance metric. The agent stores its data in a storage medium (database).
These agents communicate with each other so that, in the case of any agent failure, an agent will
be replaced by an alternative agent. Additionally, the database used to store the IoT performance
metric values is distributed. The layer agents (local agents) communicate with a general agent (or
multiple general agents) that collects the performance metrics’ values and stores them in a database or
multiple databases. The communication between local agents and general agents is achieved through
management messages using three types of states. The first state is called “regular”, and it reflects the
value of an agent performance metric and stores this value in its database. The second state is called
“request/reply”, which allows the general agent to request one specific performance metric value from
an agent at a time. The third state is called “sudden”, and it allows the local agent to send a value for
a specific performance metric in the case of an extreme change in its value. The number of messages
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for the three states may increase or decrease according to the status of the network(s) (i.e., in the case
of bottlenecks, the number of management messages decreases, based on the performance metrics’
importance levels), see Fig. 3.

Figure 2: The flow of processes in the proposed management scheme
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Figure 3: An overall view of the “gather” layer processes

The agent structure consists of four main modules. The first module is used to detect the data type.
The second module is used to detect the performance metric type. The third module is used to detect
the importance level of the intended performance metric. The fourth module is used to detect the value
of its performance metric. The agent in the proposed scheme is autonomous. In an IoT environment,
things are organized into clusters. A sufficient number of agents supports each cluster. These agents
are used to monitor the cluster performance metrics in real-time. Each agent’s work should be done
according to one of two ideas. In the first idea, each agent is installed on a monitor host. Hence,
it directly acquires the value of its performance metric periodically. In the second idea, the agent is
installed on each host in the cluster. Therefore, each agent receives the required data, which is used
to calculate its performance metric values. After that, each agent sends the acquired (or calculated)
values to the upper-layer agent. The number of things in each cluster is determined depending on their
types, and the distance between them. Moreover, the number of agents in each cluster is determined
depending on the agent work idea that will be implemented in that cluster. The number of agents’
layers is determined depending on the cluster size. The higher layer(s) (i.e., the second layer after the
local agents’ layer) is responsible for collecting and organizing the performance metrics’ values. Then,
it sends these values to the second layer in the proposed management scheme. As stated above, the
IoT environment comprises different networks. Therefore, each agent adapts the method that will
be used to calculate its assigned performance metric. The importance of each performance metric is
determined by the system administrator(s) and saved in a simple file. Therefore, each agent connects
to the importance file to be up-to-date in case of an importance level change, see Fig. 4.

3.1.2 Evaluation Layer

The “evaluation” layer collects the values from the general agents in the first layer. These values
are entered as inputs into the neural network model. The neural network model analyzes the general
agents’ values and predicts the output. The neural network comprises four layers. The first layer
takes the output of the general agents found in the first layer. The second layer classifies the QoS
parameters according to the network type. Since the IoT environment comprises different networks,
these metrics may differ from one network to another. Therefore, the second layer should deal with
each parameter according to its network to produce an accurate prediction. The IoT environment
may comprise wireless sensor network (WSN), radio frequency identification (RFID), mobile ad-
hoc network (MANET), and cellular. Delays in WSN are calculated with different methods than
other networks (RFID, MANET, and cellular), see Fig. 5. The third layer is used to predict the QoS
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parameter according to the network type. The fourth layer is used to predict the QoS parameters
for the entire IoT system. Therefore, the output of the second layer in the proposed management
scheme determines the QoS parameters accurately. The full description of the neural network and its
mathematical analysis have been stated by [30,31].

Figure 4: A specific view of the interaction between local and general agents

For more clarification, the prediction layer in the neural network is described. It works as
follows: the features of the IoT environment are extracted. These features include things’ specifications
(hardware and software), specifications of the network on which these things are located, services
that are provided to these things in a specific region, and specifications of their coverage tool. These
features are classified into two groups: general and special. The general features are network and
coverage tool specifications. The special features are the things’ specifications and their provided
services. The features of things, networks, services, and coverage tools are clustered individually. As
the characteristics of the IoT environment change fast and dynamically, the above features may be
changed periodically. So, the soft cluster technique is used to determine the probability of each thing
being found in a cluster instead of asserting the existence of that thing somewhere and the stability
of its specifications. Hence, fuzzy c-means (FCM) are used to achieve the clustering process for the
extracted features.

There are many overlapped areas, which may result in each cluster. To solve this challenge then,
the futures of the most dominant networks in the cluster are considered. In the absence of a dominant
network (i.e., each network type has the same number of devices in the cluster), the big cluster is divided
into many small clusters and the prediction process will be executed on them. The training process
is executed using datasets, which are extracted in the simulation process, to predict the performance
metrics such as bandwidth consumption, energy consumption, packet loss, throughput, and delay. The
relationship between the general and special features is used in the prediction process. For example,
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things that have the same specifications and are located in the same network type around the central
hub of their cluster are approximately provided with the same services [32]. Moreover, the type of
coverage tool and its features are used to determine the extent to which the QoS of a particular thing
is changed, see Fig. 6.

Figure 5: A simple view of the “evaluation” layer processes

Figure 6: A specific view of the “prediction” layer processes
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3.1.3 Selection Layer

The third layer in the proposed management scheme is called the “selection” layer. It determines
the most suitable network methodology. This selection process depends on three main factors. The
first and second factors are the outputs of the second layer (i.e., predictions of network efficiency and
current network efficiency). The third factor is administrator requirements, including high security or
low delays. This layer function is achieved using an expert system that manages a simple database
system comprising facts and rules that are mapped to define the output (i.e., the most suitable
management technique), such as the system explained by [33], see Fig. 7.
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Figure 7: A simple view of the “selection” layer processes

For more clarification, the expert system is described. The main components of this expert
system are knowledge base and inference engine. The knowledge base comprises the current and
predicted performance metrics in addition to the corresponding required performance metrics,
which are related to the individual management techniques. These performance metrics’ values are
received from the second layer of the proposed management scheme. The results of their experiments
predetermine the required QoSs for each individual management technique. As regards the inference
engine, it is responsible for the main processing functions of the expert system. It comprises the
rules that are used to obtain the most suitable management technique. The elements, which are
used to create the expert system rules, are the coverage tool specs, performance metrics change
rate, network specifications, and managed things specs. Simply, suppose that “CD” represents the
current delay, “PD” represents the predicted delay, and “RD” represents the required delay of the
management technique. (CD, PD) ≈ RD → (W), where “W” is the weight of the delay performance
factor, determined depending on the extent of the convergence between the required and current delays.
The weight of other important metrics is calculated using their specific rules and added to the delayed
weight to extract the general (overall) weight. The weight calculation process considers network type,
coverage tool cost, and the importance of data that is transmitted through the network in the IoT
environment. The general weight of each management technique is calculated. Hence, the management
technique with the highest general weight will be selected, see Fig. 8.
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Figure 8: A specific view of the expert system processes

3.1.4 Adaptation Layer

The adaptation layer is used to adapt the selected management methodology in the case of
sudden changes to network efficiency parameters. As stated above in the introduction section, the IoT
environment includes heterogeneous networks and users, so always guaranteeing QoS may be difficult
(if not impossible). Therefore, using one version of a management methodology in all IoT session times
will achieve poor results. Hence, a network management methodology should have multiple versions.
When a network status is steady, the original version is used, and if the network efficiency changes (i.e.,
its parameters are underestimated), the lighter version will be used. Transforming from the original
version to the lighter version is achieved by neglecting some functions and header fields—provided that
this adaptation process does not negatively affect the entire network efficiency. Simulation experiments
are used to reach the optimal versions from each network management methodology. Additionally, in
the case of a failed adaptation process in a special network management methodology, the original
version and its impact on the network should be considered in the third layer of the proposed
management scheme. For example, Fig. 9 demonstrates the simple network management protocol
(SNMP) GetRequest protocol data unit (PDU) format. This PDU is updated by neglecting some fields,
such as error status and error index (in both request and replay PDUs), or decreasing the number of
variables required by managers, such as in the variable binding field. Also, a light network management
protocol—such as lightweight M2M (LWM2M) or CoAP management interface (CoMI) [4]—can
decrease its overhead by increasing the period between two connective messages, which—in turn—
decreases the number of control messages and decreases the consumption of QoS parameters, such as
energy and bandwidth.
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Figure 9: A simple view of the adaptation layer processes

3.2 Mathematical Analysis
This analysis is based on the mathematical analysis stated by [34]. The set of devices for WSN,

RFID, MANET, and cellular networks was determined using Eqs. (1)–(4), respectively. The set of
computing devices was determined using Eq. (5). The set of links between heterogeneous networks in
the IoT was determined using Eq. (6).

W = {w1, w2, w3, . . . , wn1} (1)

R = {r1, r2, r3, . . . , rn2} (2)

M = {m1, m2, m3, . . . , mn3} (3)

Ce = {ce1, ce2, ce3, . . . , cen4} (4)

C = {c1, c2, c3, . . . , cn5} (5)

L = {Lww, Lrr, Lmm, Lcc, Lwr, Lwm, Lwc, Lrm, Lrc, Lcm} (6)

where: n1, n2, n3, n4, and n5 are the number of devices in WSN, RFID, MANET, cellular, and
computing-center networks, respectively; Lww is WSN-to-WSN links; Lrr is RFID-to-RFID links, Lmm

is MANET-to-MANET links; Lcc is cellular-to-cellular links; Lwr is WSN-to-RFID links; et cetera.
The total amount of data is calculated through a summation of the total data, whether uploaded or
downloaded to or from different types of networks, and it is determined using Eq. (7).

Ti =
n1∑
i=1

Wi +
n2∑
i=1

Ri +
n3∑
i=1

Mi +
n4∑
i=1

Cei (7)

The predicted end-to-end delay is calculated for the uploaded and downloaded data, considering
each computing device’s link bandwidth, communication technology, and capability. εLx,y is the
difference between different links in nature, such as transmission mediums and transmission obstacles.
ϑ determines the queueing methodology used for each network in the IoT environment. The total delay
is determined using Eq. (8).

DPUL/DL =
(

Ti

Ci

+ Ti

BUL/DL
i

+
S∑

i=1

Coi + εLx,y

)
ϑ

(8)

The predicted energy consumption is determined using Eq. (9). This energy consumption calcula-
tion considers: processing, which is a function of computing and the total amount of data, determined
using P (Ci, Ti); communication, which is a function of the links, determined using Co (Li); sent and
received data, which are a function of the total amount of data, determined using S/R (Ti); and
sensing, which is one of the WSN specs, determined using Sen (w).

ECPUL/DL = P (Ci, Ti) + Co (Li) + S/R (Ti) + Sen(w) (9)
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The error percentage of the packet loss is determined using Eq. (10). The predicted packet loss is
determined using Eq. (11).

PLError =
(
(DSent − DReceived)(L,(W ,R,M,CE),D) − PLReal

)
(DSent − DReceived)(L,(W ,R,M,CE),D)

(10)

PLP = Ti − Ti ∗ PLError (11)

The throughput calculation considers the link capacity related to the link type l(i, j), which is
determined using Eq. (12). The real throughput is calculated in Eq. (13) by determining the total data
sent through the flows in each communication link, where APL represents the average path length.
The predicted throughput is determined in Eq. (14), where ε represents the difference between the real
and predicted values.

LCapacity =
∑

l(i,j)∈L

l(i, j) (12)

THReal = LCapacity∑F

i=1 Flowi ∗ APL
(13)

THP = LCapacity∑F

i=1 Flowi ∗ APL
± ε (14)

To determine the suitable management method, based on the current network performance,
therefore, the average of the performance metrics is calculated through the time needed to reach the
steady state at which the performance values seem fixed. Finally, the current performance metrics are
compared with the required performance metrics for each management methodology in Eq. (15), and
the most suitable management methodology is determined in Eq. (16).

Approx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑S,

i=1 (DPUL/DL − DRUL/DL)i/S − MDK , 1 ≤ k � M ≈ ρ1∑S

i=1(ECPUL/DL − ECRUL/DL)i/S − MECK1 ≤ k � M ≈ ρ2∑S

i=1(PLPUL/DL − PLRUL/DL)i/S − MPLK1 ≤ k � M ≈ ρ3∑S

i=1(THPUL/DL − THRUL/DL)i/S − MTHK1 ≤ k � M ≈ ρ4

(15)

EM ≈ Min(ρ1.ρ2, ρ3, ρ4) (16)

4 Simulation Environment

The proposed simulation environment comprises many heterogeneous networks with a large-
scale coverage methodology. The networks represented in this simulation environment are MANET,
cellular, WSN, and RFID. These networks are selected to construct the IoT environment due to
their heterogeneity, in addition to scalability and dynamic change. Each network represents a special
type of things, such as WSN represents sensors, RFID represents passive things, MANET represents
temporally connected things, and cellular networks represent mobile things. The network simulator
NS3 constructs the simulation IoT environment [35]. These networks are represented individually
and in overlapping areas to accurately represent an IoT environment. Individual representation
ensures that the different networks are arranged sequentially. Overlapping areas provide intersections
between the heterogeneous networks whether these intersections are constituted from two or more
networks. The coverage tools that transmit the data from one thing to another are the Internet,
satellite, and high-altitude platform (HAP). Using more than one coverage tool provides the simulation
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environment with scalability and reliability. This scalability means that more and more things can
join the IoT system despite no available internet signal. The environment reliability means that
the data are transmitted through the best channel (in the case of a weak internet signal, another
coverage tool will be used). In the simulation environment, one satellite and two HAPs are used.
Increasing the number of satellites and HAPs used increases the IoT environment’s scalability rate.
More accurately, the internet was selected as the first coverage priority because internet signals have
become available for most things around the world. The HAP coverage tool receives the second
priority, followed by the satellite coverage tool. Communication between heterogeneous networks is
achieved using a tunneling process. The packet for one network is encapsulated within the following
network’s suitable header. Therefore, to measure the proposed management scheme’s efficiency, its
results are compared with other management techniques. These management techniques are LWM2M,
CoAP, and 6LowPAN-SNMP, and they are used according to IoT network types. Simulations of
LWM2M, CoAP, and 6LowPAN-SNMP are found in the works of [36–38]. For each network’s general
parameters and values—in addition to the internet, satellites, and HAPs—see Fig. 10. The dataset,
which is used in the neural network training process, comprises the features of the IoT clusters and
other specifications such as information about service providers, in addition to the previous and
current location coordinates of each thing. The works of [39,40] offered more descriptions of the IoT
simulation environment.
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Type =  Heterogeneous

Data Rate = 2 mbps, 

Sensing Range = 5.4 meters

Power = 145 dBm

Frequency Average = 915 mhz

Type = Heterogeneous
Routers = 2000 mbps, 

Countries = 10

Range of Nodes= 300 to 500 per router

Data Type = Multimedia & Text 

Speed = 10 to 100 MBPS

Figure 10: An overall view of the proposed management scheme
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5 Results and Discussion

The performance metrics used to assess the proposed management scheme were classified into two
groups. The first group was used to measure the overall efficiency of the IoT environment (networks),
and it comprises bandwidth consumption, energy consumption, packet loss, throughput, and delay.
The second group was used especially for the proposed management scheme, and it comprises the use
of techniques and transformation.

The bandwidth consumption performance metric was defined as the bandwidth consumed by
a network management technique within a time interval. This performance metric was measured
by the bandwidth consumed for each packet sent through the simulated IoT environment for each
management technique. These bandwidth values were summed. Fig. 11 presents the simulation’s
bandwidth consumption ratio results as a performance metric. The x-axis denotes the simulation time
divided by 10, and the y-axis denotes the bandwidth consumption percentage for each management
technique. The plot of our proposed management scheme indicates that it consumed the least
bandwidth. The bandwidth consumption ratios for the 6LowPAN-SNMP technique ranked after the
proposed management scheme. Then, the bandwidth consumption ratios for CoAP and LWM2M
management techniques ranked after the 6LowPAN-SNMP technique. This ranking is explained using
the suitable management technique depending on the current network status. The plot of the proposed
management scheme was steady—unlike the other management techniques, which depicted notable
fluctuations. This difference was due to the management techniques individually lacking the required
flexibility to handle bottlenecks that may occur during the transmission channels in IoT environments.

Figure 11: Bandwidth consumption percentage for the used network management techniques

The energy consumption performance metric was defined as the energy consumed by the processes
achieved in the IoT environment for energy-based things. This performance metric was measured
for the studied network management techniques by separately collecting the energy consumption
values from energy-based things for each technique. Fig. 12 shows the energy consumption ratios
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for the proposed and 6LowPAN-SNMP, CoAP, and LWM2M management techniques. The x-axis
denotes the simulation time divided by 10, and the y-axis denotes the 10 average energy consumption
values in joules. At most simulation time points, the proposed management scheme achieved the
lowest energy consumption values compared to the other management schemes. The fluctuations
that appear in the plots were due to sudden events that occurred in the IoT environment, such
as users joining or leaving, data transmission increasing or decreasing, and additions, deletions, or
minimizations of the management processes. The endpoints in the figure plots for the 6LowPAN-
SNMP, CoAP, and LWM2M management techniques were directed upward, and the endpoints for the
proposed management scheme plot were directed downward. This difference means that the proposed
management scheme offers the flexibility to decrease energy consumption if it notably increases.

Figure 12: Energy consumption rates for the proposed management scheme and each network
management technique

The packet loss performance metric was used to determine the entire IoT environment’s efficiency.
This performance metric was measured using the total number of packets sent minus the total
number of packets received. The delayed packets were considered losses. Fig. 13 shows the packet loss
simulation results. The x-axis denotes the simulation time divided by 10 to calculate the average packet
loss ratios for 10 simulation points. The y-axis denotes the packet loss ratios (as a percentage). Notably,
the packet loss ratio for the proposed management scheme was less than the corresponding ratios of
the 6LowPAN-SNMP, CoAP, and LWM2M management techniques. This difference can be explained
by the extent of the proposed management scheme ability to deal with all network cases (starvation,
normal, and excellent) by choosing an optimal management technique and synthesizing it according
to the network condition in real-time, which positively affected the number of lost packets. Conversely,
applying a single network management technique may not sufficiently account for the network status,
which can—in turn—negatively affect lost data rates or the network management processes themselves.
Additionally, and notably in the figure, the plot of the proposed management scheme shows stability
that seems clear compared to the plots of the other network management techniques. This difference
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reveals a sufficiently flexible increase/decrease in complexity for the proposed scheme when applied to
the IoT environment concerning its status.

Figure 13: Packet loss ratios for the proposed management scheme and other management techniques

Throughput was also used as a performance metric to determine the total network efficiency
and ensure that the proposed management scheme did not negatively affect the entire IoT system’s
performance. It was measured by the number of packets received correctly by the destination within
a time interval. Fig. 14 shows the throughput simulation results. The x-axis denotes the simulation
time (minutes). The y-axis denotes the average of throughput (mb) for each management technique.
Noticeably, the average throughput for the proposed management scheme exceeded the corresponding
values of the other management techniques. This difference reflects decreasing data loss ratios and
delays during the application of the proposed management scheme, which positively affected the
throughput values. The other management techniques suffered a high rate of data loss and delays,
especially when they were tested in a correctly and accurately represented IoT environment (i.e., an
IoT environment containing a huge number of things in addition to many bottlenecks that may have
resulted from sudden changes to internet speeds, sending and receiving devices, and heterogeneous
transmission techniques and channels).

End-to-end delay metric was also used to measure the entire performance of the IoT system.
In addition, measurement of this performance metric proves that the proposed management scheme
did not negatively affect the whole IoT system’s efficiency. The end-to-end delay metric considers
processing, queueing, and transmission delays in its measurement. Fig. 15 shows the simulation
results of the end-to-end delay performance metric. The x-axis denotes the simulation time after
its division by 10 to calculate the average end-to-end delay for 10 simulation points. The y-axis
denotes the end-to-end delay for each management technique. Notably, the end-to-end delay values
for the proposed management scheme were less than the corresponding ratios of the 6LowPAN-
SNMP, CoAP, and LWM2M management techniques. This difference is explained by the extent of
the proposed management scheme’s ability to deal with all network cases by choosing an optimal
management technique and synthesizing it according to the network condition in real-time, which
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positively affected the average end-to-end delay. In addition, neglecting the performance changes, such
as those made in the individual network management techniques, may cause severe congestion, which
leads to an increase in delay values. Furthermore, applying multiple network management techniques
may sufficiently account for the network status, which can—in turn—positively affect delay values
or the network management processes themselves. Additionally, and notably in the figure, the plot of
the proposed management scheme shows stability that seems clear compared to the plots of the other
network management techniques. This difference reveals a sufficiently flexible increase or decrease in
complexity of the proposed scheme when applied to the IoT environment concerning its status.

Figure 14: Throughput average for the proposed management scheme and other management
techniques

Figure 15: Delay average for the proposed management scheme and other management techniques
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The special performance metrics of the proposed management scheme showed how many times it
utilized the individual management techniques in addition to the transformation rate between many
versions of each individual management technique. Fig. 16 shows the number of uses for each network
management technique. The x-axis denotes the simulation time divided by 10, and the y-axis denotes
the number of uses for each management technique. The largest average usage number over the
simulation time points corresponded with the 6LowPAN-SNMP technique due to its simplicity and
large bottlenecks in data transmission. CoAP and LWM2M ranked after 6LowPAN-SNMP. Notably,
increases in the use of a network management technique reflected its suitability according to the user
and network requirements.

Figure 16: Number of uses for each management technique

The transformation performance metric showed that the proposed management scheme changed
between many versions of each management technique, depending on the current status of the IoT
networks, which also changed periodically. Fig. 17 shows the transformation between four different
versions of each management technique. The management technique versions were created by reducing
management packet sizes, decreasing the number of sent packets, or updating the management
process—such as by updating agents’ or managers’ activity times. The x-axis denotes simulation
time (minutes), and the y-axis denotes the versions created for each management technique and
the transformation between them. This performance metric showed that the proposed management
scheme was sufficiently elastic to face fluctuations and sudden changes that may occur in the IoT
environment.
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Figure 17: Transformations between versions of each management technique

6 Conclusion

This paper has proposed a management scheme for IoT environments. The basic rationale for the
proposed scheme was based on the use of multiple techniques to manage the IoT environment. The
selection and changing processes of management techniques were achieved according to IoT networks’
statuses, which were measured in real-time, and administrators’ predetermined requirements. The
proposed management scheme comprises four different layers: “gather”, “evaluation”, “selection”
and “adaptation”. Each layer accomplished its function and sent its output to each higher layer.
The final output of the proposed management scheme was found to be the most suitable and
adapted management technique. In the proposed scheme, a neural network was designed to determine
and predict the status of the IoT networks. Furthermore, an intensive and accurate simulation
environment for IoTs was constructed using NS3. Finally, the simulation results proved that the
proposed management scheme outperformed the 6LowPAN-SNMP, CoAP, and LWM2M individual
management techniques. Bandwidth consumption was reduced by 37.897%, energy consumption was
reduced by 25.093%, packet loss was reduced by 30.199%, throughput was increased by 21.185%, and
delay was reduced by 36.117%. Additionally, the usage rate of individual management techniques and
transformation performance metrics were measured to ensure that the proposed management scheme
was sufficiently flexible and able to change between management techniques after their adaptation.
Therefore, the proposed management scheme is recommended to manage the IoT environments. In
the future work, other management techniques will be evaluated under the proposed management
scheme. Then, their results will be compared with the corresponding results that are demonstrated in
this paper. Hence, the optimal management techniques will be recommended according to a real-time
evaluation of the IoT system’s performance.
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