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ABSTRACT

The uniaxial compressive strength (UCS) of rock is an essential property of rock material in different relevant
applications, such as rock slope, tunnel construction, and foundation. It takes enormous time and effort to obtain
the UCS values directly in the laboratory. Accordingly, an indirect determination of UCS through conducting
several rock index tests that are easy and fast to carry out is of interest and importance. This study presents
powerful boosting trees evaluation framework, i.e., adaptive boosting machine, extreme gradient boosting machine
(XGBoost), and category gradient boosting machine, for estimating the UCS of sandstone. Schmidt hammer
rebound number, P-wave velocity, and point load index were chosen as considered factors to forecast UCS values of
sandstone samples. Taylor diagrams and five regression metrics, including coefficient of determination (R2), root
mean square error, mean absolute error, variance account for, and A-20 index, were used to evaluate and compare
the performance of these boosting trees. The results showed that the proposed boosting trees are able to provide a
high level of prediction capacity for the prepared database. In particular, it was worth noting that XGBoost is the best
model to predict sandstone strength and it achieved 0.999 training R2 and 0.958 testing R2. The proposed model
had more outstanding capability than neural network with optimization techniques during training and testing
phases. The performed variable importance analysis reveals that the point load index has a significant influence on
predicting UCS of sandstone.
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1 Introduction

The uniaxial compressive strength (UCS) of rock is the maximum compressive stress that rock
can bear before failure under uniaxial compressive load [1]. It is one of the most basic mechanical
parameters of rock mass in engineering investigation [2,3]. UCS has been widely recognized in rock
foundation design [4], tunnel surrounding rock classification [5], rock mass quality evaluation [6],
etc. The direct way to obtain the UCS of rock needs to be in accord with the suggestions by the
international society for rock mechanics (ISRM) [1], and it is needed to make rock blocks into standard
specimens and carry out rock tests in the laboratory. However, this measurement process is restricted
by many conditions. For example, rock samples are required to be complete and should not contain
joints and fissures. Furthermore, rock sampling and specimen processing and transportation have strict
restrictions, and it is challenging to obtain the ideal rock core in highly fractured, weak, and weathered
rock masses. Not only that, conducting the rock tests to obtain UCS is time-consuming and expensive
[3,7,8]. Accordingly, it is requisite to find an economical and easy method to estimate the UCS of rock
accurately [9].

Aladejare et al. [10] summarized the empirical prediction methodologies of UCS in rock. Some
empirical equations for predicting UCS are listed in Table 1. The empirical estimation methods adopt
the simple regression analysis to fit the correlation between the single or multiple physical or other
mechanical parameters and UCS in rock. The physical parameters include Equotip hardness number
[11], Schmidt Hammer rebound number (N) [12], Shore hardness [13], density (ρ) [14], porosity (n)
[15], P-wave velocity (VP) [16], S-wave velocity (Vs) [17], unit weight (γ ) [18], and slake durability index
(SDI) [19]. The mechanical parameters used to predict the UCS are easier to obtain than the UCS,
and they are comprised of block punch index (BPI) [12], Young’s modulus (E) [20], poisson ratio
(v), Brazilian tensile strength (BTS) [14], point load strength (Is(50)) [14,15], and other properties. The
empirical prediction equations are simple and effortless to use on-site. Nevertheless, they are only
effective for certain rock and geological conditions [10].

Table 1: Simple empirical equations for estimation of UCS

No. Equation R2 Rock type Reference

1 UCS = 0.032VP − 44.227 0.83 Multiple
rocks

Mohamad et al. [21]

2 UCS = 6.6V 1.6
P 0.92 Sedimentary Uyanık et al. [17]

3 UCS = 0.91VP − 4500.6 0.87 Sedimentary Aliyu et al. [14]
4 UCS = 5.3466N − 99.878 0.76 Sedimentary Heidari et al. [12]
5 UCS =

−47454.4 + 35905.6ρ − 671.68ρ2

0.90 Sedimentary Aliyu et al. [14]

6 UCS = 149.33n−0.53 0.89 Metamorphic Fereidooni et al. [15]
7 UCS = 8.9217BPI − 1.2334 0.77 Sedimentary Heidari et al. [12]
8 UCS = 23.49BPI0.68 0.82 Igneous Kallu et al. [22]
9 UCS = 12.8 × (E/10)

1.32 0.59 Sedimentary Najibi et al. [20]
10 UCS = 15.361BTS − 10.303 0.82 Multiple

rocks
Mohamad et al. [21]

11 UCS = 6.75BTS1.08 0.80 Igneous Kallu et al. [22]
12 UCS = 10.03BTS + 55.19 0.92 Metamorphic Fereidooni et al. [15]

(Continued)
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Table 1 (continued)

No. Equation R2 Rock type Reference

13 UCS = 10.4BTS + 18.2 0.63 Sedimentary Aliyu et al. [14]
14 UCS = 12.291Is(50) + 5.892 0.96 Multiple

rocks
Mohamad et al. [21]

15 UCS = 4.792Is(50) + 44.37 0.75 Metamorphic Tandon et al. [23]
16 UCS = 5.602Is(50) + 4.380 0.96 Igneous Tandon et al. [23]
17 UCS = 17.6Is(50) + 13.5 0.88 Sedimentary Aliyu et al. [14]

Apart from empirical equations, multiple regression analyses and their results have been widely
suggested in the literature, as shown in Table 2. Jalali et al. [24] applied N, BPI, Is(50), and VP to establish
the multiple linear regression (MLR) for predicting the UCS of sedimentary. Armaghan et al. [25]
fitted an empirical equation considering ρ, SDI, and BTS. Uyanık et al. [17] built an equation to
estimate the UCS of sedimentary based on VP and VS. Teymen et al. [26] developed nine empirical
equations adopting nine groups input parameters to foretell the UCS of multiple rocks. The multiple
regression analyses consider the effect of multiple variables and are better than empirical equations
only adopting one variable. Nevertheless, multiple regression analyses cannot get perfect results for
complex problems [26].

Table 2: Some multiple regression equations for estimating UCS of rock

No. Equation R2 Reference

1 UCS = −7.71 + 92.72v + 0.87E 0.90 Aboutaleb et al. [27]
2 UCS = 34.186ρ + 0.838SDI + 2.308BTS − 109.184 0.881 Armaghani et al. [25]
3 UCS =

−11.813 − 2.572n + 23.665Is(50) + 41.654v + 12.197ρ − 0.001VP

0.91 Madhubabu et al. [28]

4 UCS = 1.277N + 2.86BPI + 16.41Is(50) + 0.011VP − 82.436 0.91 Jalali et al. [24]
5 UCS = 0.035VP + 3.158Id2 − 0.954p − 342.729 0.94 Sharma et al. [19]
6 UCS = 1.277N + 2.186BPI + 16.41Is(50) + 0.011VP − 82.436 0.91 Heidari et al. [12]
7 UCS = 5.01Is(50) + 5.52e0.0004VP − 3.53 0.83 Ng et al. [29]
8 UCS = 6.24Is(50) + 25.8VP − 90.3 0.85 Çobanoğlu et al. [30]
9 UCS = 13.244Is(50) + 0.13VP − 16.987 0.94 Azimian et al. [31]

With the development of artificial intelligence, intelligent techniques have been widely used to
solve problems in science and engineering [32–41]. In civil engineering [42–44], they have been used in
different fields such as the estimation of the sidewall displacement of the underground caverns [45],
the prediction of water inflow into drill and blast tunnels [46], evaluation of disc cutters life of tunnel
boring machine [47], and so on. Additionally, artificial intelligence and machine learning (ML) were
highlighted by researchers as effective and relatively accurate in predicting rock mass and material
properties [48–52]. Fuzzy inference systems (FIS) is a fuzzy information processing system based on
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fuzzy set theory and fuzzy inference. The fuzzy logic can reduce the uncertainty caused by unknown
and variation and promote the application of FIS in rock mechanics [53]. The FIS widely used to
predict the UCS can be divided into the Sugeno FIS [12,54], Mamdani FIS [54–56], and adaptive
neuro-fuzzy inference system (ANFIS) [57–59]. FIS is simple in structure and is very effective in
uncertain environments. However, the prediction results of FIS are likely to be based on uncertain
assumptions, which leads to the inaccuracy of the prediction results under some conditions.

Genetic programming (GP) and gene expression programming (GEP) are parts of evolutionary
computation, and they are based on the genetic algorithm (GA). GEP and GP adopt a generalized
hierarchical computer program to describe a problem. Individual formation requires terminal and
function symbols, which are different from GA. Wang et al. [60] adopted the GEP to build the
relationship between N and UCS, and the obtained equation is validated in practical engineering.
İnce et al. [61] employed GEP to build the model based on Is(50), n, and ρ for estimating the UCS, and
the results showed that the GEP was preferable to predict the UCS of rock. Özdemir et al. [62] utilized
GP to foretell the UCS of rock with the input parameters of VP, n, and N, and GP can generate a
satisfactory equation for predicting the UCS. GEP and GP can give a explicit relationship between
input variables and UCS, but the optimal model cannot be obtained if their parameters, such as
mutation rate and population number, are improper.

ML is the leading method to implement artificial intelligence, and it can be divided into supervised
learning and unsupervised learning. Based on statistics, ML builds the nonlinear mappings of input
and output variables by analyzing complex internal relationships behind data. The supervised learning
models are frequently used to predict the UCS of rock, and they include artificial neural network
(ANN), support vector machine (SVM), k-nearest neighbor (KNN), Gaussian regression, regression
tree, and ensemble models. ML has a strong ability to extract information from data, and it has
increasingly applied in the prediction of UCS of rock recently. For instance, Rahman et al. [63] adopted
the neutral network to fit the relationship between VP and UCS in different rock types. Cao et al. [64]
applied the extreme gradient boosting machine (XGBoost) to predict the UCS of granite based on the
physical parameters and minerals percentage, and XGBoost has better estimation results than SVM
and ANN. Gowida et al. [65] implemented the SVM to foretell the UCS of rock in time based on
the six drilling mechanical parameters. Mahmoodzadeh et al. [66] utilized the Gaussian process to
evaluate UCS of rock based on n, N, VP, and Is(50), and the Gaussian process performed better than
other models. ML techiniques have the powerful ability to extract the relationship behind datasets, but
their capacities rely on the quality of datasets and hyperparameters.

As the crucial part of ML, the boosting tree models have been increasingly used in geotechnical
engineering, such as rockburst prediction [67–71], tunnel boring machine advance prediction [72],
blast-induced ground vibration [73], and so on. Boosting trees have more outstanding performance
than other models, such as ANN, SVM, etc. [69,74]. However, there are no studies about applying and
comparing the application of boosting trees in predicting UCS of rock. To fill this gap, in this paper,
three boosting trees models, adaptive boosting machine (AdaBoost), XGBoost, and category gradient
boosting machine (CatBoost), are introduced to build the intelligent models for predicting the UCS of
sandstone. The three models are developed and evaluated to compare their performance and choose
an optimal model for estimating UCS of sandstone.
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2 Tree-Based Models
2.1 AdaBoost

Boosting is a strategy to build ensemble models, and it trains multiple weak learners according
to the training set and combines these weak learners into a strong model. AdaBoost was proposed by
Freund et al. [75], which is suitable for regression and classification and can improve the capability of
the tree. In this study, there is a detailed introduction about AdaBoost for regression.

As shown in Fig. 1, before performing the regression task, there is needed to determine the number
of trees (i.e., the number of iterations). Firstly, the weight of each sample in the training set is initialized.
If the number of total samples is m, the initial weight of each sample is 1/m. Then, the weak regression
trees are built. The maximum and relative errors in the samples are calculated, the relative error is
used to determine the learning rate, and the learning rate is adopted to calculate the weight coefficient
of weak learners. The distribution of training samples is updated according to the weight coefficient.
Finally, these weak regression trees are combined. The weight coefficients of the weak regressors are
sorted, and the last strong regression model is chosen according to the median value.

Figure 1: The flowchart to build AdaBoost models

2.2 XGBoost
Gradient boosting [76] is the enhancement of AdaBoost, which is applicable to any differentiable

loss functions. The negative gradient of the loss function in the current model is used to train a new
weak learner, and then the trained weak learner is added to the existing model.



804 CMES, 2022, vol.133, no.3

XGBoost is the development of gradient boosting [77], and it employs the Taylor second-order
expansion of the loss function and adds the regularization term to control the complexity of the model.
Fig. 2 shows the steps to build XGBoost. The loss function in XGBoost can be expressed as Eq. (1).

Ob(i)
j =

n∑
i=1

l
(
yi, ŷ(i−1) + fi (xi)

) + Ω (fi) + C (1)

where Ob(i)
j represents the loss function in the t iteration, yi depicts the actual value of the i sample,

ŷ(i−1) is the predicted value of the model at the t − 1 iteration, l(·) is the loss function, �(fi) is the
regularization term, and C is a constant value.

Figure 2: The flowchart to develop XGBoost models

2.3 CatBoost
CatBoost was proposed by Yandex in 2017 [78], and it is based on gradient boosting and can deal

with the category data. CatBoost converts category data to numeric data to prevent overfitting [79].
CatBoost can effectively process the category data after performing random permutations. By training
different base learners with multiple permutations, CatBoost can obtain the unbiased estimation of
gradients to reduce the impact of gradient bias and improve the robustness.

Fig. 3 displays the flowchart to construct CatBoost. The oblivious trees are chosen as the base
learners in CatBoost, and in the trees, the judgment conditions for each node in each layer are the
same. The oblivious trees are relatively simple and can improve the prediction speed when fitting the
model. CatBoost has fewer hyperparameters and better robustness, and it is easy to use.
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Figure 3: The flowchart to construct CatBoost models

3 Database
3.1 Data Source

The data used in this study is the same data applied by Armaghani et al. [80]. The data was collected
from Dengkil, Selangor, Malaysia. The sandstone composed of 85% mineral quartz and 15% clay is the
primary rock in this area. To develop boosting trees, 108 sandstone blocks were sampled in the field,
and these blocks were cored and processed into the standard samples according to the suggestions by
the ISRM [1]. The prepared samples were subjected to rock mechanics testing in the laboratory. 108
samples with N, VP, Is(50), and UCS were obtained to build the database. N, VP and Is(50) are the input
parameters for predicting the UCS.

3.2 Data Description
The database is statistically analyzed, and Table 3 lists the statistical information of the collected

database, and the range of variables, mean value, standard deviation, and quantile are listed. UCS is
between 23.2 and 66.8 MPa, and the rock belongs to low to medium strength according to ISRM, as
shown in Fig. 4. The skew in input and output variables is not zero, indicating that the data distribution
is asymmetrical. The kurtosis is less than zero, demonstrating that the database is dispersive. The
scatter distributions between any two variables are displayed in Fig. 5. Fig. 6 shows the box plots of
four parameters. The mean values of the four variables are greater than the median, and the box
plots are right-skewed distributions. Eq. (2) is applied to calculate the correlation coefficient among
all parameters. Fig. 7 exhibits the heatmap of the calculation results. In the heatmap, darker colors
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indicate higher correlations. It can be seen that four parameters are positively correlated. UCS has a
strong correlation with VP and Is(50).

r = N
∑

xiyi − ∑
xi

∑
yi√

N
∑

x2
i − (∑

xi

)2
√

N
∑

y2
i − (∑

yi

)2
(2)

Table 3: The statistical information of the collected database

Statistical indicators N VP/(m/s) Is(50)/ (MPa) UCS/(MPa)

Mean value 31.03 2413.19 2.51 47.68
Median 30.05 2401.50 2.48 47.20
Min value 19.40 1570.60 1.23 23.20
Max value 43.50 3063.41 4.15 66.80
Standard deviation 6.85 395.26 0.74 11.87
25th percentiles 25.60 2102.50 1.99 37.88
50th percentiles 30.05 2401.50 2.48 47.20
75th percentiles 37.60 2754.50 3.16 57.95
Skew 0.16 −0.24 0.26 −0.19
Kurtosis −1.18 −1.08 −0.78 −1.03

Figure 4: The rock classification based on UCS suggested by ISRM [81]

Figure 5: (Continued)
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Figure 5: The scatter and histogram distributions of the database

Figure 6: The box plots of four variables

Figure 7: The heatmap of the correlation coefficients between variables
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3.3 Step-by-Step Study Flowchart
The database was established to construct the tree-base models for foretelling the UCS of sand-

stone. According to Fig. 8, the database is randomly split into two portions, one portion accounted for
80% of the database is adopted to train the tree-based models, and another portion accounted for 20%
is utilized to evaluate the capabilities of models. The regression trees are developed, and three different
boosting strategies are implemented to combine these trees for obtaining the final ensemble models.
A ranking system composed of five regression metrics is introduced to evaluate the performance of
three models during the training and testing stages. AdaBoost, XGBoost, and CatBoost are ranked
and compared according to the ranking system. Finally, the relative importance of input parameters
in the three models is calculated based on the principles of trees growth.

Figure 8: The technique flowchart to build tree-based models for predicting UCS in sandstone

4 Modeling

For developing the tree-based models, the database is divided into the training parts (80%) and the
testing parts (20%). The training parts include 86 datasets and are used to train AdaBoost, XGBoost,
and CatBoost. Eq. (3) is adopted to process the input data. Three Python libraries, Scikit-learn [82],
XGBoost [78], and CatBoost [77], are applied to develop AdaBoost, XGBoost, and CatBoost models,
respectively.
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Xnorm = X − Xmin

Xminmax

(3)

where X is the original input parameter, Xmax represents the maximum value of input parameter, Xmin

stands for the minimum value of input parameter, and Xnorm depicts the normalized parameter.

The regression trees are the base learners in the three models, and the number of trees controls
the potential and complexity of the model. The number of trees needs to be reasonably determined
to prevent overfitting, and for simplicity, other hyperparameters utilize the default value in Python
libraries. In AdaBoost, the distribution of 86 training datasets is initialized, and the first tree is
developed. Then, the linear loss function is used to evaluate the error between the predicted and actual
UCS. The learning rate is set to 1, indicating no shrinkage when updating the model. Afterward, the
tree is added to the AdaBoost to minimize the error continuously. Fig. 9 shows the R2 variation with the
increase of trees. When the number of trees reaches 95, AdaBoost has the highest R2 and lowest error.
Accordingly, the number of trees in AdaBoost is set to 95. Table 4 lists the primary hyperparameters
of AdaBoost in this study. After building all the trees, AdaBoost combines the outcomes of 95 trees
as the final output.

Figure 9: The R2 variation with the increasing of trees during the training process in AdaBoost

Table 4: The hyperparameters in AdaBoost

Hyperparameters Value

The number of trees 95
Learning rate 1
Loss function Linear



810 CMES, 2022, vol.133, no.3

The training process of XGBoost is similar to AdaBoost by appending trees in sequence to
reduce the error. The learning rate is 0.3, which specifies the shrunk step size when updating the
model. The maximum depth in trees controls the complexity, and it is set to 6. Additionally, XGBoost
increases regularization terms to prevent overfitting for improving the potential. Table 5 presents these
parameters values. From 0 to 100, the tree is added to XGBoost in turn. Fig. 10 shows the R2 variation,
and the curve is smooth. After the number of trees gets to 35, training R2 does not vary. Therefore, the
number of trees is 35.

Table 5: The hyperparameters in XGBoost

Hyperparameters Value

Learning rate 0.3
The number of trees (number of iterations) 35
The maximum depth in trees 6
L1 regularization 0
L2 regularization 1

Figure 10: The R2 variation with the increasing of trees during the training process in XGBoost

Compared to XGBoost and AdaBoost, CatBoost can automatically determine the learning rate
according to the training set and iteration number, and the automatically determined value is close
to the optimal. Additionally, the oblivious tree is adopted as the base learners, and its depth is set to
6. CatBoost also adds random strength, which is used to avoid overfitting. The default iterations are
1000 in the Python CatBoost library. To find an appropriate iterations number, the iterations increases
from 10 to 1000 in steps of 10. Fig. 11 depicts the R2 variation during the training process in CatBoost.
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When the iterations reach 1000, the R2 is the maximum. Accordingly, the number of iterations is set
to 1000, and the automatically determined learning rate is 0.25. Table 6 lists the primary parameters
to develop the CatBoost model for predicting UCS in sandstone.

Figure 11: The R2 variation with the increasing of trees during the training process in CatBoost

Table 6: The hyperparameters in CatBoost

Hyperparameters Value

Learning rate 0.025
Iterations 1000
The tree depth 6
L2 regularization 3
Random strength 1

5 Results and Discussion
5.1 Model Performance Evaluation

AdaBoost, XGBoost, and CatBoost are built according to the 86 training samples and their
corresponding parameters. The remaining 22 testing samples are utilized to evaluate the performance
of the three models. R2, root mean square error (RMSE), mean absolute error (MAE), variance
account for (VAF), and A-20 index are calculated according to the predicted and measured UCS.
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These five indicators are widely recognized as the regression evaluation index [83–87]. Eqs. (4)–(7)
show the equations for computing the RMSE, MAE, VAF, and A-20 index, respectively.

RMSE =
√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (4)

MAE = 1
N

N∑
i=1

∣∣ŷi − yi

∣∣ (5)

VAF = [1 − var(yi − ŷi)

var(yi)
× 100] (6)

A − 20 = m20
N

(7)

where var(·) means the variance, and m20 is the number of samples with a ratio of the predicted value to
the actual value in the range (0.8, 1.2). For R2, VAF, and A-20 index, the larger values are accompanied
by better prediction performance. For RMSE and MAE, their values are closer to 0, and the model
can get the superior capability. When the predicted values are totally equal to the actual, R2 and A-20
are 1, RMSE and MAR are 0, and VAF is 100%.

Figs. 12–14 exhibit the training and testing results in AdaBoost, XGBoost, and CatBoost,
respectively. In these figures, the horizontal axis represents the actual UCS, and the vertical axis means
the predicted UCS. When the predicted value is equal to the actual, the corresponding point falls in
the red line. The points are closer to the red line, and the model has better estimation performance.
The points representing XGBoost are closest to the red line, and XGBoost has the optimal capability.
Additionally, the points between two purple dotted lines mean their predicted values are graters than
0.8 times the actual values and less than 1.2 times the actual values. Only the points predicted by
Adaboost are outside the two purple dotted lines, and its performance is worst.

Figure 12: The training and testing results in AdaBoost
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Figure 13: The training and testing results in XGBoost

Figure 14: The training and testing results in CatBoost

The Taylor diagrams [88] are introduced to analyze the training and testing results of three
models, as shown in Fig. 15. Taylor diagrams combine the correlation coefficient, centered RMSE,
and standard deviation into one polar diagram according to their cosine relationship (Eq. (8)). In
Fig. 15, the distance from the origin means the standard deviation, and the angle from clockwise
represents the correlation coefficient. It can be seen that the standard deviations of predicted UCS
by three models are lower than that of actual UCS. Furthermore, the reference point with pentastar
shape reflects the actual UCS, and other points nearer to the reference indicate that their predicted
values have lower centered RMSE and their corresponding models have the superior capability. In the
training and testing stages, XGBoost performs best, followed by CatBoost, and finally AdaBoost.

E ′2 = σ 2
p + σ 2

a − 2σpσaR (8)

where E ′ means the centered RMSE, σp is the variance of predicted values, σa is the variance of actual
values, and the R is the correlation coefficient.
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Figure 15: The Taylor diagrams of training and testing results

A ranking system comprised of R2, RMSE, MAE, VAF, and A-20 index is implemented to rank
the three models comprehensively, considering the performance in the training and testing processes.
Table 7 presents the ranking system. There are three models, the score is from 3 to 1, and the model
with better performance can get a higher score. For training or testing datasets, the total score is the
sum of scores in five metrics. The final score of a model is the sum of scores in training and testing sets.
The model with a higher final score has a preferable potential in both training and testing samples.
The comprehensive performance ranking is: XGBoost > CatBoost > AdaBoost.

5.2 Model Comparison
In the previous section, XGBoost was selected as the most accurate model in this research to

predict sandstone strength. In this section, XGBoost is compared with the best model proposed by
Armaghani et al. [80], as shown in Table 8. In terms of R2, RMSE, and VAF in training and testing sets,
XGBoost can perform better than the imperialist competitive algorithm (ICA)-ANN. Not only that,
ICA-ANN utilized the ICA to tune the weights and biases of ANN and had better ability than ANN,
but the optimization process done by Armaghani et al. [80], was complicated and time-consuming. By
contrast, XGBoost has fewer parameters to tune and is easy to use, and it has more strength to predict
the UCS of sandstone samples. It is important to note that the ultimate aim of a predictive model for
rock strength is to develop a model which should have several features, i.e., be accurate enough, easy
to apply as well as applicable in practice. Additionally, the performance of XGBoost for predicting
UCS of rock is compared with other models proposed by other scholars recently, as shown in Table 9.
XGBoost has more powerful ability to predict UCS than other models.
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Table 8: Results of the models by Armaghani et al. [80] to predict rock strength

Model Training Testing

R2 RMSE VAF (%) R2 RMSE VAF (%)

ICA-ANN
ANN

0.949
0.850

2.602
4.492

94.769
85.001

0.940
0.769

2.997
6.093

93.915
76.386

Table 9: Some models to predict UCS developed by other scholars

No. Models Input variables R2

1 FIS [12] Is(50), N, BPI , VP 0.91
2 GEP [26] Is(50), BTS 0.9047 (training), 0.9408 (testing)
3 ANN [26] VP, BTS 0.9223 (training), 0.9220 (testing)
4 ANFIS [26] Shore hardness, BTS 0.9149 (training), 0.9473 (testing)
5 DNN [66] n, N, VP, Is(50) 0.9017
6 DT [66] n, N, VP, Is(50) 0.9491
7 SVR [66] n, N, VP, Is(50) 0.9363
8 M5P algorithm [89] γ , N, n, VP, SDI , 0.89
9 FIS [56] n, BPI , BTS, VP 0.923 (training), 0.853 (testing)
10 ANN [90] N, VP, Is(50) 0.867 (training), 0.886 (testing)
11 ANFIS [90] N, VP, Is(50) 0.956 (training), 0.946 (testing)
12 XGBoost Is(50), N, VP 0.999 (training), 0.958 (testing)
Note: DNN = deep neural networks; DT = decesion trees.

6 Model Validation

To validate the application of the proposed boosting trees, 14 sandstone blocks were processed into
standard specimens, and N, VP, Is(50), and UCS were measured. N is range 13.3 to 34.7, VP is range 2030
to 2960 m/s, Is(50) is range 1 to 3.7 MPa, and UCS ranges 23 to 52 MPa. N, VP, and Is(50) were input
to the developed XGBoost model. The predicted UCS ranges 30.2 to 62.8 MPa. Fig. 16 compares
the predicted and measured UCS. When the developed XGBoost is applied to the new datasets from
other sandstone blocks, it achieves R2 of 0.801 and RMSE of 9.2833. The ratio of the measured UCS
to the predicted UCS is between 0.67 and 1.02, and the predicted UCS of the model is larger than
the real UCS. The obtained results show that the proposed model has great engineering applications.
The proposed model in this study is able to predict UCS of rock samples with an acceptable level of
accuracy if a new set of input parameters (within the range of inputs used in this research) will be
available.

7 The Relative Importance of Input Parameters

The relative importance of input features can be calculated during the growth of the tree [91].
The significant parameters have a crucial impact on the performance of the model. Obtaining the
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relative importance of input parameters is beneficial to understanding the development principle
behind the model. Fig. 17a shows the relative importance of N, VP and Is(50) in AdaBoost, XGBoost,
and CatBoost. Although the importance ranking of input parameters is different in the three models,
Is(50) is always the most vital variable. To determine the principal parameters affecting the UCS in
sandstone, the importance score of each variable in three models is averaged. The Is(50) is the most
essential, with a 0.47 importance score, followed by 0.30, and 0.24 scores for VP and N, respectively,
as shown in Fig. 17b. Individual conditional expectation (ICE) plot is introduced to determine the
influence of variables on the predicted UCS of XGBoost, as shown in Fig. 18. Each line shows the
predicted UCS of a sample varying when a variable of interest changes and other variables are fixed.
The purple line is the average of all lines, which shows the mean relationship between the variables
and predicted UCS. When VP and N are fixed, predicted UCS of XGBoost rises with the increasing
of Is(50). Similarly, the predicted UCS of XGBoost has a growing trend with the increase of VP and N.

Figure 16: The predicted results of 14 validation datasets

Figure 17: The relative importance of input parameters: (a) The variable importance in three models;
(b) The mean importance of variables
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Figure 18: The ICE plot to analyze the dependence of variables on UCS

8 Conclusion

In this research, 108 samples were used to investigate physical and mechanical properties in
sandstone. Tree-based models are implemented to build intelligent models for predicting UCS of
sandstone based on the established database. Considering the training and testing performance by
Taylor diagrams and ranking system, XGBoost is the outstanding tree model to predict UCS in
sandstone. The proposed XGBoost model has more strong learning ability to build the relationship
between considered factors and UCS than other models developed by other researchers. Additionally,
XGBoost has fewer parameters to tune than other models, such as ANN and GEP, and it is simple to
use. The developed boosting trees solution is suitable for practical engineering, such as mine, quarry,
tunnel, etc., which need to evaluate the UCS of rock with non-destructive methods accurately and
timely. However, the considered variables are limited, and only three parameters are applied to foretell
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UCS. Besides, the combination of XGBoost and optimization techniques can improve the capacity to
estimate UCS.
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