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ABSTRACT

In this paper, the fractional natural decomposition method (FNDM) is employed to find the solution for the Kundu-
Eckhaus equation and coupled fractional differential equations describing the massive Thirring model. The massive
Thirring model consists of a system of two nonlinear complex differential equations, and it plays a dynamic role
in quantum field theory. The fractional derivative is considered in the Caputo sense, and the projected algorithm
is a graceful mixture of Adomian decomposition scheme with natural transform technique. In order to illustrate
and validate the efficiency of the future technique, we analyzed projected phenomena in terms of fractional order.
Moreover, the behaviour of the obtained solution has been captured for diverse fractional order. The obtained results
elucidate that the projected technique is easy to implement and very effective to analyze the behaviour of complex
nonlinear differential equations of fractional order arising in the connected areas of science and engineering.
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Fractional Kundu-Eckhaus equation; fractional natural decomposition method; fractional massive Thirring model;
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1 Introduction

The study of complex models that exemplify the nonlinear phenomena and analyze their
behaviour is essential and pivotal in the research of the present era. Particularly, the role of mathematics
is significant to illustrate their nature with respect to time and other dependent parameters. The
essence of calculus and its applications have become a hot topic from the beginning of its birth
to till date. Since it is only instrument which can effectively and accurately predict the behaviour
of the process raised in nature as a problem for living beings or solutions for the same. Recently,
many pioneers and young researchers pointed out some limitations while designing or modelling
complicated phenomena with classical calculus. Specifically, while examining hereditary properties,
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history-based mechanisms, non-Morkian processes, long-range propagations and others. Meanwhile,
on the other hand the concept of calculus with non-integer order is rooted soon after the classical one
in the process of the letter exchange between two great mathematicians. During the seventeenth and
eighteenth centuries, this concept was not gets attracted by numerous scholars due to the unfamiliarity
of its essence and associated applications in comparison with classical concepts. But, recently, due
to the above cited boundaries of integer order calculus and revolution in the computational tools,
the concept of fractional calculus (FC) fascinates many physicists, engineers and most importantly,
mathematicians to develop the essential theory and corresponding computational tools deal with
the real-world problem for the betterment of lifestyle of the human beings. Many senior scholars
provided the base for the FC in order to understand in scientific needs of implementing this concept
into reality [1–6].

Recently, many existed models have been examined by researchers [7–10]. For instance, the
new wave behavior of the equations exemplifying the phenomena associated with plasma physics
is derived by researchers in [11], the scholars in [12] derived stimulating results associated with a
numerical method for coupled KdV equations. The efficient approach is employed in [13] to model
for thermostats with hybrid boundary value conditions, the reliability of the method is illustrated by
researchers in [14] with respect to the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation, the
prey models with mutualistic predation is analyzed in [15] with the help of non-local and non-singular
kernels. In a similar manner, the authors in [16–18] derived some interesting results associated with
numerical methods. Moreover, the authors in [19] investigated the model that exemplifies the wind-
influenced projectile motion within the frame of fractional calculus. In [20], researchers illustrated
the impact of the generalization of the classical model with arbitrary models. These studies motivate
us to investigate more complex models with the help of efficient numerical or analytical methods
and aid us in investigating comparative numerical study. On the other hand, the following recent
research work helps us to understand the essence of generalizing the concept with fractional order.
For instance, the author in [21] derived the two Fibonacci operational matrix pseudo-spectral schemes
to investigate the physical model, the researchers in [22] studied the SIR model of the current 2019-
nCoV with Caputo operator, the complex nature of the Gross–Pitaevskii equations derived with the
help of fractional derivative. Further, many scholars employed different fractional operators to analyze
real-world problems and study the physical phenomena [23–28], for instance, COVID-19 in India [29],
biological pest control in tea plants [30], and many others.

In the present investigation, the model exemplifying important phenomena in quantum field
theory is considered. The nonlinear Schrödinger (NLS) equation plays a vivacious part in the study of
nonlinear optics, photonics, quantum field theory, water wave, and others. Among such, the Kundu-
Eckhaus (KE) equation and the massive Thirring model (MTM) are the most important models
and describe the self-interactions of a Dirac field. In the 1980’s, Kundu [31] and Eckhaus et al.
[32,33] proposed the Kundu-Eckhaus equation as a linearizable form of the NLS equation. Here,
we considered the fractional Kundu-Eckhaus (FKE) equation and fractional massive Thirring model
(FMTM). The fractional-order is presented to incorporate the memory consequences in the system,
which aids in capturing the essential behaviour of the complex model as follows [34]. The FKE
equation

iDμ

t u (x, t) + uxx (x, t) + 2u (x, t)
(|u(x, t)|2

)
x
+ u (x, t) |u (x, t)|4 = 0, 0 < μ ≤ 1, (1)
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with u (x, 0) = αeix. The FMTM equations are given by{
i
(
Dμ

t u(x, t) + ux(x, t)
) + v(x, t) + u(x, t) |v(x, t)|2 = 0,

i
(
Dμ

t v(x, t) + vx(x, t)
) + u(x, t) + v(x, t) |u(x, t)|2 = 0,

0 < μ ≤ 1, (2)

with u (x, 0) = αeix and v (x, 0) = βeix.

where u (x, t) and v (x, t) are the complex smooth envelop function of temporal (t) and spatial (x)

variables, i is the imaginary number (i.e., i = √−1) and μ is the arbitrary order. Authors in [35]
illustrated that Kundu-Eckhaus and the complex Burgers equations are associated with a Miura
transformation. The KE equation can effectively model the propagation of ultra short pulses in
quantum and nonlinear optics, which can be employed to illustrate the optical properties of the fem to
second lasers and helps to study the behaviour of different phenomena arising into chemistry. Further,
the massive Thirring model (MTM) is the nonlinear complex system having two-component [36,37].
This model is used to illustrate the propagation of optical pulse in nonlinear or periodic optical media.
Much attention has been devoted to the connection between the quantum sine-Gordon model and the
quantum Thirring model [38,39]. This association helps the considered problem to describe the model
either in accordance with perturbation theory or in accordance with ordinary perturbation theory for
quantum solitons.

As much as real-world modelling problems are important, finding the solution for these models
with differential equations is also important. With the help of literature, we can say that, every model
does not process an exact solution. In this regard, researchers employed or aided by semi-analytical
or numerical algorithms. In this connection, Adomian offered the Adomian decomposition method
(ADM) [40], particularly to examine nonlinear systems. With the help of the Adomian polynomial, we
can solve nonlinear terms in a simple form. Even though a wide community of researchers applied to
study many physical and other problems, recently, many scholars showed that if this method is union
with transformation leads the great efficiency accuracy and reduces time and computational work. To
fulfil these necessities, Rawashdeh et al. proposed the FNDM [41,42], and it is a mixture of ADM and
natural transform. From the lost three years, this projected scheme is applied by many researchers to
examine many problems and systems [43–46].

The pivotal aim of the present work is to find a solution for the FKE equation and FMT model and
study the behaviour of the obtained solutions with respect to fractional order. Since these equations
play an important role in describing various complex phenomena, many authors find and analyzed
the solution numerically as well as analytically. For instance, authors in [47] found the rogue-wave
solutions in optical fiber for KE equation, and auxiliary equation expansion and modified unified
algebraic techniques are considered in order to find the soliton solution for KE equation. Further,
many efficient techniques are applied to analyze these equations, modified simple equation scheme
[48], extended trial function method [49], q-homotopy analysis transform technique [39], and many
techniques for KE and MTM equations having classical and fractional order derivatives [50–55].

2 Preliminaries

Here, we present the essential and basic notions of FC and natural transform.
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Definition 1. The fractional order Riemann-Liouville integral of a function f (t) ∈ Cδ (δ ≥ −1) is
defined as

Jμf (t) = 1
Γ (μ)

∫ t

0

(t − ϑ)
μ−1 f (ϑ) dϑ ,

J0f (t) = f (t). (3)

Definition 2. The fractional derivative in Caputo sense for f ∈ Cn
−1 is presented as follows:

Dμ

t f (t) =
{

dnf (t)

dtn
, μ = n ∈ N,

1
�(n−μ)

∫ t

0
(t − ϑ)

n−μ−1 f (n) (ϑ) dϑ , n − 1 < μ < n, n ∈ N.
(4)

Definition 3. The Mittag-Leffler type function with one-parameter is defined [56] as follows:

Eμ (z) =
∞∑

k=0

zk

Γ (μk + 1)
, μ > 0, z ∈ C. (5)

Definition 4. The natural transform (NT) of f (t) is symbolized by N [f (t)] for t ∈ R and presented
with the NT variables s and ω by [57]

N [f (t)] = R (s, ω) =
∫ ∞

−∞
e−stf (ωt) dt; s, ω ∈ (−∞, ∞) .

Now, we present the NT for the Heaviside function H (t) as follows:

N [f (t) H (t)] = N
+ [f (t)] = R+ (s, ω) =

∫ ∞

0

e−stf (ωt) dt; s, ω ∈ (0, ∞) . (6)

At ω = 1, the forgoing relations signify Laplace transform and for s = 1 gives the condition for
the Sumudu transform.

Theorem 1 [58]: The NTRμ (s, ω) of the fractional derivative of f (t) Riemann-Liouville sense is
symbolized by Dαf (t) and defined as

N
+ [Dμf (t)] = Rμ (s, ω) = sμ

ωμ
R (s, ω) −

n−1∑
k=0

sk

ωμ−k

[
Dμ−k−1f (t)

]
t=0

, (7)

where R (s, ω) is NT of f (t), α is the order and n be any positive integer. Further, n − 1 ≤ α < n.

Theorem 2 [58]: The natural transform Rμ (s, ω) of the arbitrary derivative in Caputo sense of f (t)
is symbolize by cDμf (t) and defined as

N
+ [

cDμf (t)
] = Rc

μ
(s, ω) = sμ

ωμ
R (s, ω) −

n−1∑
k=0

sμ−(k+1)

ωμ−k

[
Dkf (t)

]
t=0

. (8)

Remark 1: Basic properties of the NT are defined as follows:

i) N+ [1] = 1
s
,

ii) N+ [tμ] = Γ (μ+1)ωμ

sμ+1 ,

iii) N+ [f (n) (t)] = sn

ωn R (s, ω) − ∑n−1

k=0
sn−(k+1)

un−k
Γ (μ+1)ωμ

sα+1 .
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3 Basic Solution Procedure of FNDM

Here, we consider the following coupled fractional system to demonstrate the solution procedure
and the basic theory of the projected algorithm with linear (R) and nonlinear (F) differential operators

Dμ

t u (x, t) + Ru (x, t) + Fu (x, t) = h1 (x, t) ,

Dμ

t v (x, t) + Rv (x, t) + Fv (x, t) = h2 (x, t) , (9)

with initial conditions

u (x, 0) = g1 (x) ,

v (x, 0) = g2 (x) , (10)

where Dμu (x, t) and Dμv (x, t) symbolize the Caputo fractional derivatives of the u (x, t) and v (x, t),
respectively, and h1 (x, t) and h2 (x, t) are the source terms. On applying NT and with the help of
Theorem 2, then Eq. (9) gives

U (x, s, ω) = uμ

sμ

n−1∑
k=0

sμ−(k+1)

ωμ−k

[
Dku (x, t)

]
t=0

+ ωμ

sμ
N

+ [h1 (x, t)] − ωμ

sμ
N

+ [Rv (x, , t) + Fu (x, t)] ,

V (x, s, ω) = uμ

sμ

n−1∑
k=0

sμ−(k+1)

ωμ−k

[
Dku (x, t)

]
t=0

+ ωμ

sμ
N

+ [h1 (x, t)] − ωμ

sμ
N

+ [Rv (x, , t) + Fu (x, t)] . (11)

On employing inverse NT on Eq. (11) to get

u (x, t) = G (x, t) − N
−1

[
ωμ

sμ
N

+ [Rv (x, t) + Fu (x, t)]
]

,

v (x, t) = H (x, t) − N
−1

[
ωμ

sμ
N

+ [Ru (x, t) + Fv (x, t)]
]

. (12)

From given initial conditions, non-homogeneous terms, G (x, t) and H (x, t) are exists. The infinite
series solution is present as

u (x, t) =
∞∑

n=0

un (x, t) , Fu (x, t) =
∞∑

n=0

An,

v (x, t) =
∞∑

n=0

vn (x, t) , Fv (x, t) =
∞∑

n=0

Bn, (13)

where the An and Bn are indicating the nonlinear terms of Fu (x, t) and Fv (x, t), respectively. By using
the Eqs. (12) and (13), we have

∞∑
n=0

un (x, t) = G (x, t) − N
−1

[
ωμ

sμ
N

+

[
R

∞∑
n=0

vn (x, t)

]
+

∞∑
n=0

An

]
,

∞∑
n=0

vn (x, t) = H (x, t) − N
−1

[
ωμ

sμ
N

+

[
R

∞∑
n=0

un (x, t)

]
+

∞∑
n=0

Bn

]
. (14)

By the assist of Eq. (14), we obtain

u0 (x, t) = G (x, t) ,
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u1 (x, t) = −N
−1

[
ωμ

sμ
N

+ [Rv0 (x, t)] + A0

]
,

u2 (x, t) = −N
−1

[
ωμ

sμ
N

+ [Rv1 (x, t)] + A1

]
,

...

v0 (x, t) = H (x, t) ,

v1 (x, t) = −N
−1

[
ωμ

sμ
N

+ [Ru0 (x, t)] + B0

]
,

v2 (x, t) = −N
−1

[
ωμ

sμ
N

+ [Ru1 (x, t)] + B1

]
,

...

Similarly, for n ≥ 1 we can obtain the general recursive relation and defined as

un+1 (x, t) = −N
−1

[
ωμ

sμ
N

+ [Rvn (x, t)] + An

]
,

vn+1 (x, t) = −N
−1

[
ωμ

sμ
N

+ [Run (x, t)] + Bn

]
. (15)

Then, the approximate solutions are defined as follows:

u (x, t) =
∞∑

n=0

un (x, t) , v (x, t) =
∞∑

n=0

vn (x, t) .

4 Solution for Fractional KE Equation and FMT Model

Here, we consider the FKE equation and coupled fractional equations describing the MT model
to illustrate the applicability efficiency of the projected method.

Application 4.1. Consider the FKE equation defined in Eq. (1):

iDμ

t u (x, t) + uxx + 2u
(|u|2

)
x
+ u |u|4 = 0, 0 < μ ≤ 1, (16)

associated to initial conditions

u (x, 0) = αeix. (17)

On simplification, Eq. (16) can be written as

Dμ

t u (x, t) = i
(
uxx + 2

(
uuxu + u2ux

) + u3u2) . (18)

By employing NT on Eq. (18), we have

N
+ [

Dμ

t u (x, t)
] = i

(
N

+
[

∂2u
∂x2

]
+ 2

(
N

+
[

uu
∂u
∂x

]
+ N

+
[

u2 ∂u
∂x

])
+ N

+ [
u3u2]) .
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The nonlinear operator is defined as

sμ

wμ
N

+ [u (x, t)] −
n−1∑
k=0

sμ−(k+1)

wμ−k

[
Dku

]
t=0

= iN+
[

∂2u
∂x2

+ 2
(

uu
∂u
∂x

+ u2 ∂u
∂x

)
+ u3u2

]
. (19)

By using Eq. (17) in the above equation, we have

N
+ [u (x, t)] = 1

s

[
αeix

] + i
wμ

sμ
N

+
[

∂2u
∂x2

+ 2
(

uu
∂u
∂x

+ u2 ∂u
∂x

)
+ u3u2

]
. (20)

Employing inverse NT on Eq. (20), we have

u (x, t) = αeix + N
−1

[
i
wμ

sμ
N

+
[

∂2u
∂x2

+ 2
(

uu
∂u
∂x

+ u2 ∂u
∂x

)
+ u3u2

]]
. (21)

Let u (x, t) = ∑∞
n=0 un (x, t) be the infinite series solution for u (x, t). Note that, uu ∂u

∂x
=∑∞

n=0 An, u2 ∂u
∂x

= ∑∞
n=0 Bn and u3u2 = ∑∞

n=0 Cn be the Adomian polynomials. Then, Eq. (21) becomes
∞∑

n=0

un (x, t) = αeix + N
−1

[
i
ωμ

sμ
N

+

[
unxx + 2

( ∞∑
n=0

An +
∞∑

n=0

Bn

)
+

∞∑
n=0

Cn

]]
. (22)

By comparing both sides of Eq. (22) with the help of initial conditions defined in Eq. (17), we can
easily generate the recursive relation as follows:

u0 (x, t) = αeix,

u1 (x, t) = 4
(
α5 − α

)
eixtμ

Γ [μ + 1]
,

u2 (x, t) =
(
α5 − α

) (
1 − α4

)
eixt2μ

Γ [2μ + 1]
,

...

Continuing in the same procedure, we can achieve the remaining components of un (n ≥ 3). Then,
we have

u (x, t) =
∞∑

n=0

un (x, t) = u0 (x, t) + u1 (x, t) + u2 (x, t) + . . . (23)

= αeix + 4
(
α5 − α

)
eixtμ

Γ [μ + 1]
+

(
α5 − α

) (
1 − α4

)
eixt2μ

Γ [2μ + 1]
+ . . . (24)

The exact solution for Eq. (16) with the initial condition considered in Eq. (17) at μ = 1 is

u (x, t) = eix

(1 + ( 1
α4 − 1)e4it)

1
4

.

Application 4.2. Consider the time-fractional coupled fractional equations describing the MT
model [33]:{

i
(
Dμ

t u + ux

) + v + u |v|2 = 0,
i
(
Dμ

t v + vx

) + u + v |u|2 = 0,
0 < μ ≤ 1, (25)

subjected to

u (x, 0) = αeix and v (x, 0) = βeix. (26)
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On simplification, Eq. (25) can be written as

Dμ

t u = i [iux + v + u (vv)] ,

Dμ

t v = i [ivx + u + v (uu)] . (27)

Now by performing NT on Eq. (27) to get

N
+ [

Dμ

t u (x, t)
] = i

(
iN+

[
∂u
∂x

]
+ N

+ [v] + N
+ [u (vv)]

)
,

N
+ [

Dμ

t v (x, t)
] = i

(
iN+

[
∂v
∂x

]
+ N

+ [u] + N
+ [v (uu)]

)
.

Then, we present the nonlinear operator as below:

sμ

wμ
N

+ [u (x, t)] −
n−1∑
k=0

sμ−(k+1)

wμ−k

[
Dku

]
t=0

= iN+
[

i
∂u
∂x

+ v + u (vv)
]

,

sμ

wμ
N

+ [v (x, t)] −
n−1∑
k=0

sμ−(k+1)

wμ−k

[
Dkv

]
t=0

= iN+
[

i
∂v
∂x

+ u + v (uu)

]
. (28)

The foregoing equation reduces on simplification as follows:

N
+ [u (x, t)] = 1

s

[
αeix

] + i
wμ

sμ
N

+
[

i
∂u
∂x

+ v + u (vv)
]

,

N
+ [v (x, t)] = 1

s

[
βeix

] + i
wμ

sμ
N

+
[

i
∂v
∂x

+ u + v (uu)

]
. (29)

Apply inverse NT on Eq. (29), we have

u (x, t) = αeix + iN−1

[
wμ

sμ
N

+
[

i
∂u
∂x

+ v + u (vv)
]]

,

v (x, t) = βeix + iN−1

[
wμ

sμ
N

+
[

i
∂v
∂x

+ u + v (uu)

]]
. (30)

The infinite series solution for u (x, t) and v(x, t) are respectively assume that

u (x, t) =
∞∑

n=0

un (x, t) and v (x, t) =
∞∑

n=0

vn (x, t) .

Note that, u (vv) = ∑∞
n=0 An and v (uu) = ∑∞

n=0 Bn are the Adomian polynomials. Then, the Eq. (30)
becomes

∞∑
n=0

un (x, t) = αeix + iN−1

[
wμ

sμ
N

+

[
i

∞∑
n=0

unx +
∞∑

n=0

vn +
∞∑

n=0

An

]]
,

∞∑
n=0

vn (x, t) = βeix + iN−1

[
wμ

sμ
N

+

[
i

∞∑
n=0

vnx +
∞∑

n=0

un +
∞∑

n=0

Bn

]]
. (31)

Thus, on comparing two sides of Eq. (31) and using conditions defined in Eq. (26), we can
effortlessly get

u0 (x, t) = αeix, v0 (x, t) = βeix,
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u1 (x, t) = ieix
(
β + (

β2 − 1
)
α
)

tμ

Γ [μ + 1]
,

v1 (x, t) = ieix
(
α + (

α2 − 1
)
β
)

tμ

Γ [μ + 1]
,

u2 (x, t) = −eixt2μ(α3β2 − α2β(−3 + β2) + β(−2 + β2) + α(2 − 4β2 + β4))

Γ [2μ + 1]
,

v2 (x, t) = −eixt2μ(2β + α4β + α2β(−4 + β2) − α3(−1 + β2) + α(−2 + 3β2))

Γ [2μ + 1]
,

...

Similarly, the remaining components of un and vn (n ≥ 3) can be achieved. Then, we establish the
series solutions as follows:

u (x, t) =
∞∑

n=0

un (x, t) = u0 (x, t) + u1 (x, t) + u2 (x, t) + . . .

= αeix+ ieix
(
β + (

β2 − 1
)
α
)

tμ

Γ [μ + 1]
+−eixt2μ

(
α3β2 − α2β

(−3 + β2
) + β

(−2 + β2
) + α

(
2 − 4β2 + β4

))
Γ [2μ + 1]

+. . .

v (x, t) =
∞∑

n=0

vn (x, t) = v0 (x, t) + v1 (x, t) + v2 (x, t) + . . .

= βeix+ ieix
(
α + (

α2 − 1
)
β
)

tμ

Γ [μ + 1]
−eixt2μ

(
2β + α4β + α2β

(−4 + β2
) − α3

(−1 + β2
) + α

(−2 + 3β2
))

Γ [2μ + 1]
+. . .

5 Numerical Results and Discussion

Here, we find the solution for complex nonlinear problems arising in the quantum field theory
using FNDM. To present the numerical analysis in terms of plots, we used MATHEMATICA 12. The
nature of the imaginary part in contour plots and surfaces real part for the achieved results are drowned
in Figs. 1–3 with distinct μ for the FKE equation. The behaviour of FNDM result for Application 4.1
with different values of fractional order (μ) is cited in Fig. 4. In order to elucidate the behaviour of
coupled fractional nonlinear differential equations describing the massive Thirring model, we find the
solution with the aid of FNDM. Particularly, the complexity associated with the model is quite high,
and also essential to examine the capture of its physical interpretation with corresponding parameters.
The nature of the imaginary part in contour plots and surfaces real part for the results obtained for
the fractional-order MR model is plotted in Figs. 5–7 with distinct μ(0.5, 0.75 and 1). The nature of
FNDM results for the real part for different μ are plotted in Fig. 8. We can observe the projected
system highly depends on the parameters accessible by the scheme and the fractional operator. More
precisely, the nature of the imaginary part in the form of the counter plats can aid some simulating
and exciting consequences.
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Figure 1: (a) Behaviour for the real part (b) nature of obtained solution at t = 1 (c) contour plot for
the imaginary part of the FNDM results at α = 1.3 and μ = 0.5 for the FKE equation

Figure 2: (Continued)
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Figure 2: (a) Behaviour for the real part (b) nature of obtained solution at t = 1 (c) contour plot for
the imaginary part of the FNDM results at α = 1.3 and μ = 0.75 for the FKE equation

Figure 3: (Continued)
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Figure 3: (a) Behaviour for the real part (b) nature of obtained solution at t = 1 (c) contour plot for
the imaginary part of the FNDM results at α = 1.3 and μ = 1 for the FKE equation

Figure 4: Response of the achieved result for the real part with distinct μ at α = 1.3 and x = 1 for the
FKE equation
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Figure 5: (Continued)
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Figure 5: (a) Nature of the real part of u (x, t), (b) response of u (x, t) for the real part at t = 1, (c)
contour plot of u (x, t), (d) surface of the real part of v (x, t) , (e) nature of u (x, t) for the real part at
t = 1, (f) contour plot of v (x, t) of the obtained solution for the FFMT model at α = 1, β = 1 and
μ = 0.5

Figure 6: (Continued)
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Figure 6: (a) Nature of the real part of u (x, t), (b) response of u (x, t) at t = 1, (c) contour plot of
u (x, t), (d) surface of the real part of v (x, t) , (e) nature of u (x, t) for the real part at t = 1, (f) contour
plot of v (x, t) of the obtained solution for the FFMT model at α = 1, β = 1 and μ = 0.75
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Figure 7: (Continued)
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Figure 7: (a) Surface of the real part of u (x, t), (b) response of u (x, t) for the real part at t = 1 (c)
contour plot of u (x, t), (d) surface of the real part of v (x, t) , (e) nature of u (x, t) for the real part at
t = 1, (f) contour plot of v (x, t) of the obtained solution for the FFMT model at α = 1, β = 1 and
μ = 1

Figure 8: Nature of the real part of (a) u(x,t), (b) v(x,t) with distinct μ at α = 1, β = 1 and x = 5 for
the FMT model

6 Conclusion

In this paper, we derived the solution for the projected nonlinear complex system exemplifying
the fractional Kundu-Eckhaus equation and the massive Thirring model arising in the quantum field
theory with the aid of FNDM. Particularly, counter and coupled surfaces are cited to understand
more interesting consequences of the projected system. The novelty of the scheme considered is
cleared dissipated to examine coupled systems, and by the projected solution procedure, we can
find the solution for nonlinear models associated with complex functions without any dissertation
and perturbation. The captured plots show the huge variations with a small change in the order
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of the system and it can help us to understand more consequences of the projected model. The
considered system highly depends on time and analogous consequences with fractional order and it
can observe by the present study and further, it can help to diverse classes of coupled nonlinear and
complex differential equations. Finally, the results gained by the considered algorithm are interesting
as compared to other available results, and hence it can be hired to analyze and examine the various
complicated phenomenon.
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