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ABSTRACT

The generating functions of special numbers and polynomials have various applications in many fields as well
as mathematics and physics. In recent years, some mathematicians have studied degenerate version of them
and obtained many interesting results. With this in mind, in this paper, we introduce the degenerate r-Dowling
polynomials and numbers associated with the degenerate r-Whitney numbers of the second kind. We derive
many interesting properties and identities for them including generating functions, Dobinski-like formula, integral
representations, recurrence relations, differential equation and various explicit expressions. In addition, we explore
some expressions for them that can be derived from repeated applications of certain operators to the exponential
functions, the derivatives of them and some identities involving them.
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1 Introduction

The Stirling number S2(n, k) of the second kind counts the number of partitions of the set
{1, 2, . . . , n} into k-nonempty disjoint set. The Bell polynomials Bn(x) are given by

Bn(x) =
n∑

k=0

S2(n, k)xk, (see [1]).

When x = 1, Bn = Bn(1) are called the Bell numbers. The Stirling number S1(n, k) of the first kind
counts the number of having permutations of the set {1, 2, . . . , n} having k disjoint cycles.

Dowling [2] constructed a certain lattice for a finite group of order m, called Dowling lattice,
and using the Möbius function, he introduced the corresponding Whitney numbers of the first kind
wm(n, k) and Whitney numbers of the second kind Wm(n, k) (0 ≤ k ≤ n, m ≥ 1), which are independent
of the group itself, but depend only on its order. For the trivial group, we have w1(n, k) = S1(n+1, k+1)
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and W1(n, k) = S2(n + 1, k + 1). Benoumhani [3,4] gave a detailed description of properties of these
numbers.

For x ∈ R, the falling factorials (x)n are given by (x)n = x(x − 1) · · · (x − n + 1),
(n ≥ 1) and (x)0 = 1, (see [1]).

As a generalization of the the Whitney numbers wm(n, k) and Wm(n, k) of the first and second kind
associated with Qn(G), respectively, Mezö [5] introduced r-Whitey numbers of the first and second kind
given by

mn(x)n =
n∑

k=0

wm,r(n, k)(mx + r)k,

and

(mx + r)n =
n∑

k=0

Wm,r(n, k)mk(x)n, (1)

respectively, for n ≥ k ≥ 0. And wm,r(0, 0) = 1 and Wm,r(0, 0) = 1.

When r = 1, wm(n, k) = wm,1(n, k) and Wm(n, k) = Wm,1(n, k).

We note that

w1,0(n, k) = S1(n, k), W1,0(n, k) = S2(n, k)

w1,r(n, k) = S1(n + r, k + r), W1,r(n, k) = S2(n + r, k + r)
wm,1(n, k) = wm(n, k), Wm,1(n, k) = Wm(n, k).

Note that the r-Whitney numbers of the second kind are exactly the same numbers defined by
Ruciński and Voigt et al. [6] and the (r, β)-Stirling numbers defined by Corcino et al. [7].

The r-Whitey numbers of both kinds and r-Dowling polynomials were studied by several authors.
The references [2–5,7–15] provided readers more information. In particular, Cheon et al. [8] and
Corcino et al. [11] gave combinatorial interpretations of the r-Whitney numbers of the first and second
kind, respectively. In recently years, many mathematicians have been studied the degenerate special
polynomials and numbers, and have obtained many interesting results [14,16–24]. In particular, the
generating functions of (degenerate) special numbers and polynomials have various applications in
many fields as well as mathematics and physics [1–32]. Kim et al. [14] introduced the degenerate
Whitney numbers of the first kind and the second kind of Dowling lattice Qn (G) of rank n over a
finite group G of order m, respectively, as follows:

mn(x)n =
n∑

k=0

wm,λ(n, k)(mx + 1)k,λ, (n ≥ 0). (2)

and

(mx + 1)n,λ =
n∑

k=0

Wm,λ(n, k)mk(x)k, (n ≥ 0), see [14]. (3)

With these in mind, we naturally introduce the degenerate r-Dowling polynomials and numbers
associated with the degenerate r-Whitney numbers Wm,r(n, k) of the second kind in this paper. We
explore various properties and identities for the degenerate r-Dowling polynomials and numbers
including generating functions, Dobinski-like formula, integral representations, recurrence relations,
various explicit expressions. Furthermore, we investigate several expressions for them that can be
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derived from repeated applications of certain operators to the exponential functions, the derivatives
of them and some identities involving them.

2 Preliminaries

In this section, we introduce the basic definitions and properties of the degenerate r-Dowling
polynomials and numbers needed in this paper.

For x ∈ R, the rising factorials 〈x〉n are given by 〈x〉n = x(x + 1) · · · (x + n − 1),
(n ≥ 1) and 〈x〉0 = 1, (see [1]).

Cheon et al. [8] introduced the r-Dowling polynomials associated with the r-Whitney numbers
Wm,r(n, k) of the second kind are given by

Dm,r(n, x) =
n∑

k=0

Wm,r(n, k)xk, (see [8]). (4)

By (1) and (4), the generating function of r-Dowling polynomials is given by
∞∑

k=0

Dm,r(n, x)
tn

n!
= exp

(
rt + x

emt − 1
m

)
, (see [8,11,13]),

where exp(t) = et.

Corcino et al. [11] studied asymptotic formulas for r-Whitney numbers of the second kind with
integer and real parameters. They also obtained the range of validity of each formula.

As is well known, for any λ ∈ R,

ex
λ
(t) = (1 + λt)

x
λ =

∞∑
n=0

(x)n,λ

tn

n!
, (|λt| < 1), (see [16–24]), (5)

where (x)n,λ = x(x − λ) · · · (x − (n − 1)λ)) (n ≥ 1) and (x)0,λ = 1. When λ → 0, ex
λ
(t) = ext.

The degenerate Stirling numbers of the second kind are given by

1
k!

(eλ(t) − 1)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0), (see [16,19,22]). (6)

Kim et al. studied the unsigned degenerate r-Stirling numbers of the second kind defined by

(x + r)n,λ =
n∑

j=0

S(r)
2,λ(n + r, j + r)(x)j, (n ≥ 0), (see [22]). (7)

From (7), the generating function of the degenerate r-Stirling numbers of the second kind is given
by

er
λ
(t)

1
j!

(eλ(t) − 1)j =
∞∑

n=j

S(r)
2,λ(n + r, j + r)

tn

n!
, (see [22]). (8)

where j is a non-negative integer.
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In view of (8), the degenerate r-Bell polynomials are given by

Bel(r)
n (x|λ) =

n∑
j=0

S(r)
2,λ(n + r, j + r)xj, (n ≥ 0), (see [22]). (9)

From (9), it is easy to show that the generating function of degenerate r-Bell polynomials is given
by

er
λ
(t)ex(eλ(t)−1) =

∞∑
n=0

Bel(r)
n (x|λ)

tn

n!
, (see [22]). (10)

when x = 1, Bel(r)
n (λ) = Bel(r)

n (1|λ) are called the degenerate r-Bell numbers.

Kim et al. introduced the λ-binomial coefficients defined as(
x
n

)
λ

= (x)n,λ

n!
= x(x − λ) · · · (x − (n − 1)λ)

n!
, (n ≥ 1) and

(
x
0

)
λ

= 1 (λ ∈ R), (see [20]). (11)

From (11), we easily get(
x + y

n

)
λ

=
n∑

l=0

(
x
l

)
λ

(
y

n − l

)
λ

, (n ≥ 0), (see [20]). (12)

From (12), we note that

(x + y)n,λ =
n∑

k=0

(
n
k

)
(x)k,λ(y)n−k,λ. (13)

3 Degenerate r-Dowling Polynomials and Numbers

In this section, we explore various properties for the degenerate r-Dowling polynomials and
numbers.

From (1), the degenerate r-Whitney numbers W (r)
m,λ(n, k) of the second kind are given by

(mx + r)n,λ =
n∑

k=0

Wm,r(n, k)mk(x)n, (see [14]). (14)

Lemma 3.1. [14] For k ≥ 0, we have the generating function of the degenerate r-Whitney numbers
of the second kind as follows:

∞∑
n=j

Wm,r,λ(n, j)
tn

n!
= er

λ
(t)

1
j!

(
em

λ
(t) − 1

m

)j

.

In Lemma 3.1, when r = 1, we have the generating function of the degenerate Whitney numbers
of the second kind as follows:

∞∑
n=j

Wm,λ(n, j)
tn

n!
= eλ(t)

1
j!

(
em

λ
(t) − 1

m

)j

, (see [16]).

From Lemma 3.1, (6) and (8), we get

W1,r,λ(n, j) = S(r)
2,λ(n + r, j + r),

W1,0,λ(n, j) = S2,λ(n, j),
Wm,1,λ(n, j) = Wm,λ(n, j).

(15)
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The next theorem is a recurrence relation of the degenerate Whitney numbers of the second kind.

Theorem 3.1. For n ≥ 0, we have

Wm,r,λ(n + 1, j) = Wm,r,λ(n, j − 1) + (mj + r − nλ)Wm,r,λ(n, j).

Proof. From (14), we observe that
n+1∑
j=0

Wm,r,λ(n + 1, j)mj(x)j = (mx + r)n+1,λ = (mx + r − λn)(mx + r)n,λ

=
n∑

j=0

Wm,r,λ(n, j)mj(x)j{m(x − j) + mj + r − nλ}

=
n+1∑
j=1

Wm,r,λ(n, j − 1)mj(x)j +
n∑

j=0

Wm,r,λ(n, j)(mj + r − nλ)mj(x)j

=
n+1∑
j=0

{Wm,r,λ(n, j − 1) + Wm,r,λ(n, j)(mj + r − nλ)}mj(x)j. (16)

By comparing the coefficients of both sides of (16), we get the desired recurrence relation.

The following theorem shows that the degenerate r-Whitney numbers of second kind expresses
the finite sum of degenerate falling factorials.

Theorem 3.2. For n, j ≥ 0, we have

1
j! mj

j∑
d=0

(
j
d

)
(−1)j−d(dm + r)n,λ =

{
Wm,r,λ(n, j) if n ≥ j,

0 if otherwise.

Proof. By (5) and Lemma 3.1, we observe that
∞∑

n=j

Wm,r,λ(n, j)
tn

n!
= er

λ
(t)

1
j!

(
em

λ
(t) − 1

m

)j

= 1
j! mj

j∑
d=0

(
j
d

)
(−1)j−d

∞∑
n=0

(dm + r)n,λ

tn

n!

=
∞∑

n=0

(
1

j! mj

j∑
d=0

(
j
d

)
(−1)j−d(dm + r)n,λ

)
tn

n!
. (17)

By comparing the coefficients of both sides of (17), we get the desired result.

In Theorem 3.2, when r = 1, for n ≥ k ≥ 0, we get

1
j! mj

j∑
d=0

(
j
d

)
(−1)j−d(dm + 1)n,λ =

{
Wm,λ(n, j) if n ≥ j,

0 if otherwise, (see [14]).
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In this paper, we naturally consider the degenerate r-Dowling polynomials of the second kind
given by

Dm,r,λ(n|x) =
n∑

j=0

Wm,r,λ(n, j)xj, (n ≥ 0). (18)

When x = 1, Dm,r,λ(n) = Dm,r,λ(n|1) are called the degenerate r-Dowling numbers of the
second kind.

When r = 1, Dm,λ(n, x) = Dm,1,λ(n|x) are the degenerate Dowling polynomials in of the second
kind [14].

When r = 1, the degenerate r-Dowling polynomials of the second kind are different from the fully
degenerate Dowling polynomials in [23].

Theorem 3.3. For m ∈ N, the generating function of degenerate r-Dowling polynomials of the
second kind is

er
λ
(t)ex(

em
λ

(t)−1
m ) =

∞∑
n=0

Dm,r,λ(n|x)
tn

n!

Proof. From Lemma 3.1 and (18), we observe that
∞∑

n=0

Dm,r,λ(n|x)
tn

n!
=

∞∑
n=0

(
n∑

j=0

Wm,r,λ(n, j)xj

)
tn

n!

= er
λ
(t)

∞∑
j=0

xj 1
j!

(
em

λ
(t) − 1

m

)
= er

λ
(t)ex(

em
λ

(t)−1
m ). (19)

By (19), we have the generating function of degenerate r-Dowling polynomials of the second kind.

When m = 1, from Theorem 3.3, (10) and (15), we observe that

D1,r,λ(n) =
n∑

j=0

W1,r,λ(n, j) =
n∑

j=0

S(r)
2,λ(n + r, j + r) = Bel(r)

n (λ).

When m = 1, r = 1 and λ → 0, we note that

D1,1(n) =
n∑

j=0

W1,1(n, j) =
n∑

j=0

S2(n + 1, j + 1).

Theorem 3.4. (Dobinski-like formula)

For n ≥ 0, we have

Dm,r,λ(n|x) = e− x
m

∞∑
j=0

(mj + r)n,λ

j! mj
xj,

When r = 1, we have

Dm,λ(n|x) = e− 1
m

∞∑
j=0

(mj + 1)n,λ

j! mj
xj.
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Proof. From (5) and Theorem 3.3, we note that
∞∑

n=0

Dm,r,λ(n|x)
tn

n!
= er

λ
(t)ex(

em
λ

(t)−1
m ) = e− x

m

∞∑
j=0

xj 1
mjj!

emj+r
λ

(t)

= e− x
m

∞∑
j=0

xj

mjj!

∞∑
n=0

(mj + r)n,λ

tn

n!
=

∞∑
n=0

(
e− x

m

∞∑
j=0

xj

mjj!
(mj + r)n,λ

)
tn

n!
. (20)

By comparing the coefficients of both sides of (20), we have Dobinski-like formula for the
degenerate r-Dowling polynomials.

In the following theorem and corollary, we have integral representations of the degenerate r-
Whitney numbers and the degenerate r-Dowling polynomials, respectively.

Theorem 3.5. For n, l ∈ Z with n ≥ l ≥ 0, we have

Wm,r,λ(n, l) = n!
π

Im
∫ 2π

0

1
l!

er
λ
(eiθ )

(
em

λ
(eiθ ) − 1

m

)l

sin(nθ)dθ ,

where i = √−1.

Proof. From Lemma 3.1, we get∫ 2π

0

1
l!

er
λ
(eiθ )

(
em

λ
(eiθ ) − 1

m

)l

sin(nθ)dθ =
∞∑
j=l

Wm,r,λ(j, l)
1
j!

∫ 2π

0

eijθ sin(nθ)dθ

= i
∞∑
j=l

Wm,r,λ(j, l)
1
j!

∫ 2π

0

sin(jθ) sin(nθ)dθ = iπ
n!

Wm,r,λ(n, l). (21)

Therefore, by (21) we have the desired result.

Corollary 3.1. For n ≥ 0, we have

n!
π

Im
∫ 2π

0

er
λ
(eiθ ) exp

(
em

λ
(eiθ ) − 1

m

)
sin(nθ)dθ = Dm,r,λ(n).

Proof. By Lemma 3.1 and Theorem 3.5, we have∫ 2π

0

er
λ
(eiθ ) exp

(
em

λ
(eiθ ) − 1

m

)
sin(nθ)dθ =

∞∑
l=0

∫ 2π

0

er
λ
(eiθ )

1
l!

(
em

λ
(eiθ ) − 1

m

)l

sin(nθ)dθ

=
∞∑

l=0

∞∑
j=l

Wm,r,λ(j, l)
1
j!

∫ 2π

0

ejiθ sin(nθ)dθ

= i
∞∑

j=0

j∑
l=0

1
j!

Wm,r,λ(j, l)
∫ 2π

0

sin(jθ) sin(nθ)dθ = iπ
n!

Dm,r,λ(n). (22)

From (22), we get the desired identity.

Lemma 3.2. For n ≥ j ≥ 0 and r, m ∈ N, we have

Wm+1,r,λ(n, j) = 1

(m + 1)
jmn−j

n∑
s=0

(
n
s

)
(−1)n−s(m + 1)s < r>n−s,mλWm,r, m

m+1 λ(s, j).
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Proof. From Theorem 3.2 and (13), we get

Wm+1,r,λ(n, j) = 1

j! (m + 1)
j

j∑
l=0

(
j
l

)
(−1)j−l(l(m + 1) + r)n,λ

= (m + 1)
n−j

j!

j∑
l=0

(
j
l

)
(−1)j−l

(
l + r

m
− r

m(m + 1)

)
n, λ

m+1

= (m + 1)n

j∑
l=0

(
j
l

)
(−1)

j−l

(m + 1)
j j!

n∑
s=0

(
n
s

)(
l + r

m

)
n−s, λ

m+1

( −r
m(m + 1)

)
s, λ

m+1

= (m + 1)n

n∑
s=0

(
n
s

)
mj

(m + 1)
jmn−s

(
− r

m(m + 1)

)
s, λ

m+1

× 1
j! mj

j∑
l=0

(
j
l

)
(−1)j−l(lm + r)n−s, m

m+1 λ

= (m + 1)n

n∑
s=0

(
n
s

)
mj

(m + 1)
jmn−s

(−1)
s

(m(m + 1))
s < r>s,mλWm,r, m

m+1 λ(n − s, j)

= 1

(m + 1)
jmn−j

n∑
s=0

(
n
s

)
(−1)n−s(m + 1)s < r>n−s,mλWm,r, m

m+1 λ(s, j). (23)

By (23), we obtain the desired result.

The next theorem is a recurrence relation of degenerate r-Dowling polynomials.

Theorem 3.6. For n ≥ 0, we have

Dm+1,r,λ(n|x) = 1
mn

n∑
j=0

(
n
j

)
(−1)n−j(m + 1)j < r>n−j,mλDm,r, m

m+1 λ

(
j,

m
m + 1

x
)

,

Proof. From (18) and Lemma 3.2, we have

Dm+1,r,λ(n|x) =
n∑

j=0

Wm+1,r,λ(n, j)xj

=
n∑

j=0

(
1

(m + 1)
jmn−j

n∑
s=0

(
n
s

)
(−1)n−s(m + 1)s < r>n−s,mλWm,r, m

m+1 λ(s, j)

)
xj

= 1
mn

n∑
j=0

(
n
j

)
(−1)n−j(m + 1)j < r>n−j,mλDm,r, m

m+1 λ

(
j,

m
m + 1

x
)

. (24)

Here Wm,r,λ(j, d) = 0, if d ≥ j. Thus, by (24), we get what we want.

Theorem 3.7. For n ≥ j ≥ 0, we have the recursion formula for Wm,r,λ(n, j) as follows:

Wm,r,λ(n + 1, j) = n!
n∑

d=j−1

(
rWm,r,λ(d, j) +

d∑
c=j−1

(
d
c

)
Wm,r,λ(c, j − 1)(m)d−c,λ

)
(−λ)

n−d

d!
.

Proof. For j ≥ 1, from (5) and Lemma 3.1, we observe that∑∞

n=j−1
Wm,r,λ(n + 1, j)

tn

n!
= d

dt
1
j!

er
λ
(t)

(
em

λ
(t) − 1

m

)j
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=
(

r
j!

er
λ
(t)

(
em

λ
(t) − 1

m

)j

+ 1
(j − 1)!

er
λ
(t)

(
em

λ
(t) − 1

m

)j−1

em
λ
(t)

)
1

1 + λt

= (

∞∑
b=j

rWm,r,λ(b, j)
tb

b!
+

∞∑
l=j−1

l∑
c=j−1

(
l
c

)
Wm,r,λ(c, j − 1)(m)l−c,λ

tl

l!
)

∞∑
i=0

(−1)
i
λiti

=
∞∑

n=j

n∑
b=j

(
n
b

)
rWm,r,λ(b, j)(n − b)! (−λ)n−b tn

n!

+
∞∑

n=j−1

n∑
l=j−1

l∑
c=j−1

(
n
l

) (
l
c

)
Wm,r,λ(c, j − 1)(m)l−c,λ(n − l)! (−λ)n−l tn

n!

=
∞∑

n=j−1

(
n!

n∑
b=j−1

(
rWm,r,λ(b, j) +

b∑
c=j−1

(
b
c

)
Wm,r,λ(c, j − 1)(m)b−c,λ

)
(−λ)

n−b

b!

)
tn

n!
. (25)

By comparing the coefficients of both sides of (25), we get what we want.

The following theorem is another recurrence relation of degenerate r-Dowling polynomials.

Theorem 3.8. For n ≥ 0, we have the recurrence formula of Dm,r,λ as follows:

Dm,r,λ(n + 1|u) =
n∑

l=0

(
n
l

)
{r(−λ)n−l(n − l)! +u(m − λ)n−l,λ}Dm,r,λ(l|u).

Proof. From Theorem 3.3, we note that

∂

∂t
er

λ
(t) exp

(
u

em
λ
(t) − 1

m

)
= ∂

∂t

∞∑
n=0

Dm,r,λ(n|u)
tn

n!
=

∞∑
n=0

Dm,r,λ(n + 1|u)
tn

n!
. (26)

On the other hand, by (26), we get

∂

∂t
er

λ
(t) exp

(
u

em
λ
(t) − 1

m

)
= rer−λ

λ
(t) exp

(
u

em
λ
(t) − 1

m

)
+ uer

λ
(t) exp

(
u

em
λ
(t) − 1

m

)
em−λ

λ
(t)

=
(

r
∞∑

i=0

(−λ)
ii!

ti

i!
+ u

∞∑
j=0

(m − λ)j,λ

tj

j!

) ∞∑
l=0

Dm,r,λ(l|u)
tl

l!

=
∞∑

n=0

n∑
l=0

(
n
l

) (
r(−λ)n−l(n − l)! Dm,r,λ(l|u) + u(m − λ)n−l,λDm,r,λ(l|u)

) tu

u!
. (27)

By comparing the coefficients of (26) with (27), we get the desired identity.

Remark. When u = 1, we have

Dm,r,λ(n + 1) =
n∑

l=0

(
n
l

)
{r(−λ)n−l(n − l)! +(m − λ)n−l,λ}Dm,r,λ(l). (28)

Next, we explore two identities including degenerate r-Dowling polynomials that can be derived
from repeated applications of certain operators to the degenerate exponential functions.
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Theorem 3.9. For n ≥ 0, we have

∂n

∂tn
er

λ
(t) exp

( x
m

em
λ
(t)

)
= er−nλ

λ
(t) exp

( x
m

em
λ
(t)

)
Dm,r,λ(n|xem

λ
(t)).

Proof. First, we observe that

∂

∂t
emj+r

λ
(t) = ∂

∂t
(1 + λt)

mj+r
λ = (mj + r)(1 + λt)

(mj+r)−λ
λ ,

∂2

∂t2
emj+r

λ
(t) = (mj + r)(mj + r − λ)(1 + λt)

(mj+r)−2λ
λ ,

...

∂n

∂tn
emj+r

λ
(t) = (mj + r)n,λe−nλ

λ
(t)emj+r

λ
(t). (29)

By (29) and Theorem 3.4,

∂n

∂tn
er

λ
(t)e

x
m (em

λ
(t)) = ∂n

∂tn

(
er

λ
(t)

∞∑
j=0

xj

mjj!
emj

λ
(t)

)
=

∞∑
j=0

xj

mjj!

(
∂n

∂tn
emj+r

λ
(t)

)

=
∞∑

j=0

xj

mjj!
(mj + r)n,λe−nλ

λ
(t)emj+r

λ
(t)

= er−nλ

λ
(t)

∞∑
j=0

(mj + r)n,λ

mjj!
(xem

λ
(t))j = er−nλ

λ
(t)e

xem
λ

(t)
m Dm,λ(n|xem

λ
(t)). (30)

From (30), we have what we want.

Let An,λ =
∞∑

j=0

(mj+r)n,λ
j!mj , n = 0, 1, 2, . . .. From Theorem 3.4, we have Dm,r,λ(n) = e− 1

m An,λ.

By Theorem 3.3, we have
∞∑

n=0

An,λ

tn

n!
= e

1
m

∞∑
n=0

Dm,r,λ(n)
tn

n!

= e
1
m er

λ
(t) exp

(
em

λ
(t) − 1

m

)
= er

λ
(t) exp

(
em

λ
(t)

m

)
. (31)

From (31), the generating function of An,λ is

er
λ
(t) exp

(
em

λ
(t)

m

)
=

∞∑
n=0

An,λ

tn

n!
. (32)

Theorem 3.10. For n ≥ 0, we have(
mu1− λ

m
d
du

)n

u
r
m e

ux
m = u

r−nλ
m e

ux
m Dm,r,λ(n|u).
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Proof. Let em
λ
(t) = u, Then we have

d
dt

= du
dt

d
du

= (mem−λ

λ
(t))

d
du

= (mu
m−λ

m )
d
du

. (33)

By (33), we get

(mu
m−λ

m
d
du

)nu
r
m exp

( x
m

u
)

= u
r−nλ

m exp
( x

m
u
)

Dm,r,λ(n|xu), (n ≥ 0). (34)

By (34), we attain the desired result.

Remark. When x = 1, we have(
mu1− λ

m
d
du

)n

u
r
m e

u
m = u

r−nλ
m e

u
m Dm,r,λ(n|u).

In Theorem 3.1, when u = 1 we observe that(
mu

m−λ
m

d
du

)n

u
r
m exp

( u
m

)∣∣∣∣
u=1

= e
1
m Dn,r,λ(n) = An,λ. (35)

From (35), we obtain
A0,λ = e

1
m and Dm,r,λ(0) = e− 1

m A0,λ = 1.

In (35), when n = 1, we get(
mu

m−λ
m

d
du

)1

u
r
m exp

( u
m

)

= mu
m−λ

m

(
r
m

u
r
m −1 exp

( u
m

)
+ 1

m
u

r
m exp

( u
m

))
= (r + u)u

r−λ
m e

u
m . (36)

From (36), A1,λ = (r + 1)e
1
m and e− 1

m A1,λ = (r + 1) = Dm,r,λ(1).

In (35), when n = 2, we observe that(
mu

m−λ
m

d
du

)2

u
r
m e

u
m =

(
mu

m−λ
m

d
du

)
(r + u)u

r−λ
m e

u
m

= mu
m−λ

m

{
u

r−λ
m e

u
m + r − λ

m
u

r−λ−m
m (r + u)e

u
m + 1

m
(r + u)u

r−λ
m e

u
m

}

= u

m − r − 2λ

m e
u
m

{
m + (r − λ)u−1(r + u) + (r + u)

}
. (37)

From (37), we get

A2,λ = e
1
m {m + (r − λ)(r + 1) + (r + 1)} = e

1
m {m + (r + 1)(r − λ + 1)}. (38)

Thus, by (38), we have Dm,r,λ(2) = m + (r + 1)(r − λ + 1).

In the same way, we get

Dm,r,λ(3) = 2rλ2 + (m − λ)(m − 2λ) + (r + 1){3m + (r + 1)(r + 1 − 3λ)}. (39)

By continuous this process, we get all the r-Dowling numbers Dm,r,λ(n), for n ∈ N.
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As you can see from (39), the larger n, the more difficult it is to calculate by hand. Here we use
Mathematica and Fortran language to find these values.

In Fig. 1, when m = 5, we can see the change of D5,r,0.1(2) and D5,r,0.5(2) depending on r by
using Mathematica (x-axis is the numbers of r, y-axis D(2) is the numbers of D5,r,0.1(2) and D5,r,0.5(2),
respectively).

In Fig. 2, when m = 5, we can see the change of D5,r,0.1(3) and D5,r,0.5(3) depending on r by
using Mathematica (x-axis is the numbers of r, y-axis D(3) is the numbers of D5,r,0.1(3) and D5,r,0.5(3),
respectively).

Figure 1: D(2) = D5,r,λ(2), when λ= 0.1 and 0.5, respectively

Figure 2: D(3) = D5,r,λ(3), when λ= 0.1 and 0.5, respectively

In Fig. 3, when λ = 0.1, we can see the change of D10,1,0.1(n) and D50,1,0.1(n), respectively, by using
Fortran language (x-axis is the numbers of n, y-axis log10(D(n)) is the value of log10 (numbers of
D10,1,0.1(n) and D50,1,0.1(n), respectively).

In Fig. 4, when λ = 0.5, we can see the change of D10,1,0.5(n) and D50,1,0.5(n), respectively, by using
Fortran language (x-axis is the numbers of n, y-axis log10(D(n)) is the value of log10 (numbers of
D10,1,0.5(n) and D50,1,0.5(n)), respectively).
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Figure 3: log10(D(n)) = log10(Dm,1,0.1(n)) when m = 10 and 50, respectively

Figure 4: log10(D(n)) = log10(Dm,1,0.5(n)) when m = 10 and 50, respectively

Next, we can get differential equation for degenerate r-Dowling polynomials as follows:

Theorem 3.11. For n ≥ 0, we have

Dm,r,λ(n + 1|u) = (u + (r − nλ))Dm,r,λ(n|u) + mu
d
du

Dm,r,λ(n|u).

Proof. By using Theorem 3.4, we observe

d
du

(u
r−nλ

m Dm,r,λ(n|u)) = d
du

(
u

r−nλ
m exp(− u

m
)

∞∑
j=0

(mj + r)n,λ

j! mj
uj

)

= d
du

(
exp

(
− u

m

) ∞∑
j=0

(mj + r)n,λ

j! mj
u

(mj+r)−nλ
m

)
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= − 1
m

exp
(
− u

m

) ∞∑
j=0

(mj + r)n,λ

j! mj
u

(mj+r)−nλ
m + exp

(
− u

m

) ∞∑
j=0

(mj + r)n+1,λ

j! mj+1
u

(mj+r)−nλ
m u−1

= − 1
m

{
u

r−nλ
m Dm,r,λ(n|u) − u

(r−m)−nλ
m Dm,r,λ(n + 1|u)

}
. (40)

On the other hand, we have

d
du

(u
r−nλ

m Dm,r,λ(n|u)) = r − nλ

m
u

r−nλ−m
m Dm,r,λ(n|u) + u

r−nλ
m

d
du

Dm,r,λ(n|u). (41)

By (40) and (41), we have

u
(r−m)−nλ

m Dm,r,λ(n + 1|u) = u
r−nλ

m Dm,r,λ(n|u)

(
1 + r − nλ

u

)
+ u

r−nλ
m m

d
du

Dn,r,λ(n|u). (42)

From (42), we get

1
u

Dm,r,λ(n + 1|u) =
(

1 + r − nλ

u

)
Dm,r,λ(n|u) + m

d
du

Dm,r,λ(n|u). (43)

By (43), we obtain the desire result.

Now, we study the derivative of degenerate r-Dowling polynomials Dm,r,λ(n|x).

Theorem 3.12. For n ≥ 1, we have

d
du

Dm,r,λ(n|u) = 1
m

n−1∑
l=0

(
n
l

)
(m)n−l,λDm,r,λ(l|u).

Proof. From (5) and Theorem 3.3, we observe that
∞∑

n=0

d
du

Dm,r,λ(n|u)
tn

n!
= ∂

∂u

(
er

λ
(t) exp

(
u

em
λ
(t) − 1

m

))

= er
λ
(t)

em
λ
(t) − 1

m
exp

(
u

em
λ
(t) − 1

m

)

= em
λ
(t) − 1

m

∞∑
l=0

Dm,r,λ(l|u)
tl

l!

= 1
m

( ∞∑
i=0

(m)i,λ

ti

i!
− 1

) ∞∑
l=0

Dm,r,λ(l|u)
tl

l!

= 1
m

∞∑
n=0

(
n∑

l=0

(
n
l

)
(m)n−l,λDm,r,λ(l|u) − Dm,r,λ(n|u)

)
tn

n!

= 1
m

∞∑
n=0

(
n−1∑
l=0

(
n
l

)
(m)n−l,λDm,r,λ(l|u)

)
tn

n!
. (44)

By comparing the coefficients on both sides of (44), we attain the desired identity.
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Theorem 3.13. For n ≥ 1, we have

Dm,r,λ(n|u) = (r)n,λ +
n−1∑
l=0

(
n
l

)
(n)n−l,λ

∫ u

0

Dm,r,λ(l|u) du.

Proof. From (5) and Theorem 3.3, we have
∞∑

n=0

∫ u

0

Dm,r,λ(n|u)du
tn

n!
=

∫ u

0

er
λ
(t) exp(u

em
λ
(t) − 1

m
)du

= er
λ
(t)

∫ u

0

exp
(

u
em

λ
(t) − 1

m

)
du

= er
λ
(t)

m
em

λ
(t) − 1

[
exp

(
u

em
λ
(t) − 1

m

)]u

0

. (45)

From (45), we observe that

(em
λ
(t) − 1)

∞∑
l=0

∫ u

0

Dm,r,λ(l|u) du
tl

l!
= er

λ
(t)

{
exp

(
u

em
λ
(t) − 1

m

)
− 1

}
. (46)

By (46), we have
∞∑

j=1

(m)j,λ

tj

j!

∞∑
l=0

∫ u

0

Dm,r,λ(l|u) du
tl

l!
=

∞∑
n=0

Dm,r,λ(n|u)
tn

n!
−

∞∑
n=0

(r)n,λ

tn

n!
. (47)

From (47), we obtain
∞∑

n=1

n−1∑
l=0

(
n
l

)
(m)n−l,λ

∫ u

0

Dm,r,λ(l|u) du
tn

n!
=

∞∑
n=0

{Dm,r,λ(n|u) − (r)n,λ} tn

n!
. (48)

By comparing the coefficients of both sides of (45), we have the desired identity.

If we put y = uq (q ∈ N ∪ {0}) and apply the next theorem, we get another interesting identity
depending on the variable q different from Theorem 3.10.

Theorem 3.14. For n ≥ 0, we have the operational formula as follows:(
mu1− λ

m
d
du

)n

uq r
m exp

(
uq

m

)
= qnu

rq−nλ
m exp

(
uq

m

)
Dm,r, λq

(n|uq).

Proof. Let y = uq (q ∈ N ∪ {0}). Then we have

mu1− λ
m

d
du

= mu1− λ
m quq−1 d

dy
= my

m−λ
mq qy

q−1
q

d
dy

= mqy
mq−λ

mq
d
dy

= mqy1− λ
mq

d
dy

. (49)

Thus, by (49), we have⎛
⎝mu

1−
λ

m d
du

⎞
⎠

n

u
q

r
m exp

(
uq

m

)
= qn

⎛
⎜⎝my

1−
λ

mq d
dy

⎞
⎟⎠

n

y
r
m exp

( y
m

)
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= qny

r−n
λ

q
m exp

( y
m

)
D

m,r,
λ

q

(n|y) = qnu
rq−nλ

m exp
(

uq

m

)
D

m,r,
λ

q

(n|uq).

(50)
From (50), we attain the desired formula.

4 Conclusion

In this paper, we studied many interesting properties for the degenerate r-Dowling polynomials
and numbers associated with the degenerate r-Whitney numbers of the second kind. Among these
identity expressions, we obtained the generating function in Theorem 3.3, Dobinski-like formula in
Theorem 3.4, recurrence relations in Theorem 3.6 and 3.8, differential equation in Theorem 3.11, the
derivatives of them in Theorem 3.12 for r-Dowling polynomials of the second kind. In particular,
we obtained some expressions for them that can be derived from repeated applications of certain
operators to the exponential functions in Theorem 3.9, 3.10 and 3.14, and some identities involving
integration in Theorem 3.13. Furthermore, we found that all exact values of all r-Dowling numbers
of the second kind can be obtained using (28). As a follow-up study of this paper, we can explore
truncated degenerate r-Dowling polynomials and degenerate r-Dowling polynomials arising from λ-
Sheffer sequences. Hence, for future projects, we would like to conduct research into some potential
applications of r-Dowling polynomials of the first and second kind, respectively.
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