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ABSTRACT

The article proposes an Equivalent Single Layer (ESL) formulation for the linear static analysis of arbitrarily-shaped
shell structures subjected to general surface loads and boundary conditions. A parametrization of the physical
domain is provided by employing a set of curvilinear principal coordinates. The generalized blending methodology
accounts for a distortion of the structure so that disparate geometries can be considered. Each layer of the stacking
sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum. In addition, re-entrant
auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model. The unknown
variables are described employing a generalized displacement field and pre-determined through-the-thickness
functions assessed in a unified formulation. Then, a weak assessment of the structural problem accounts for shape
functions defined with an isogeometric approach starting from the computational grid. A generalized methodology
has been proposed to define two-dimensional distributions of static surface loads. In the same way, boundary
conditions with three-dimensional features are implemented along the shell edges employing linear springs. The
fundamental relations are obtained from the stationary configuration of the total potential energy, and they are
numerically tackled by employing the Generalized Differential Quadrature (GDQ) method, accounting for non-
uniform computational grids. In the post-processing stage, an equilibrium-based recovery procedure allows the
determination of the three-dimensional dispersion of the kinematic and static quantities. Some case studies have
been presented, and a successful benchmark of different structural responses has been performed with respect to
various refined theories.
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3D honeycomb; anisotropic materials; differential quadrature method; general loads and constraints; higher order
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1 Introduction

New advances in many engineering applications are based on the employment of smart innovative
materials and appliances characterized by non-conventional shapes [1,2]. Very complex mechanical
properties are very frequently required, together with an increased need for lightweight materials
[3]. As a matter of fact, when unconventional materials and geometries are adopted, the structural
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behaviour is not easy to be predicted a priori with simple but effective models due to the absence of
symmetry planes [4,5].

In this perspective, laminated structures are widespread solutions for achieving unconventional
and optimized structural performances. As it is well-known, classical composite materials usually
induce an orthotropic behaviour of the overall structure [6]. Nevertheless, new solutions can be found
in literature where very complex deformation mechanisms can be induced, together with coupling
effects. Moreover, several engineering manufacturing processes employ architectured geometries
that have been conceived for the fulfillment of different aesthetic, ergonomic, and aerodynamic
requirements [7]. An important reason comes from the endeavor to obtain the best form under fixed
load cases and external constraints layup [8]. In fact, an effective reduction of the material is sought
in this way. All shell structures are spatially distributed volumes [9,10]. For this reason, advanced
design skills are required for a correct mathematical modelling of their shape and material properties.
Moreover, the accuracy of a correct modelling is crucial for its reliability since the presence of curvature
significantly orients the structural behaviour, as well as the constitutive relationships [11].

As a matter of fact, three-dimensional (3D) solid simulations based on the widespread Finite
Element Method (FEM) are nowadays the most adopted strategy for the structural assessment of
curved and layered shells [12,13]. Accordingly, such models lead to a very demanding computational
cost for the simulation [14]. For this reason, two-dimensional (2D) alternative approaches have been
derived. The most famous strategy is Equivalent Single Layer (ESL) [15–17], which assesses the entire
structural problem on a reference surface whose generic point is located in the middle thickness of the
solid. In particular, in reference [16] an extensive study with higher order theories for doubly-curved
shell structures is provided, and in reference [17] an ESL higher order model is developed for laminated
composite curved structures. In the same way, the Layer-Wise (LW) approach [18–22] introduces a 2-
manifold for each layer of the stacking sequence. In reference [19] the dynamic behaviour of anisotropic
doubly-curved shells is investigated with a higher order LW approach, whereas in reference [20] an
equivalent LW model is developed, accounting for an efficient description of the kinematic field,
referring to the intrados and extrados of the structure. In the so-called Sub-Laminate Theory (SLT)
a series of reference surfaces are defined for a specific group of the entire lamination scheme [23–25].
For the LW and the SLT, the compatibility conditions between the various reference surfaces are taken
into account during the global matrices assembly. Generally speaking, LW provides more accurate
results than the ESL approach, but it can be very high computationally demanding since the overall
number of Degrees of Freedom (DOFs) comes to be proportional to the layers within the laminate
[26]. Within the ESL framework, the number of unknown variables is not dependent on the actual
stacking sequence. Moreover, suppose a higher order set of axiomatic assumptions is included in the
model. In that case, the accuracy of ESL 2D formulations can be compared to that of the 3D FEM
and LW solutions even for generally anisotropic lamination schemes [27].

As it is well known, classical finite element simulations are characterized by a local pre-determined
polynomial approximation of the unknown field variable between two adjacent points. On the other
hand, when shell elements with curvatures are considered, some issues like the shear locking can
emerge, thus invalidating the simulation [28,29]. For this reason, very refined meshes are implemented
so that very accurate results are requested. In this way, the geometric and simulation discretization
error is reduced, but the computational cost increases a lot.

In contrast, the IsoGeometric Approach (IGA) accounts for the employment of the actual
geometry of the structure directly taken from the Computer Aided Design (CAD) process in the
theoretical modelling [30–34]. As a consequence, arbitrary interpolating functions are developed.
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Throughout literature, IGA has been employed for both the strong and weak implementations of
disparate structural problems with curved edges and shapes. In particular, in reference [34] the
IGA approach has been adopted for the buckling analysis of 3D plates, taking into account 2D
computation of Non-Uniform Rational B-Spline (NURBS) curves, as well as the enforcement of
boundary conditions. Furthermore, the hybrid meshfree collocation method is employed in reference
[35], and a computationally efficient formulation is obtained, which is characterized by the advantages
of IGA and meshfree methods.

When laminated doubly-curved shells are investigated by means of 2D models, a key aspect is the
parametrization of the reference surfaces. It is feasible that a set of principal curvilinear coordinates
are provided starting from the geometric properties of the structure. In the case of shells of arbitrary
shape, a distortion algorithm is proposed so that the physical domain is described with a rectangular
computational interval. To this end a set of generalized blending functions are developed [36,37]. They
are based on the geometric description of the shell edges and the location of the corners of the structure
within the physical domain. When IGA methodology is followed, NURBS curves are employed for
this task. In references [38,39], an interesting insight into the computation of such curves is provided.

Within the ESL 2D simulations, since the 3D shell structure is reduced to its equivalent reference
surface as described in references [40,41] the three-dimensional unknown field variable should be
expressed in terms of a set of predetermined through-the-thickness shape functions [42–45], each
of them arranged employing a generalized matrix formulation [46,47]. Accordingly, reference [42]
employs power polynomials for the assessment of all thickness functions set and derives a closed-form
analytical solution, whereas in references [43,44] a higher order power assumption is adopted only
for in-plane displacement components. As far as ESL theories is concerned, both polynomial and
trigonometric functions can be adopted along each shell principal direction [48–50]. As the order of
the kinematic expansion increases, the so-called Higher Order Shear Deformation Theories (HSDTs)
come out [16]. The above-mentioned generalized approach also embeds classical theories like the First
Order Shear Deformation Theory (FSDT) [51,52] and the Third Order Shear Deformation Theory
(TSDT) [53–55] which considers a first and a third-order polynomial expansion for the in-plane
kinematic field, respectively. The out-of-plane direction is characterized by a constant distribution of
the displacement field instead, thus neglecting any kind of stretching and shear effect. The employment
of non-uniform through-the-thickness assumptions is crucial for modelling the actual deflection
of the structure. Actually, in reference [56] it is shown that the out-of-plane stretching plays an
important role in the deformation response, whereas in reference [57] the shear contribution in the
total deflection of composite laminated structure is outlined. Even though an axiomatic selection of
thickness functions can be assessed, some refined theories have been derived for orthotropic laminated
structures in which the through-the-thickness hypotheses are based on the mechanical characteristics
of the constituent materials [58–61]. In particular, in reference [58] the classical FSDT theory is refined
with the introduction of a shear thickness function derived from the actual lamination scheme of the
selected plate. Furthermore, in reference [59] the same approach has been applied to mono-dimensional
(1D) beams. In the case of laminated shells the unknown field variable dispersion should fulfil the
interlaminar continuity since a piecewise transverse displacement field and shear stress distribution
should be modelled. Moreover, it is feasible that the shear effect is embedded in the formulation,
since experimental tests show that its contribution turns out to be prominent in laminated structures
[62,63]. For this reason, the LW approach is the most suitable strategy. On the other hand, the ESL
approach can provide good results too if the so-called zigzag functions are adopted for the field variable
description. In reference [64] an interesting review for multilayered theories is reported, where the
selection of thickness functions accounts for continuous transverse stresses and a discontinuous first
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order derivative of the same quantities for both in-plane and out-of-plane components. In references
[65,66] instead, a discontinuous first order derivative of the in-plane displacement components is
provided in an effective way from the introduction of a piecewise function at the first order of the
kinematic expansion.

Some considerations should be made on the treatment of external surface loads distributions
within a 2D formulation. Classical solutions for plate problems [67,68] account in general for a
mere computation of normal external loads within the equilibrium equations. In the case of higher
order assumptions on the displacement field variable, the external loads should be inserted within
the 2D approach. An effective procedure for the assessment of external loads is based on the Static
Equivalence Principle [16,69]. The same methodology can be applied to classical refined models when
a higher order displacement field assumption is taken along each in-plane field variable. Throughout
literature, a huge variety of works can be found where the static performance of plates and shells is
evaluated under a uniform distribution of normal and tangential loads [70–75]. In reference [75] a
consistent method is proposed for concentrated loads within an ESL model directly in a strong form.
In particular, a smooth continuous function is taken into account, and the calibration of the shape and
position parameters can lead to a proper modelling of the singularity induced by point and line loads.
On the other hand, there are only few works from literature dealing with a general distribution of
surface pressure. A different group of studies investigates the problem of concentrated and line loads,
starting from the numerical approximation methods of the Delta-Dirac function. Among others, the
interested reader can refer to the articles by Eftekhari et al. [76–78], where the Dirac-Delta function is
discretized with success taking into account the employed numerical method. In particular, in reference
[76] moving concentrated loads have been applied to 1D structures starting from the definition of
the Dirac-Delta function. Then, in reference [77] the formulation has been extended to 2D structural
problems. Moving load problems have been treated in reference [78] with the well-known Heaviside
function. Generally speaking, the approximating function of a singularity problem should fulfill some
characteristic properties derived from the theoretical definition of concentrated loads; otherwise, it
should be properly normalized. These kinds of pressures are singularities in a differential continuum
model, such that various numerical techniques have been proposed for their approximation with
smooth functions [79–81]. According to the author’s knowledge, there are some works accounting
for a Gaussian distribution (see reference [82] among others). An interesting problem related to
concentrated loads on curved structures is the so-called pinched cylinder. In references [83–85] a series
of theoretical developments have been provided for a circular cylinder subjected to a point load applied
at the diameter of the surface.

As far as the numerical implementation is concerned, several articles can be found in which
spectral collocation methods are adopted within IGA framework. Among them, the Generalized
Differential Quadrature (GDQ) method [86–90] has demonstrated to be a reliable tool since it
overcomes many computational drawbacks. Based on polynomial functional approximation methods,
the GDQ has been successfully applied to a series of structural problems [91,92]. In particular, some
works can be found where GDQ has been adopted for the dynamic analysis of smart structures,
as well as multifield problems [93,94]. It has been shown that it is an extension of pseudospectral
collocation methods since the similar levels of accuracy are obtained when the same computational
grid is adopted [95–97]. On the other hand, the generalized procedure for the calculation of weighting
coefficients based on Lagrange polynomials for the global interpolation is not based on the actual
selection of discrete points and the derivation order. In particular, the GDQ method provides the best
performance among all the numerical techniques belonging to the weighted residual class. In reference
[98] the outcomes of the free vibration analysis of thin-walled beams calculated by means of the GDQ
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method are compared to those coming from a 1D Ritz formulation. Other works [99–102] provide the
theoretical assessment together with some parametric static and dynamic analyses of shells of different
curvatures characterized by innovative material like Carbon Nanotubes (CNTs) and Functionally
Graded Materials (FGMs). In reference [103] FGM structures have been investigated by employing a
semi-analytical model. In reference [104] an effective homogenization algorithm is developed for the
mechanical assessment of sandwich shells with both honeycomb and re-entrant patterns. Referring
to pantographic lattice structures, the widespread method for the computation of equivalent elastic
properties is the well-known Neumann’s principle [105], accounting for the computation of generalized
stiffnesses starting from simple independent load cases [106–108]. The accuracy of the solution lies in
the theoretical hypothesis considered for the numerical modelling. In particular, some considerations
should be made on the nodal area within the honeycomb cell, as well as the bending and shear effects
of vertical and inclined struts [109–111].

Once the 2D solution is provided on the reference surface of a doubly-curved shell, the post-
processing algorithm is crucial for the reconstruction of both static and kinematic quantities along the
three-dimensional solid. Actually, both the ESL and the LW formulation account for the assessment
of the generalized unknown field variables lying on the reference surface. Accordingly, in the case
of simulations performed with the FEM, the solution is calculated at the discrete set of nodes of
the computational grid. Then, a reconstruction along the continuum domain should be assessed.
Referring to the latter, there are three main classes of methodologies for the solution extrapolation,
namely the Superconvergent Patch Recovery (SPR) [112,113], the Averaging Method (AVG) [114,115]
and the Projection Method (PROJ) [116]. As far as the through-the thickness equilibrium-based
recovery procedure is concerned, the generalized constitutive relationship can be adopted as usual,
but a correction of shear and membrane stresses is essential so the boundary conditions related to
applied loads can be fulfilled [117–120].

In the present work, an ESL theoretical formulation is proposed for generally anisotropic doubly-
curved shells of arbitrary shapes by means of the ESL method. The reference surface of the structure
is described employing the main outcomes of differential geometry, setting an orthogonal curvilinear
set of principal coordinates. A NURBS based generalized set of blending functions is employed for the
distortion of the physical domain in the case of arbitrarily-shaped structures. The displacement field
component vector is intended to be the unknown variable of the problem, and it is expressed via the
employment of a generalized set of thickness functions. Actually, a higher order kinematic expansion
is performed together with a consistent zigzag function to properly catch all the possible stretching and
warping effects within each layer, as well as coupling issues at the interlaminar stage. A generalized
weak expression of the field variable is introduced, accounting for higher order shape functions for the
interpolation alongside the reference surface [121]. A general distribution of surface loads has been
considered in the model, setting a Gaussian and a Super-Elliptic distribution for the application of
external loads along each principal direction of the shell. In particular, the calibration of distribution
parameters leads to model different load cases. The fundamental governing equations, derived from the
Minimum Potential Energy Principle, are numerically tackled by the GDQ method. The Generalized
Integral Quadrature (GIQ) method has been adopted for the computation of integrals [16]. The GIQ
moves from the above-discussed GDQ procedure, and it allows performing numerical integrations
following an effective quadrature approach.

The theoretical formulation proposed in this manuscript has been implemented in the DiQuMAS-
PAB software [122], a research code based on the GDQ method accounting for static and dynamic
simulations on doubly-curved shell structures. All the numerical examples of mechanical properties
have been included in the built-in material library. The graphic user interface provided by the software
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allows to implement the lamination scheme, the geometry of the structure, as well as external load
and boundary conditions features. The structures that are considered for the numerical validation
account for different mechanical issues, namely the presence of a single and double curvature, the
number of layers and the presence of the soft core. Different loading conditions have been adopted.
The equilibrium-based 3D reconstruction of mechanical quantities has been demonstrated to be very
efficient in accordance with the predictions of refined 2D and 3D solutions. The same level of accuracy
has been outlined in the case of lamination schemes with a lattice layer characterized by a macro
mechanical orthotropic behaviour. Any performance reduction has been observed when a mapping of
the physical domain has been required.

2 Geometrical Description of a Doubly-Curved Shell

According to the ESL formulation, a doubly-curved shell should be referred to its reference surface
whose points are located at the middle thickness of the structure. It should be remarked that a generic
three-dimensional solid can be expressed with respect to a Cartesian global reference system O x1 x2 x3

of unit vectors e1, e2, e3 in terms of three parameters α1, α2, α3:

R (α1, α2, α3) = f1 (α1, α2, α3) e1 + f2 (α1, α2, α3) e2 + f3 (α1, α2, α3) e3 (1)

being R (α1, α2, α3) the three-dimensional position vector, and fi (α1, α2, α3) for i = 1, 2, 3 a continuous
function. If the variables α1, α2, α3 are taken as a set of curvilinear coordinates, it is possible to introduce
the above discussed reference surface r (α1, α2) starting from Eq. (1) as follows [16]:

R (α1, α2, ζ ) = r (α1, α2) + ζ n (α1, α2) (2)

where the α3 = ζ has been selected alongside the normal direction of r. A schematic representation
of the ESL assessment of the shell geometry has been reported in Fig. 1. The normal unit vector can
be computed if the partial derivatives of r (α1, α2) with respect to αi = α1, α2, namely r,i = ∂r

/
∂αi, are

known:

n = r,1 × r,2∣∣r,1 × r,2

∣∣ (3)

More specifically, Eq. (2) describes a doubly-curved shell when all the variables vary in a closed
interval. In particular, it should be stated that R (α1, α2, ζ ) ∈ [

α0
1 , α0

1

] × [
α0

2 , α1
2

] × [−h
/

2, h
/

2
]
.

Accordingly, shell thickness h (α1, α2) can be defined starting from Eq. (2), according to the following
expression taken from reference [16]:

h (α1, α2) =
l∑

k=1

hk (α1, α2) =
l∑

k=1

(ζk+1 (α1, α2) − ζk (α1, α2)) (4)

where hk (α1, α2) = ζk+1 (α1, α2) − ζk (α1, α2) is the width of the k-th lamina of the stacking sequence
composed of l ∈ N layers located within the interval [ζk, ζk+1] ⊆ [−h

/
2, h

/
2
]
. If the second order

derivatives r,ij = ∂2r
/(

∂αi∂αj

)
of the reference surface with αi, αj = α1, α2 are calculated, it is possible

to compute the principal radii of curvature Ri = R1, R2 in each point of the physical domain:

Ri = −r,i · r,i

r,ii · n
for i = 1, 2 (5)

In addition, the well-known Lamè parameters Ai = A1, A2 are defined as follows:

Ai = √
r,i · r,i for i = 1, 2 (6)
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Figure 1: Graphic representation of the ESL methodology for the structural assessment of doubly-
curved shells of arbitrary shape. NURBS mapping of the structure and definition of a 2D rectangular
computational domain

Starting from Eqs. (1) and (2), the parameters Hi (α1, α2, ζ ) are defined, accounting for the
curvature effect alongside the thickness direction ζ :

Hi (α1, α2, ζ ) = 1 + ζ

Ri (α1, α2)
for i = 1, 2 (7)

Accordingly, in the case of straight shells along the αi principal direction, Eq. (7) turns into
Hi (α1, α2, ζ ) = 1.

In the present manuscript, doubly-curved shells of variable thickness [16] have been considered;
therefore, a generalized analytical expression of h = h (α1, α2) is provided hereafter:

hk (α1, α2) = h0
kh̃ (α1, α2) = h0

k

(
1 +

4∑
j

δjφj (α1, α2) + δ̄

)
(8)

being h0
k the reference height of the k-th layer and δj for j = 1, . . . , 4 a scaling parameter, whereas δ̄

is a constant dimensionless shift number. In Eq. (8), thickness variation h̃ (α1, α2) has been described
in terms of four analytical expressions φj (α1, α2) employing a dimensionless coordinate defined along
each αi = α1, α2 principal direction of the shell, according to the following equation:

ᾱi = αi − α0
i

α1
i − α0

i

for i = 1, 2 (9)
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In the present formulation, the expressions of φj (α1, α2) for j = 1, . . . , 4 have been implemented,
being αjm ∈ [0, 1], nj ∈ N and pj ∈ R [16]:

φj (α1, α2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ᾱ
pj
i

e
−
⎛
⎜⎝ ᾱi

αjm

⎞
⎟⎠

pj

(
sin

(
π
(
njᾱi + αjm

)))p1

for
i = 1, 2
j = 1, 2

φj (α1, α2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − ᾱi)
pj

e
−
⎛
⎜⎝1 − ᾱi

αjm

⎞
⎟⎠

pj

(
sin

(
π
(
nj (1 − ᾱi) + αjm

)))pj

for
i = 1, 2
j = 3, 4 (10)

When an arbitrary curve is considered lying on the reference surface r (α1, α2) described with
principal coordinates, a local reference system composed of three unit vectors nn, ns and nζ should be
defined in each point of the curve at issue. More specifically, ns accounts for the tangential unit vector
of the curve, whereas nn is the normal unit vector of the curve. nζ denotes the bi-normal direction.
Referring to O′α1α2ζ middle surface reference system, nn, ns and nζ components can be computed in
each point of the curve, leading to:

nn = [nn1 nn2 nn3]
T

ns = [ns1 ns2 ns3]
T

nζ = [nζ1 nζ2 nζ3]
T

(11)

Since the curve at issue lies on r (α1, α2), it should be noted that nn3 = ns3 = nζ1 = nζ2 = 0 and
nζ3 = 1.

3 NURBS Blending of the Physical Domain

In the previous paragraph, the geometry of a generic doubly-curved shell has been described
starting from the reference surface r (α1, α2), according to the ESL framework. Nevertheless, it is
possible to perform a distortion of the original physical domain

[
α0

1 , α1
1

]× [
α0

2 , α1
2

]
in order to take into

account structures of arbitrary shape. To this purpose, a set of blending coordinates ξ1, ξ2 ∈ [−1, 1]
are introduced along the parametric lines of the mapped shell, as it has been shown in Fig. 1. In
particular, the four edges of the physical are identified on the physical domain according to the
following nomenclature [16]:

West edge (W) → ξ2 = −1 → (α1, α2) = (
ᾱ1(1) (ξ1) , ᾱ2(1) (ξ1)

)
South edge (S) → ξ1 = 1 → (α1, α2) = (

ᾱ1(2) (ξ2) , ᾱ2(2) (ξ2)
)

East edge (E) → ξ2 = 1 → (α1, α2) = (
ᾱ1(3) (ξ1) , ᾱ2(3) (ξ1)

)
North edge (N) → ξ1 = −1 → (α1, α2) = (

ᾱ1(4) (ξ2) , ᾱ2(4) (ξ2)
)

(12)

In Eq. (12), the symbols ᾱi(j) with i = 1, 2 and j = 1, . . . , 4 account for the parametric
representation of the outer sides of the reference surface alongside the physical domain, collected in
the vectors ᾱi = [ᾱi(1) (ξ1) ᾱi(2) (ξ2) ᾱi(3) (ξ1) ᾱi(4) (ξ2)]

T for i = 1, 2. In the same way, the four corners
of r (α1, α2) denoted with

(
α1(j), α2(j)

)
for j = 1, . . . , 4 are arranged so that αi = [αi(1) αi(2) αi(3) αi(4)]

T
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with i = 1, 2. Based on these definitions, it is possible to assess the blending expressions αi (ξ1, ξ2) of
the physical domain according to the following matrix-form expressions:[

α1 (ξ1, ξ2)

α2 (ξ1, ξ2)

]
=
[

b̄ 0

0 b̄

][
B̄ 0
0 B̄

] [
α̃1

α̃2

]
(13)

being α̃i = [
ᾱi αi

]T
for i = 1, 2. Accordingly, the following definitions for b̄ and B̄ should be

assessed:

b̄ = [
b b

]
, B̄ =

⎡
⎢⎣

1
2

I 0

0 −1
4

B

⎤
⎥⎦ (14)

where I is the identity matrix. On the other hand, vectors b and matrix B read as follows:

b = [(1 − ξ2) (1 + ξ1) (1 + ξ2) (1 − ξ1)]

B =

⎡
⎢⎢⎣

(1 − ξ1) 0 0 0
0 (1 − ξ2) 0 0
0 0 (1 + ξ1) 0
0 0 0 (1 + ξ2)

⎤
⎥⎥⎦ (15)

Starting from Eq. (13), it is possible to derive an expression for partial derivatives with respect to
in-plane directions α1, α2 in terms of natural coordinates ξ1, ξ2 thanks to the well-known chain rule [16]:⎡
⎢⎣

∂

∂α1
∂

∂α2

⎤
⎥⎦ =

⎡
⎢⎢⎣

∂ξ1

∂α1

∂ξ2

∂α1

∂ξ1

∂α2

∂ξ2

∂α2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ =

[
ξ1,α1

ξ2,α1

ξ1,α2
ξ2,α2

]⎡⎢⎢⎣
∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ (16)

where the definitions ξi ,αj
= ∂ξi

/
∂αj for i, j = 1, 2 are introduced. In the case of arbitrarily-shaped

physical domains, it is very likely that the partial derivatives with respect to ξ1, ξ2 should be referred
to the principal coordinate system as well. For this reason, the following transformation should be
declared, setting J the Jacobian matrix of Eq. (13):⎡
⎢⎢⎣

∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂α1

∂ξ1

∂α2

∂ξ1

∂α1

∂ξ2

∂α2

∂ξ2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∂

∂α1

∂

∂α2

⎤
⎥⎥⎦ = J

⎡
⎢⎢⎣

∂

∂α1

∂

∂α2

⎤
⎥⎥⎦ (17)

If det (J) �= 0, the inverse form J−1 of the Jacobian matrix occurring in Eq. (17) can be calculated,
thus obtaining:

J−1 = 1
det (J)

⎡
⎢⎢⎣

∂α2

∂ξ2

−∂α2

∂ξ1

−∂α1

∂ξ2

∂α1

∂ξ1

⎤
⎥⎥⎦ (18)
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Accordingly, the inverse relation of Eq. (17) accounts as follows:⎡
⎢⎢⎣

∂

∂α1

∂

∂α2

⎤
⎥⎥⎦ = J−1

⎡
⎢⎢⎣

∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂ξ1

∂α1

∂ξ2

∂α1

∂ξ1

∂α2

∂ξ2

∂α2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ (19)

From a direct comparison between Eqs. (16) and (19), the definition of coefficients ξi ,αj
can be

assessed [16]:

ξ1,α1
= ∂ξ1

∂α1

= 1
det (J)

∂α2

∂ξ2

, ξ1,α2
= ∂ξ1

∂α2

= − 1
det (J)

∂α1

∂ξ2

ξ2,α1
= ∂ξ2

∂α1

= − 1
det (J)

∂α2

∂ξ1

, ξ2,α2
= ∂ξ2

∂α2

= 1
det (J)

∂α1

∂ξ1

(20)

For the sake of completeness, first order partial derivatives det
(
Jξi

)
with i = 1, 2 of det (J) with

respect to natural coordinates ξ1, ξ2 can be expressed as:

det
(
Jξ1

) = ∂α1

∂ξ1

∂2α2

∂ξ1 ∂ξ2

− ∂α2

∂ξ1

∂2α1

∂ξ1 ∂ξ2

+ ∂α2

∂ξ2

∂2α1

∂ξ 2
1

− ∂α1

∂ξ2

∂2α2

∂ξ 2
1

det
(
Jξ2

) = −∂α1

∂ξ2

∂2α2

∂ξ1 ∂ξ2

+ ∂α2

∂ξ2

∂2α1

∂ξ1 ∂ξ2

− ∂α2

∂ξ1

∂2α1

∂ξ 2
2

+ ∂α1

∂ξ1

∂2α2

∂ξ 2
2

(21)

Following a similar procedure of that adopted in Eqs. (16)–(20), the chain rule can also be
employed for the computation of second order derivatives with respect to α1, α2 principal coordinates
in terms of ∂

/
∂ξ1 and ∂

/
∂ξ2. The final expression for second order mixed derivatives looks as follows

[16]:

∂2

∂α1∂α2

= ξ1,α1
ξ1,α2

∂2

∂ξ 2
1

+ ξ2,α1
ξ2,α2

∂2

∂ξ 2
2

+
(
ξ1,α1

ξ2,α2
+ ξ1,α2

ξ2,α1

) ∂2

∂ξ1∂ξ2

+ ξ1,α1α2

∂

∂ξ1

+ ξ2,α1α2

∂

∂ξ2

(22)

being ξj,α1α2
with j = 1, 2 a transformation coefficient reading as:

ξ1,α1α2
= 1

det (J)
2

(
−∂α2

∂ξ2

∂2α1

∂ξ1 ∂ξ2

+ ∂α2

∂ξ2

∂α1

∂ξ2

det
(
Jξ1

)
det (J)

+ ∂α2

∂ξ1

∂2α1

∂ξ 2
2

− ∂α2

∂ξ1

∂α1

∂ξ2

det
(
Jξ2

)
det (J)

)

ξ2,α1α2
= 1

det (J)
2

(
−∂α2

∂ξ1

∂2α1

∂ξ1 ∂ξ2

+ ∂α1

∂ξ2

∂α1

∂ξ1

det
(
Jξ1

)
det (J)

+ ∂α2

∂ξ2

∂2α1

∂ξ 2
1

− ∂α2

∂ξ1

∂α1

∂ξ1

det
(
Jξ2

)
det (J)

)
(23)

In addition, one gets the following expression for pure second order derivatives with respect to αi

direction, setting i = 1, 2 [16]:

∂2

∂αi
2

= ξ 2
1,αi

∂2

∂ξ 2
1

+ ξ2
2
,αi

∂2

∂ξ2
2 + 2ξ1,αi

ξ2,αi

∂2

∂ξ1∂ξ2

+ ξ1,αiαi

∂

∂ξ1

+ ξ2,αiαi

∂

∂ξ2

for i = 1, 2 (24)
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where the coefficients ξj,αiαi
for i, j = 1, 2 complete expression are thus reported:

ξ1,α1α1
= 1

det (J)
2

(
∂α2

∂ξ2

∂2α2

∂ξ1 ∂ξ2

−
(

∂α2

∂ξ2

)2 det
(
Jξ1

)
det (J)

− ∂α2

∂ξ1

∂2α2

∂ξ 2
2

+ ∂α2

∂ξ1

∂α2

∂ξ2

det
(
Jξ2

)
det (J)

)

ξ1,α2α2
= 1

det (J)
2

(
∂α1

∂ξ2

∂2α1

∂ξ1 ∂ξ2

−
(

∂α1

∂ξ2

)2 det
(
Jξ1

)
det (J)

− ∂α1

∂ξ1

∂2α1

∂ξ 2
2

+ ∂α1

∂ξ1

∂α1

∂ξ2

det
(
Jξ2

)
det (J)

)

ξ2,α1α1
= 1

det (J)
2

(
−∂α2

∂ξ2

∂2α2

∂ξ 2
1

+ ∂α2

∂ξ2

∂α2

∂ξ1

det
(
Jξ1

)
det (J)

+ ∂α2

∂ξ1

∂2α2

∂ξ1 ∂ξ2

−
(

∂α2

∂ξ1

)2 det
(
Jξ2

)
det (J)

)

ξ2,α2α2
= 1

det (J)
2

(
−∂α1

∂ξ2

∂2α1

∂ξ 2
1

+ ∂α1

∂ξ2

∂α1

∂ξ1

det
(
Jξ1

)
det (J)

+ ∂α1

∂ξ1

∂2α1

∂ξ1 ∂ξ2

−
(

∂α1

∂ξ1

)2 det
(
Jξ2

)
det (J)

)
(25)

In the present work, the β-th edge
(
ᾱ1(β), ᾱ2(β)

)
of the mapped physical domain for β = 1, . . . , 4,

whose components ᾱi(β)

(
ξj

)
along αi direction have been collected in the vector ᾱi for i = 1, 2, has been

geometrically parametrized with respect to ξj for j = 1, 2 in terms of NURBS curves [16].

4 ESL Kinematic Equations Employing Generalized Shape Functions

We now deal with the definition of the ESL assessment of the displacement field variable
employing a generalized set of shape function for the weak formulation of the structural problem.
The 3D displacement field component vector U (α1, α2, ζ ) = [U1 U2 U3]

T associated with each point
of the solid of the Euclidean space, defined in Eq. (2) with respect to the principal set of coordinates
α1, α2, ζ , can be expressed according to the following equation (Fig. 1):

U (α1, α2, ζ ) =
N+1∑
τ=0

Fτ (ζ ) u(τ ) (α1, α2) ⇔
⎡
⎣U1

U2

U3

⎤
⎦ =

N+1∑
τ=0

⎡
⎣Fα1

τ
0 0

0 Fα2
τ

0
0 0 Fα3

τ

⎤
⎦
⎡
⎣u(τ )

1

u(τ )

2

u(τ )

3

⎤
⎦ (26)

Employing the unified notation of Eq. (26), a generalized displacement field component vector
u(τ ) (α1, α2) = [

u(τ )

1 u(τ )

2 u(τ )

3

]T
is assessed for each τ -th order of the kinematic expansion, defined in each

point of the reference surface r (α1, α2). The dependence of U from the out-of-plane coordinate ζ is
taken from the definition, for each τ = 0, . . . , N + 1, of a series of thickness functions Fαi

τ
along each

αi = α1, α2, α3 principal direction. It should be noted that the unknown field variable arrangement
introduced in Eq. (26) comes into the definition of a 2D model for an arbitrary shell. Moreover, if Fαi

τ

are properly selected, a wide range of effects can be effectively predicted, thus awarding the model of
3D capabilities. In the present work, Fαi

τ
(ζ ) have been chosen defined from power polynomials [16]:

Fαi
τ

(ζ ) =
{
ζ τ for τ = 0, . . . , N
(−1)

kzk for τ = N + 1
(27)

Referring to τ = N + 1, a dimensionless coordinate zk has been defined in each k-th layer of the
stacking sequence starting from the through-the-thickness coordinate of the top (ζk+1) and the bottom
(ζk) surface delimiting the k-th sheet, respectively. If k = 1, . . . , l with l denoting the total number of
laminae, one gets:

zk =
(

2
ζk+1 − ζk

ζ − ζk+1 + ζk

ζk+1 − ζk

)
(28)



730 CMES, 2022, vol.133, no.3

As a matter of fact, the employment of the unified notation of Eq. (26) lets us to perform
a systematic analysis with different ESL theories, since the theoretical formulation is independent
from the actual selection of the thickness function analytical expression. Nevertheless, since various
polynomials orders can be selected in Eq. (27), a nomenclature is adopted for a smarter identification
of the axiomatic through-the-thickness assumptions of the simulation. In particular, the acronym
ED (Z) − N is adopted. Letter “E” tells that an ESL formulation is considered. “D” stands for the
displacement field as an unknown variable, whereas N denotes the maximum order of the kinematic
expansion. When the additional generalized displacement field component vector u(N+1) (α1, α2) is
introduced according to what exerted in Eq. (27), the letter “Z” is included. In this way, the formulation
accounts for the zigzag function in each αi = α1, α2, α3 component [16].

Once the ESL assessment of the displacement field component vector U (α1, α2, ζ ) = [U1 U2 U3]
T

has been performed, Eq. (26), defined in each point of the physical domain, should be referred to a
2D computational grid composed of a generic discrete set of IN × IM points, whose generic element
can be identified with

(
α1f , α2g

)
for f = 1, . . . , IN and g = 1, . . . , IM . For this purpose, an interpolation

algorithm is introduced for u(τ ) (α1, α2) at each τ = 0, . . . , N + 1 kinematic expansion order. A very
useful tool is the vectorization operator [16], accounting for a rearrangement with a 1D vector of a
2D matrix. If we denote with A a matrix of dimensions IN × IM of components Aij with i = 1, . . . , IN

and j = 1, . . . , IM , a column vector 	A = Vec (A) of dimensions INIM × 1 is defined, whose arbitrary
component Ak for k = 1, . . . , INIM reads as:

	A = Vec (A) ⇔ Ak = (
Aij

)
k

for
i = 1, . . . , IN j = 1, . . . , IM

k = i + (j − 1) IN
(29)

Since all quantities in Eq. (26) are evaluated in each point of the discrete computational grid,
quantities u(τ )

i are introduced with i = 1, 2, 3 for each τ -th kinematic expansion order. Taking into
account Eq. (29), they are arranged as follows:

	u(τ )

i =
[
u(τ )

i (11)
· · · u(τ )

i(IN 1)
u(τ )

i (12)
· · · u(τ )

i(IN 2)
u(τ )

i(1IM)
· · · u(τ )

i(IN IM)

]T

for i = 1, 2, 3 (30)

Once column vectors of Eq. (30) have been correctly defined the following definition can be stated,
accounting for all the values assumed by the generalized displacement field component vector in each
point of the computational grid:

ū(τ ) = [ 	u(τ )T

1 	u(τ )T

2 	u(τ )T

3

]T
(31)

Thus, it is possible to introduce the discrete form of Eq. (26) employing a global interpolation
algorithm. Accordingly, the following relation can be assessed for each τ -th order generalized
displacement field component vector u(τ ) employing a matrix NT of generalized shape functions:

u(τ ) = NT ū(τ ) (32)

In a more expanded form, one gets [16]:⎡
⎢⎣

u(τ )

1 (α1, α2)

u(τ )

2 (α1, α2)

u(τ )

3 (α1, α2)

⎤
⎥⎦ =

IN∑
f =1

IM∑
g=1

⎡
⎣lf (α1) lg (α2) 0 0

0 lf (α1) lg (α2) 0
0 0 lf (α1) lg (α2)

⎤
⎦
⎡
⎢⎣

u(τ )

1

(
α1f , α2g

)
u(τ )

2

(
α1f , α2g

)
u(τ )

3

(
α1f , α2g

)
⎤
⎥⎦ (33)
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where u(τ )

i (α1, α2) for i = 1, 2, 3 in a generic point is obtained from the interpolation of all the values
u(τ )

i

(
α1f , α2g

)
assumed by the generalized displacement field component in each

(
α1f , α2g

)
point of

the above introduced discrete grid. To this end, the well-known univariate Lagrange interpolating
polynomials l

η
(αi) of (IP − 1)-th order defined along the αi = α1, α2 principal direction of the physical

domain are employed, with η = f , g and IP = IN, IM . According to reference [16], l
η
(αi) can be

computed as follows:

lη (αi) =

IP∏
j=1

(
αi − αij

)
(
αi − αiη

) IP∏
j=1, j �=η

(
αiη − αij

)
IP = IN, IM

for i = 1, 2
η = f , g

(34)

Starting from Eq. (33) it is possible to define the generalized shape function matrix NT
(α1, α2)

alongside the physical domain, whose dimensions 3 × 3 INIM depend on the selected computational
grid. Eventually, one gets:

NT
(α1, α2) =

⎡
⎣lα2

⊗ lα1
0 0

0 lα2
⊗ lα1

0
0 0 lα2

⊗ lα1

⎤
⎦ (35)

In Eq. (35), the Lagrange interpolating polynomials introduced in Eq. (34) are collected in a 1×IP

vector with IP = IN, IM denoted with lαi for each αi = α1, α2, according to the following expanded form:

lαi = [
l1 (αi) · · · lη (αi) · · · lIP (αi)

] IP = IN, IM

for i = 1, 2
η = f , g

(36)

In the same way, vector l (1)

αi
accounting for the first order derivative l(1)

η
(αi) = ∂l

η

/
∂αi of the

Lagrange interpolating polynomials collected according to Eq. (36) with respect to αi = α1, α2 is
defined as follows, setting η = f , g:

l (1)

αr
=
[
l(1)

1 (αr) · · · l(1)

η
(αr) · · · l(1)

IP
(αr)

] IP = IN, IM

for i = 1, 2
η = f , g

(37)

Since the Kronecker tensorial product, denoted with ⊗, has been adopted in Eq. (35), it is useful
to introduce a N̄

T
row vector of dimensions 1 × INIM so that NT matrix can be expressed in a compact

form as follows [16]:

N̄
T
(α1, α2) = lα2

⊗ lα1
⇔ NT =

⎡
⎢⎣N̄

T
0 0

0 N̄
T

0
0 0 N̄

T

⎤
⎥⎦ (38)

To sum up, the ESL assessment of the kinematic field introduced in Eq. (26) is rearranged
accounting for the interpolation procedure of Eq. (32), leading to the following expression:

U (α1, α2, ζ ) =
N+1∑
τ=0

F
τ
u(τ ) =

N+1∑
τ=0

F
τ
NT ū(τ ) (39)
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Now, the generalized form of the displacement field of Eq. (39) is adopted for the definition of
the kinematic relations for a doubly-curved shell structure, according to the ESL approach. More
specifically, the kinematic relations for a 3D structure in principal coordinates αi = α1, α2, α3 (with
α3 = ζ ) read as [16]:

ε = D U = D
ζ

(
3∑

i=1

Dαi
�

)
U (40)

being ε (α1, α2, α3) = [ε1 ε2 γ12 γ13 γ23 ε3]
T the 3D strain component vector and D a differential

operator relating ε to the displacement field component vector U (α1, α2, α3). Accordingly, the D
ζ

operator accounts for the partial derivatives with respect to the shell principal direction α3 = ζ , as
well as the curvature thickness parameters H1, H2:

Dζ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
H1

0 0 0 0 0 0 0 0

0
1

H2

0 0 0 0 0 0 0

0 0
1

H1

1
H2

0 0 0 0 0

0 0 0 0
1

H1

0
∂

∂ζ
0 0

0 0 0 0 0
1

H2

0
∂

∂ζ
0

0 0 0 0 0 0 0 0
∂

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

In the same way, Dαi
�

for αi = α1, α2, α3 read as:

Dα1
�

= [
D̄

α1
�

0 0
]

Dα2
�

= [
0 D̄

α2
�

0
]

Dα3
�

= [
0 0 D̄

α3
�

] (42)

being

D̄
α1
�

=
[

1
A1

∂

∂α1

1
A1A2

∂A2

∂α1

− 1
A1A2

∂A1

∂α2

1
A2

∂

∂α2

− 1
R1

0 1 0 0
]T

D̄
α2
�

=
[

1
A1A2

∂A1

∂α2

1
A2

∂

∂α2

1
A1

∂

∂α1

− 1
A1A2

∂A2

∂α1

0 − 1
R2

0 1 0
]T

D̄
α3
�

=
[

1
R1

1
R2

0 0
1

A1

∂

∂α1

1
A2

∂

∂α2

0 0 1
]T

(43)

Introducing in Eq. (40) the ESL assessment of the displacement field settled in Eq. (26), the
kinematic relations turn into the following equation, accounting for an expansion up to the (N + 1)-th
order [16]:

ε =
N+1∑
τ=0

3∑
i=1

D
ζ
Dαi

�
F

τ
u(τ ) =

N+1∑
τ=0

3∑
i=1

Z (τ )αi Dαi
�

u(τ ) =
N+1∑
τ=0

3∑
i=1

Z (τ )αiε(τ )αi (44)
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In the previous equation, the strain vector ε (α1, α2, α3) referred to a 3D solid has been expressed
in terms of the ESL generalized strain component vector ε(τ )αi = [ε(τ)αi

1 ε
(τ)αi
2 γ

(τ)αi
1 γ

(τ)αi
2 γ

(τ)αi
13

γ
(τ)αi

23 ω
(τ)αi
13 ω

(τ)αi
23 ε

(τ)αi
3 ]T , defined for an arbitrary order of the kinematic expansion. As can be seen,

Z (τ )αi is introduced for each αi = α1, α2, α3 and for τ = 0, . . . , N+1 according to the following extended
form [16]:

Z(τ )αi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fαi
τ

H1

0 0 0 0 0 0 0 0

0
Fαi

τ

H2

0 0 0 0 0 0 0

0 0
Fαi

τ

H1

Fαi
τ

H2

0 0 0 0 0

0 0 0 0
Fαi

τ

H1

0
∂Fαi

τ

∂ζ
0 0

0 0 0 0 0
Fαi

τ

H2

0
∂Fαi

τ

∂ζ
0

0 0 0 0 0 0 0 0
∂Fαi

τ

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

In Eq. (44) it has also been shown that the generalized strain component vector ε(τ )αi embeds the
ESL assessment of the displacement field of Eq. (26). Based on the generalized interpolation procedure
performed in Eq. (32), ε(τ )αi can be related to the discrete vector ū(τ ) of the generalized displacement
field of Eq. (31) for each τ = 0, . . . , N + 1, i.e.,

ε(τ )αi = Dαi
�

u(τ ) = Dαi
�

NT ū(τ ) = Bαi ū(τ ) (46)

where the kinematic operators Bαi with αi = α1, α2, α3 are defined from the previously discussed
higher order interpolation algorithm performed on the IN × IM discrete grid by means of the tensorial
Kronecker product ⊗ [16]:

Bα1

9×(IN×IM)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
A1

l
α2

⊗ l (1)

α1

1
A1A2

∂A2

∂α1

l
α2

⊗ l
α1

− 1
A1A2

∂A1

∂α2

l
α2

⊗ l
α1

1
A2

l (1)

α2
⊗ l

α1

− 1
R1

l
α2

⊗ l
α1

0

l
α2

⊗ l
α1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bα2

9×(IN×IM)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
A1A2

∂A1

∂α2

l
α2

⊗ l
α1

1
A2

l (1)

α2
⊗ l

α1

1
A1

l
α2

⊗ l (1)

α1

− 1
A1A2

∂A2

∂α1

l
α2

⊗ l
α1

0

− 1
R2

l
α2

⊗ l
α1

0

l
α2

⊗ l
α1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bα3

9×(IN×IM)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
R1

l
α2

⊗ l
α1

1
R2

l
α2

⊗ l
α1

0

0

1
A1

l
α2

⊗ l (1)

α1

1
A2

l (1)

α2
⊗ l

α1

0

0

l
α2

⊗ l
α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)
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We recall that in Eq. (47) the Lagrange polynomials employed for the interpolation of the field
variable along the αi = α1, α2 in plane direction, as well as their first order derivative, have been
collected in the vectors l

α i
and l (1)

α i
, respectively.

5 Generally Anisotropic Lamination Scheme Assessment

The present manuscript investigates the problem of the static structural response of a doubly-
curved shell with generally anisotropic laminated structures characterized by general orientations
and material syngonies. It should be remarked for the sake of completeness that a sequence of l
laminae has been contemplated, whose k-th layer with k = 1, . . . , l is characterized by a thickness
hk according to the conventions of Eq. (8) and a reference system O′α̂(k)

1 α̂
(k)

2 ζ̂ (k) orientated along the
material symmetry axes. Accordingly, the formulation has been developed by assuming ζ̂ (k) = ζ .
In addition, a characteristic angle θk describing the orientation of α̂

(k)

1 axis with respect to α1 is
introduced. Each layer of the stacking sequence is intended to be generally anisotropic. The mechanical
behaviour is described with respect to the 3D stress and strain component vectors σ̂

(k)
(
α̂

(k)

1 , α̂(k)

2 , ζ
) =[

σ̂
(k)

1 σ̂
(k)

2 τ̂
(k)

12 τ̂
(k)

13 τ̂
(k)

23 σ̂
(k)

3

]T
and ε̂

(k)
(
α̂

(k)

1 , α̂(k)

2 , ζ
) = [

ε̂
(k)

1 ε̂
(k)

2 γ̂
(k)

12 γ̂
(k)

13 γ̂
(k)

23 ε̂
(k)

3

]T
from the introduction

of a generally anisotropic stiffness matrix E(k) for each k-th layer. The generalized constitutive
relationship can be thus defined as [16]:

σ̂
(k) = E(k)

ε̂
(k) for k = 1, . . . , l (48)

Since a linear elastic theoretical assessment of the structural problem is performed, the matrix E(k)

reads as follows:

E(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(k)

11 E(k)

12 E(k)

16 E(k)

14 E(k)

15 E(k)

13

E(k)

12 E(k)

22 E(k)

26 E(k)

24 E(k)

25 E(k)

23

E(k)

16 E(k)

26 E(k)

66 E(k)

46 E(k)

56 E(k)

36

E(k)

14 E(k)

24 E(k)

46 E(k)

44 E(k)

45 E(k)

34

E(k)

15 E(k)

25 E(k)

56 E(k)

45 E(k)

55 E(k)

35

E(k)

13 E(k)

23 E(k)

36 E(k)

34 E(k)

35 E(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for k = 1, . . . , l (49)

where E(k)

ij with i, j = 1, . . . , 6 relates the i-th component of σ̂
(k) vector to the j-th strain component of

the ε̂
(k) vector. Accordingly, the coefficients employed in Eq. (49) account for the 3D elastic stiffnesses

of the material, namely E(k)

ij = C(k)

ij . When E(k) is referred to the plane stress assumption
(
σ

(k)

3 = 0
)
,

the reduced stiffness coefficients E(k)

ij = Q(k)

ij can be employed, defined from the expression reported
hereafter:

Q(k)

ij = C(k)

ij − C(k)

j3 C(k)

i3

C(k)

33

for i, j = 1, . . . , 6, k = 1, . . . , l (50)

Nevertheless, Eq. (48) should be referred to the curvilinear principal reference system of the physi-
cal domain, accounting for the 3D stress and strain vectors σ (k)

(
α1, α2, ζ

) = [
σ

(k)

1 σ
(k)

2 τ
(k)

12 τ
(k)

13 τ
(k)

23 σ
(k)

3

]T

and ε(k)
(
α1, α2, ζ

) = [
ε

(k)

1 ε
(k)

2 γ
(k)

12 γ
(k)

13 γ
(k)

23 ε
(k)

3

]T
. To this end, a generalized rotation matrix T(k) is

defined according to reference [30] within each layer starting from the previously discussed angle
θk employed to compute the rotated stiffness matrix Ē

(k) = T(k)E(k)
(
T(k)

)T
with components Ē(k)

ij for
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i, j = 1, . . . , 6 referred to the shell geometric reference system O′α1α2ζ . More in detail, Eq. (48) takes
the following form:

σ (k) = Ē
(k)

ε(k) ⇔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(k)

1

σ
(k)

2

τ
(k)

12

τ
(k)

13

τ
(k)

23

σ
(k)

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ē(k)

11 Ē(k)

12 Ē(k)

16 Ē(k)

14 Ē(k)

15 Ē(k)

13

Ē(k)

12 Ē(k)

22 Ē(k)

26 Ē(k)

24 Ē(k)

25 Ē(k)

23

Ē(k)

16 Ē(k)

25 Ē(k)

66 Ē(k)

46 Ē(k)

56 Ē(k)

36

Ē(k)

14 Ē(k)

24 Ē(k)

46 Ē(k)

44 Ē(k)

45 Ē(k)

34

Ē(k)

15 Ē(k)

25 Ē(k)

56 Ē(k)

45 Ē(k)

55 Ē(k)

35

Ē(k)

13 Ē(k)

23 Ē(k)

36 Ē(k)

34 Ē(k)

35 Ē(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε
(k)

1

ε
(k)

2

γ
(k)

12

γ
(k)

13

γ
(k)

23

ε
(k)

3

⎤
⎥⎥⎥⎥⎥⎥⎦

for k = 1, . . . , l (51)

On the other hand Eq. (51), defined for the k-th layer of the 3D solid, should be assessed within the
ESL framework accounting for all the l laminae occurring in the lamination scheme. To this purpose,
the actual dispersion of stress components are employed for the definition of the generalized stress
resultant component vector S(τ )αi (α1, α2) = [

N (τ )αi
1 N (τ )αi

2 N (τ )αi
12 N (τ )αi

21 T (τ )αi
1 T (τ )αi

2 P(τ )αi
1 P(τ )αi

2 S(τ )αi
3

]T
,

associated to each τ -th order of the kinematic expansion of Eq. (39). In this way, Eq. (51) can be
expressed in terms of S(τ )αi and ε(η)αi vectors, according to the following equations directly derived
from the static equivalence principle:

S(τ )αi =
N+1∑
η=0

3∑
j=1

A(τη)αiαjε(η)αi for
τ = 0, . . . , N + 1,

αi = α1, α2, α3
(52)

where A(τη)αiαj is the generalized ESL stiffness matrix [16]:

A(τη)αiαj =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(τη)[00]αiαj
11(20)11 A

(τη)[00]αiαj
12(11)12 A

(τη)[00]αiαj
16(20)13 A

(τη)[00]αiαj
16(11)14 A

(τη)[00]αiαj
14(20) A

(τη)[00]αiαj
15(11) A

(τη)[01]αiαj
14(10) A

(τη)[01]αiαj
15(10) A

(τη)[01]αiαj
13(10)

A
(τη)[00]αiαj
12(11) A

(τη)[00]αiαj
22(02) A

(τη)[00]αiαj
26(11) A

(τη)[00]αiαj
26(02) A

(τη)[00]αiαj
24(11) A

(τη)[00]αiαj
25(02) A

(τη)[01]αiαj
24(01) A

(τη)[01]αiαj
25(01) A

(τη)[01]αiαj
23(01)

A
(τη)[00]αiαj
16(20) A

(τη)[00]αiαj
26(11) A

(τη)[00]αiαj
66(20) A

(τη)[00]αiαj
66(11) A

(τη)[00]αiαj
46(20) A

(τη)[00]αiαj
56(11) A

(τη)[01]αiαj
46(10) A

(τη)[01]αiαj
56(10) A

(τη)[01]αiαj
36(10)

A
(τη)[00]αiαj
16(11) A

(τη)[00]αiαj
26(02) A

(τη)[00]αiαj
66(11) A

(τη)[00]αiαj
66(02) A

(τη)[00]αiαj
46(11) A

(τη)[00]αiαj
56(02) A

(τη)[01]αiαj
46(01) A

(τη)[01]αiαj
56(01) A

(τη)[01]αiαj
36(01)

A
(τη)[00]αiαj
14(20) A

(τη)[00]αiαj
24(11) A

(τη)[00]αiαj
46(20) A

(τη)[00]αiαj
46(11) A

(τη)[00]αiαj
44(20) A

(τη)[00]αiαj
45(11) A

(τη)[01]αiαj
44(10) A

(τη)[01]αiαj
45(10) A

(τη)[01]αiαj
34(10)

A
(τη)[00]αiαj
15(11) A

(τη)[00]αiαj
25(02) A

(τη)[00]αiαj
56(11) A

(τη)[00]αiαj
56(02) A

(τη)[00]αiαj
45(11) A

(τη)[00]αiαj
55(02) A

(τη)[01]αiαj
45(01) A

(τη)[01]αiαj
55(01) A

(τη)[01]αiαj
35(01)

A
(τη)[10]αiαj
14(10) A

(τη)[10]αiαj
24(01) A

(τη)[10]αiαj
46(10) A

(τη)[10]αiαj
46(01) A

(τη)[10]αiαj
44(10) A

(τη)[10]αiαj
45(01) A

(τη)[11]αiαj
44(00) A

(τη)[11]αiαj
45(00) A

(τη)[11]αiαj
34(00)

A
(τη)[10]αiαj
15(10) A

(τη)[10]αiαj
25(01) A

(τη)[10]αiαj
56(10) A

(τη)[10]αiαj
56(01) A

(τη)[10]αiαj
45(10) A

(τη)[10]αiαj
55(01) A

(τη)[11]αiαj
45(00) A

(τη)[11]αiαj
55(00) A

(τη)[11]αiαj
35(00)

A
(τη)[10]αiαj
13(10) A

(τη)[10]αiαj
23(01) A

(τη)[10]αiαj
36(10) A

(τη)[10]αiαj
36(01) A

(τη)[10]αiαj
34(10) A

(τη)[10]αiαj
35(01) A

(τη)[11]αiαj
34(00) A

(τη)[11]αiαj
35(00) A

(τη)[11]αiαj
33(00)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)
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whose generic component A
(τη)[fg]αiαj
nm (pq) is defined as:

A
(τη)[fg]αiαj
nm (pq) =

l∑
k=1

ζk+1∫
ζk

B̄(k)

nm

∂ f F
αj
η

∂ζ f

∂gFαi
τ

∂ζ g

H1H2

Hp
1 Hq

2

dζ

τ , η = 0, . . . , N + 1
n, m = 1, . . . , 6

for p, q = 0, 1, 2
αi, αj = α1, α2, α3

f , g = 0, 1

(54)

being F
αj
η = ∂0F

αj
η

/
∂ζ 0 and Fαi

τ
= ∂0Fαi

τ

/
∂ζ 0. As can be seen, four blocks can be traced in Eq. (53)

accounting for the presence of the derivatives of the f , g-th order within the expression reported
in Eq. (54). Furthermore, in Eq. (54) the term B̄(k)

nm refers to the 3D rotated stiffness coefficient Ē(k)

ij

introduced in Eq. (51), possibly adjusted by the shear correction factor κ (ζ ) [16] in the case of
displacement thickness functions employed in Eq. (26) neglecting the out-of-plane stretching effects:

B̄(k)

nm =
{

Ē(k)

nm for n, m = 1, 2, 3, 6
κ (ζ ) Ē(k)

nm for n, m = 4, 5
(55)

Employing the kinematic relations performed in Eq. (46) utilizing the generalized interpolation,
Eq. (52) gets into:

S(τ )αi =
N+1∑
η=0

3∑
j=1

A(τη)αiαj Bαj ū(η) for
τ = 0, . . . , N + 1,
αi = α1, α2, α3

(56)

Thus, the generalized ESL assessment of the constitutive relationship performed in Eq. (56) can
be expressed so that each component of S(τ )αi (α1, α2) can be expressed in terms of the generalized
displacement field component vector ū(η) for η = 0, . . . , N + 1 at each point of the 2D discrete grid
alongside the physical domain. Eventually, one gets:

S(τ )αi =
N+1∑
η=0

3∑
j=1

A(τη)αiαj D
αj
� NT ū(η) =

N+1∑
η=0

3∑
j=1

O(τη)αiαj NT ū(η) for
τ = 0, . . . , N + 1,
αi = α1, α2, α3

(57)

In Appendix A, the interested reader can find the complete expressions for each component of
matrix O(τη)αiαj .

6 Equilibrium Relations in the Variational Form

In the present section, the equilibrium equations for an arbitrary doubly-curved shell are derived
by employing an energy approach. The stationary configuration is specifically enforced to the total
potential energy virtual variation δ�. The contribution of external loads should be inserted within
the ESL framework, accounting for various pre-determined distributions along the top

(
ζ = +h

/
2
)

and the bottom
(
ζ = −h

/
2
)

surfaces of the shell. Moreover, the formulation embeds the contribution
of linear elastic springs distributed along the shell edges. Suppose we denote with Les, Leb the virtual
work of surface loads and boundary springs, respectively, the equilibrium configuration satisfies the
following equation, accounting for the stationary assessment of the virtual variation δ of the computed
quantities [16]:

δ� = δ� − δLes − δLeb = 0 (58)

being � the total elastic strain energy of the 3D solid, expressed via the ESL definition of the
displacement field, as reported in Eq. (39).
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6.1 Elastic Strain Energy
We focus on the total elastic strain energy � of the 3D shell described according to the ESL

approach of Eq. (2). The virtual variation of � can be computed in terms of the 3D stress and strain
vectors σ (k) and ε(k) defined in each k-th lamina of the stacking sequence concerning the geometrical
principal reference system O′α1α2ζ , according to the following relation:

δ� =
l∑

k=1

∫
α1

∫
α2

ζk+1∫
ζk

(
δε(k)

)T
σ (k)A1A2H1H2dα1dα2dζ (59)

Employing the ESL assessment of the displacement field of Eq. (26), the through-the-thickness
integration performed in Eq. (59) is avoided. Thus, δ� can be computed in terms of S(τ )αi and ε(τ )αi ,
leading to [16]:

δ� =
N+1∑
τ=0

3∑
i=1

∫
α1

∫
α2

(
δε(τ )αi

)T
S(τ )αi A1A2dα1dα2 (60)

Taking into account the weak formulation expression of generalized strain resultant vector of
Eq. (46) in the previous equation, the virtual variation of the total elastic strain energy reads as:

δ� =
N+1∑
τ=0

N+1∑
η=0

3∑
i=1

3∑
j=1

∫
α1

∫
α2

(
Bαiδū(τ )

)T
A(τη)αiαj

(
Bαj ū(η)

)
A1A2dα1dα2

=
N+1∑
τ=0

N+1∑
η=0

(
δū(τ )

)T

(
3∑

i=1

3∑
j=1

∫
α1

∫
α2

(Bαi)
TA(τη)αiαj (Bαj) A1A2dα1dα2

)
ū(η)

(61)

In Eq. (61) the global stiffness matrix K(τη)

�
of the doubly-curved shell is introduced. Referring to

the generic τ , η-th kinematic orders, K(τη)

�
takes the following expanded form [16]:

K(τη)

�
=
∫
α1

∫
α2

⎡
⎣(Bα1)

TA(τη)α1α1Bα1 (Bα1)
TA(τη)α1α2Bα2 (Bα1)

TA(τη)α1α3Bα3

(Bα2)
TA(τη)α2α1Bα1 (Bα2)

TA(τη)α2α2Bα2 (Bα2)
TA(τη)α2α3Bα3

(Bα3)
TA(τη)α3α1Bα1 (Bα3)

TA(τη)α3α2Bα2 (Bα3)
TA(τη)α3α3Bα3

⎤
⎦A1A2dα1dα2

=
∫
α1

∫
α2

⎡
⎣K(τη)α1α1

�
K(τη)α1α2

�
K(τη)α1α3

�

K(τη)α2α1
�

K(τη)α2α2
�

K(τη)α2α3
�

K(τη)α3α1
�

K(τη)α3α2
�

K(τη)α3α3
�

⎤
⎦A1A2dα1dα2 (62)

In Appendix B, an extended expression of each stiffness matrix coefficient K
(τη)αiαj
� is reported,

setting τ , η = 0, . . . , N + 1 and αi, αj = α1, α2, α3.

6.2 External Loads General Distributions
Let us consider two generic vectors q(1)

a and q(2)

a of external loads applied to the doubly-curved shell
structure at issue, whose components are referred in the above discussed geometric reference system
O′α1α2ζ as shown in Fig. 2:

q(1)

a = [
q(1)

1a q(1)

2a q(1)

3a

]T = [
q(+)

1a q(+)

2a q(+)

3a

]T

q(2)

a = [
q(2)

1a q(2)

2a q(2)

3a

]T = [
q(−)

1a q(−)

2a q(−)

3a

]T (63)

where symbols (+) and (−) account for quantities referred to ζ = +h
/

2 and ζ = −h
/

2, respectively.
Accordingly, a general variation q̄ (α1, α2) dependent on in-plane principal coordinates can be assigned
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to each component q(j)
ia for i = 1, 2, 3 and j = 1, 2 of external load vectors introduced in Eq. (63). If we

denote with q(j)
i a reference scaling value of loads applied along the αi principal direction, the following

relation can be assessed (Fig. 2):

Figure 2: Generalized 2D distributions q̃ (α1, α2) along shell curvilinear principal coordinates α1, α2
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q(j)
ia

(
α1, α2, ±h

2

)
= q(j)

i

∣∣
ζ=±h/2

q̄ (α1, α2) for
i = 1, 2, 3
j = 1, 2 (64)

For a constant loading distribution, it is:

q̄ (α1, α2) = 1 (65)

In the present manuscript, two different distributions for q(j)
a components with j = 1, 2 are

declared. A bivariate Gaussian distribution is now reported:

q̄ (α1, α2) = e
− 1

2(1−ρ2
12)

((
α1−α1m

�1

)2
+
(

α2−α2m
�2

)2
−2ρ12

α1−α1m
�1

α2−α2m
�2

)
(66)

being αim for i = 1, 2 the position parameter acting on the αi in-plane principal direction with a variance
scaling factor equal to �i and a correlation factor between α1, α2 denoted with ρ12. In the same way, a
Super Elliptic distribution has been employed, according to the following expression:

q̄ (α1, α2) = e
−
⎛
⎝
∣∣∣∣∣(

α1−α1m) cos β+(α2−α2m) sin β

�1

∣∣∣∣∣
n

+
∣∣∣∣∣
−(α1−α1m) sin β+(α2−α2m) cos β

�2

∣∣∣∣∣
n⎞⎠

(67)

where β is the angular orientation of the bivariate dispersion principal axes of length �i for i = 1, 2
with respect to α1, α2 principal shell coordinates. In addition, (α1m, α2m) is the location in the physical
domain of the centre of the ellipse, whereas n is a power exponent. For n = 2, Eq. (67) turns into the
well-known Elliptic distribution. In Fig. 2 we plot the distributions presented in Eqs. (66) and (67), for
fixed parameters configurations.

If a virtual variation δU(j) of the 3D displacement vector referred to the top (j = 1) and the bottom
(j = 2) surface is considered, the virtual work δL(3D)

es of surface loads of Eq. (63) can be computed as:

δL(3D)

es =
∫
α1

∫
α2

(
2∑

j=1

(
3∑

i=1

q(j)
i δU (j)

i

)
H (j)

1 H (j)
2

)
A1A2dα1dα2 (68)

being H (j)
i for j = 1, 2 the through-the-thickness curvature parameters calculated by means of Eq. (7)

for ζ = +h
/

2 and ζ = −h
/

2. On the other hand, if we consider a virtual variation δu(τ ) of the
generalized displacement field component vector introduced in Eq. (26), a new generalized vector of
external actions q(τ ) (α1, α2) = [

q(τ )

1 q(τ )

2 q(τ )

3

]T
lying on the reference surface can be introduced for each

τ = 0, . . . , N + 1. Thus, the virtual work δLes reads as follows:

δLes =
N+1∑
τ=0

∫
α1

∫
α2

3∑
i=1

q(τ )

i δu(τ )

i A1A2dα1dα2 =
N+1∑
τ=0

∫
α1

∫
α2

(
δu(τ )

)T
q(τ )A1A2dα1dα2 (69)

The static equivalence principle employs both Eqs. (68) and (69), so that [16]:

δL(3D)

es = δLes (70)

Starting from Eq. (70), the extended expressions of the q(τ ) components are obtained for the τ -th
kinematic expansion order, being Fαi(j)

τ
for j = 1, 2 the thickness function employed for the assessment

of the displacement field components according to Eq. (26) calculated at ζ = +h
/

2 and ζ = −h
/

2,
respectively:
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q(τ )

i =
2∑

j=1

q(j)
i Fαi(j)

τ
H (j)

1 H (j)
2 for i = 1, 2, 3 (71)

Since the generalized displacement field component vectors u(τ ) with τ = 0, . . . , N + 1 have been
interpolated with a generalized shape functions set N in Eq. (39), the virtual work δLes of generalized
external actions already computed in Eq. (69) should be expressed in terms of ū(τ ) vector taking into
account Eq. (32), leading to the following expression [16]:

δLes =
N+1∑
τ=0

∫
α1

∫
α2

(
NT

δū(τ )
)T

q(τ )A1A2dα1dα2 =
N+1∑
τ=0

(
δū(τ )

)T
Q(τ ) (72)

In Eq. (72), the generalized external actions referred to each τ -th order have been collected in the
3INIM × 1 column vector Q(τ ), defined as:

Q(τ ) =
∫
α1

∫
α2

⎡
⎣N̄q(τ )

1

N̄q(τ )

2

N̄q(τ )

3

⎤
⎦A1A2dα1dα2 (73)

6.3 Boundary Springs
The last contribution to the total potential energy occurring in Eq. (58) accounts for the influence

of the elastic constraints distributed along the edges of the structure. In particular, a set of linear

elastic springs of stiffness k
(k)αm

j
if orientated along the shell side located at αj = αm

j with αj = α1, α2, α3

and m = 0, 1 distributed along the αi = α1, α2, α3 principal direction has been considered, according
to the theoretical development reported in reference [16]. The superscript k stands for the stacking
sequence layer. Accordingly, they induce some boundary stresses after applying the corresponding 3D
displacement component Ui = U1, U2, U3 . If the physical domain consists of a rectangular 2D interval[
α0

1 , α1
1

]× [
α0

2 , α1
2

]
, different stresses are induced on each boundary. Referring to α1 = αm

1 for m = 0, 1,
the following definitions can be stated at the k-th lamina level, setting α2 ∈ [

α0
2 , α1

2

]
:

σ̄ (k)

1

(
αm

1 , α2, ζ
) = −k

(k)αm
1

1f f
(
αm

1 , α2

)
U1

(
αm

1 , α2, ζ
)

τ̄ (k)

12

(
αm

1 , α2, ζ
) = −k

(k)αm
1

2f f
(
αm

1 , α2

)
U2

(
αm

1 , α2, ζ
)

for
m = 0, 1

k = 1, . . . , l

τ̄ (k)

13

(
αm

1 , α2, ζ
) = −k

(k)αm
1

3f f
(
αm

1 , α2

)
U3

(
αm

1 , α2, ζ
)

(74)

where f
(
αm

1 , α2

)
accounts for an arbitrary univariate function in the α2 coordinate located at α1 = αm

1 .
On the other hand, stresses τ̄

(k)

12 , σ̄ (k)

2 , τ̄ (k)

23 can be found at α2 = αm
2 according to the following definitions:

τ̄ (k)

12

(
α1, α

m
2 , ζ

) = −k
(k)αm

2
1f f

(
α1, α

m
2

)
U1

(
α1, α

m
2 , ζ

)
σ̄ (k)

2

(
α1, α

m
2 , ζ

) = −k
(k)αm

2
2f f

(
α1, α

m
2

)
U2

(
α1, α

m
2 , ζ

)
for

m = 0, 1
k = 1, . . . , l

τ̄ (k)

23

(
α1, α

m
2 , ζ

) = −k
(k)αm

2
3f f

(
α1, α

m
2

)
U3

(
α1, α

m
2 , ζ

)
(75)
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being α1 ∈ [
α0

1 , α1
1

]
. In the same way, Eq. (75) contains a univariate dispersion of linear elastic springs

denoted with f
(
α1, α

m
2

)
for α2 = αm

2 . In order to provide an effective expression of both f
(
αm

1 , α2

)
and

f
(
α1, α

m
2

)
regardless of the actual dimension of the physical domain, a new dimensionless coordinate

ξ̄ ∈ [0, 1] is introduced, according to the following definition:

ξ̄ = αr − α0
r

α1
r − α0

r

for r = 1, 2 (76)

As a matter of fact, the Super Elliptic distribution (S) of the p-th order has been employed,
according to the following analytical expression, setting ξ̄m ∈ [0, 1] and ξ̃m ∈ ]0, 1] the position and
the scaling parameter, respectively:

f (ξ) = e
−
(

ξ̄−ξ̄m
ξ̃m

)p

(77)

In the following, the expression of a Double–Weibull distribution (D) has been reported in terms
of ξ̄ :

f (ξ) = 1 − e
−

(
ξ̄

ξ̄m

)p

+ e
−

(
1−ξ̄

ξ̃m

)p

(78)

where ξ̄m, ξ̃m ∈ [0, 1] are two position parameters and p is the scaling value.

Starting from Eqs. (74) and (75) which have been expressed for a 3D structure, the stresses
coming from the linear elastic springs distributions should be computed in terms of generalized stress
resultants, accounting for the ESL assessment of the displacement field. Substituting Eq. (26) in the
previously cited relations, one gets for α1 = αm

1 with m = 0, 1:⎡
⎢⎣

N̄ (τ )α1
1

N̄ (τ )α2
12

T̄ (τ )α3
1

⎤
⎥⎦ = −

N+1∑
η=0

⎡
⎢⎢⎣

Lfb(τη)α1
1(2)αm

1
0 0

0 Lfb(τη)α2
2(2)αm

1
0

0 0 Lfb(τη)α3
3(2)αm

1

⎤
⎥⎥⎦
⎡
⎢⎣

u(η)

1

u(η)

2

u(η)

3

⎤
⎥⎦ = −

N+1∑
η=0

Lfb(τη)

(1)αm
1

u(η) for m = 0,1
for α2 ∈ [

α0
2 , α1

2

] (79)

Referring to the edges of the structure located at α2 = αm
2 for m = 0, 1, Eq. (75) turns into:⎡

⎢⎣
N̄ (τ )α1

21

N̄ (τ )α2
2

T̄ (τ )α3
2

⎤
⎥⎦ = −

N+1∑
η=0

⎡
⎢⎢⎣

L
fb(τη)α1
1(1)αm

2
0 0

0 L
fb(τη)α2
2(1)αm

2
0

0 0 L
fb(τη)α3
3(1)αm

2

⎤
⎥⎥⎦
⎡
⎢⎣

u(η)

1

u(η)

2

u(η)

3

⎤
⎥⎦ = −

N+1∑
η=0

Lfb(τη)

(1)αm
2

u(η) for m = 0,1
for α1 ∈ [

α0
2 , α1

2

] (80)

Fundamental coefficients L
fb(τη)αi
i(p)αm

n
occurring in Eqs. (79) and (80) can be computed for each τ , η =

0, . . . , N + 1 according to the following relation, setting n, p = 1, 2, i = 1, 2, 3 and n, p = 1, 2:

L
fb(τη)αi
i(p)αm

n
=

l∑
k=1

ζk+1∫
ζk

k(k)αm
n

if Fαi
η

Fαi
τ

Hpdζ (81)

Having in mind the ESL assessment of general distributions of boundary springs, the virtual work
contribution δLeb to Eq. (58) can be computed as the sum of δLeb1 and δLeb2, referred to the edges of



742 CMES, 2022, vol.133, no.3

the physical domain characterized by α1 = α1m and α2 = α2m, respectively, for m = 0, 1 [16]:

δLeb = δLeb1 + δLeb2 =
N+1∑
τ=0

⎛
⎜⎝∮

α2

(
δu(τ )

)T
S̄

(τ )

α1
A2α2 +

∮
α1

(
δu(τ )

)T
S̄

(τ )

α2
A1α1

⎞
⎟⎠ (82)

where S̄
(τ )

α1
components are defined according to what exerted in Eq. (80). S̄

(τ )

α2
accounts for the

generalized boundary stressed reported in Eq. (80). Introducing in Eq. (82) the weak form assessment
of the displacement field of Eq. (32), the final form of δLeb comes out:

δLeb = δLeb1 + δLeb2 =
N+1∑
τ=0

((
δū(τ )

)T
(

Q̄
(τ )

α1
+ Q̄

(τ )

α2

))
(83)

being Q̄
(τ )

α1
, Q̄

(τ )

α2
the ESL boundary load vectors of Eqs. (79) and (80) expressed in terms of the

generalized interpolation of the displacement field, as follows [16]:

Q̄
(τ )

α1
=
∮
α2

⎡
⎢⎣

N̄N̄ (τ )α1
1

N̄N̄ (τ )α2
12

N̄T̄ (τ )α3
1

⎤
⎥⎦A2α2, Q̄

(τ )

α2
=
∮
α1

⎡
⎢⎣

N̄N̄ (τ )α1
21

N̄N̄ (τ )α2
2

N̄T̄ (τ )α3
2

⎤
⎥⎦A1α1 (84)

Thus, the generalized displacement vector ū(τ ) of Eq. (32) can be outlined in Eq. (83), accounting
for the definitions of Eq. (84), together with what has been exerted in Eqs. (79) and (80). The final
form of the virtual work associated with boundary springs reads as:

δLeb =
N+1∑
τ=0

(
δū(τ )

)T
N+1∑
η=0

⎛
⎜⎝ 1∑

m=0

⎛
⎜⎝∮

α2

NLfb(τη)

(1)αm
2

NTA2α2 +
∮
α1

NLfb(τη)

(1)αm
1

NTA1α1

⎞
⎟⎠
⎞
⎟⎠ ū(η) =

N+1∑
τ=0

(
δū(τ )

)T
N+1∑
η=0

K̄
(τη)

b ū(η)

(85)

Note that the fundamental stiffness matrix K̄
(τη)

b has been introduced, accounting for the ESL
generalized stresses induced by the springs distributed along the edges of the physical domain, at each
τ , η = 0, . . . , N + 1 kinematic expansion order, as well as the generalized shape functions arranged in
N, based on the Lagrange interpolation procedure of Eq. (32).

6.4 Fundamental Governing Equations
The final form of the fundamental governing equations of the static problem can be outlined from

Eq. (58), taking into account the contributions of the elastic strain energy of Eq. (61), the virtual work
of surface loads of Eq. (72) and that of external boundary springs of Eq. (85). Referring to the τ -th
order of the kinematic expansion, one gets [16]:

N+1∑
η=0

(
K̄

(τη)

�
− K̄

(τη)

b

)
ū(η) = Q(τ ) ⇔

N+1∑
η=0

K̄
(τη)

ū(η) = Q(τ ) for τ = 0, . . . , N + 1 (86)
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In extended form, Eq. (86) can be assembled with respect to the displacement field ESL higher
order model of Eq. (26), leading to the following expression:⎡
⎢⎢⎢⎢⎢⎢⎣

K̄
(00)

K̄
(01) · · · K̄

(0(N))

K̄
(0(N+1))

K̄
(10)

K̄
(11) · · · K̄

(1(N))

K̄
(1(N+1))

...
...

. . .
...

...
K̄

((N)0)

K̄
((N)1) · · · K̄

((N)(N))

K̄
((N)(N+1))

K̄
((N+1)0)

K̄
((N+1)1) · · · K̄

((N+1)(N))

K̄
((N+1)(N+1))

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Ū
(0)

Ū
(1)

...
Ū

(N)

Ū
(N+1)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Q(0)

Q(1)

...
Q(N)

Q(N+1)

⎤
⎥⎥⎥⎥⎥⎦ ⇔ K̄ū = Q (87)

For shells of arbitrary shapes, the employment of the generalized blending functions assessed in
Eq. (13) with the Jacobian matrix J of the transformation defined in Eq. (17) should be taken into
account in the computation of all the contributions of � occurring in Eq. (58). Accordingly, the
generalized stiffness matrix K̄

(τη)

and the external surface loads Q(τ ) should be adjusted appropriately
for each τ = 0, . . . , N + 1 since integrals with respect to principal directions α1, α2 should be assessed
in terms of natural coordinates ξ1, ξ2 ∈ [−1, 1]. Referring to a specific τ th kinematic expansion order,
stiffness matrix defined in Eq. (62) turns into the following relation:

K(τη)

�
=

1∫
−1

1∫
−1

⎡
⎣K(τη)α1α1

�
K(τη)α1α2

�
K(τη)α1α3

�

K(τη)α2α1
�

K(τη)α2α2
�

K(τη)α2α3
�

K(τη)α3α1
�

K(τη)α3α2
�

K(τη)α3α3
�

⎤
⎦A1A2 det (J) dξ1dξ2 (88)

The ESL assessment of external surface load vector Q(τ ) reported in Eq. (73) reads as follows [16]:

Q(τ ) =
1∫

−1

1∫
−1

⎡
⎣N̄q(τ )

1

N̄q(τ )

2

N̄q(τ )

3

⎤
⎦A1A2 det (J) dξ1dξ2 (89)

As far as the definition of generalized boundary springs for arbitrarily-shaped structures is
concerned, it is useful to refer to the local coordinate system introduced in Eq. (11) along each edge
of the shell. As a consequence, boundary stresses can be expressed with respect to nn, ns, nζ directions
employing the symbols N̄ (τ )α1

n , N̄ (τ )α2
ns , T̄ (τ )α3

ζ . The generalized boundary springs along the i-th edge of the
structure with i = 1, . . . , 4 accounts as:

Q̄
(τ )

n(i) =
L(i)∫
0

⎡
⎢⎣

N̄N̄ (τ )α1
n

N̄N̄ (τ )α2
ns

N̄T̄ (τ )α3
ζ

⎤
⎥⎦ dsn(i) for

i = 1, . . . , 4
τ = 0, . . . , N + 1 (90)

Starting from the blending coordinates transformation of Eq. (13), the length L(i) of the shell side
can be computed according to the following relation [16], setting j = 1, 2:

L(i) =
1∫

−1

√
A2

1

(
dα1

dξj

)2

+ A2
2

(
dα2

dξj

)2

dξj for i = 1, . . . , 4 (91)
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Since the natural coordinate set ξ1, ξ2 has been defined in the dimensionless rectangular interval
[−1, 1] × [−1, 1], Eq. (90) can be written as:

Q̄
(τ )

n(i) =
1∫

−1

⎡
⎢⎣

N̄N̄ (τ )α1
n

N̄N̄ (τ )α2
ns

N̄T̄ (τ )α3
ζ

⎤
⎥⎦ L(i)

2
dη(i) for i = 1, .., 4 (92)

Once the quantity Q̄
(τ )

n(i) has been successfully computed in the previous equation for each τ -th
order, a kinematic expansion is performed such that Eq. (92) is embedded in the global variational
matrices of Eq. (87). In this way, the global stiffness matrix K̄ accounts for the 3D assessment of
the boundary linear elastic springs introduced for the definition of natural and non-conventional
boundary conditions, whereas the term Q is employed for the external surface loads.

In order to compute the generalized stress resultants N̄ (τ )α1
n , N̄ (τ )α2

ns , T̄ (τ )α3
ζ induced by linear elastic

springs for a mapped geometry employing the approach of Eqs. (74) and (75), it is useful to express
the generalized displacement field u(τ )

n , u(τ )

s , u(τ )

ζ referred to nn, ns, nζ local reference system in terms of
u(τ )

1 , u(τ )

2 , u(τ )

3 for each τ -th order of the kinematic expansion [16]:⎡
⎢⎣

u(τ )

n

u(τ )

s

u(τ )

ζ

⎤
⎥⎦ =

⎡
⎣nn1 nn2 0

ns1 ns2 0
0 0 1

⎤
⎦
⎡
⎢⎣

u(τ )

1

u(τ )

2

u(τ )

3

⎤
⎥⎦ (93)

In the same way, the generalized stress resultants N̄ (τ )α1
n , N̄ (τ )α2

ns , T̄ (τ )α3
ζ should be expressed in terms

of the S(τ )αi vector for αi = α1, α2, α3 according to the following relations [16]:

⎡
⎢⎣

N (τ )α1
n

N (τ )α2
ns

T (τ )α3
ζ

⎤
⎥⎦ =

⎡
⎣ n2

n1 n2
n2 nn1nn2 nn1nn2 0 0

nn1ns1 nn2ns2 nn1ns2 nn2ns1 0 0
0 0 0 0 nn1 nn2

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N (τ )α1
1

N (τ )α1
2

N (τ )α1
12

N (τ )α1
21

T (τ )α3
1

T (τ )α3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(94)

7 Numerical Implementation with the GDQ Method

In the present section we deal with the numerical assessment of the fundamental governing
equations for the static problem derived in Eq. (87) in their assembled form. The employed numerical
technique that has been adopted is the well-known GDQ method. According to this methodology, the
discrete form of the derivatives is directly provided. Referring to a generic point

(
ξ1, ξ2

) ∈ [−1, 1] ×
[−1, 1] belonging to the dimensionless squared computational domain, the (n + m)-th order derivative
of a bivariate function f

(
ξ1, ξ2

)
concerning natural coordinates ξ1, ξ2 can be expressed as [16]:

∂n+mf (ξ1, ξ2)

∂ξ n
1 ∂ξm

2

∣∣∣∣
ξ1=ξ1i , ξ2=ξ2j

∼=
IN∑

k=1

ς
ξ1(n)

ik

(
IM∑
l=1

ς
ξ2(m)

jl f (ξ1k, ξ2l)

)
i = 1, 2, . . . , IN

j = 1, 2, . . . , IM
(95)

where IN, IM denote the number of the selected discrete points along ξ1, ξ2 directions, respectively. As
can be seen, Eq. (95) accounts for a quadrature rule for derivative purposes. The weighting coefficients
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ςξr(q)

pv for r = 1, 2, p = i, j, q = n, m and v = k, l are computed utilizing the recursive expression valid
for each q ≥ 1 [16]:

ςξr(1)

pv = L(1)
(
ξrp

)
(ξrp − ξrv)L(1) (ξrv)

, ςξr(q)

pv = q
(

ςξr(1)

pv ςξr(q−1)

pp − ςξr(q−1)

pv

ξrp − ξrv

)
p �= v

ςξr(q)

pp = −
N∑

v=1 v�=p

ςξr(q)

pv p = v
(96)

Eq. (96) is based on the interpolation of the unknown function employing the Lagrange interpo-
lating polynomials L. In the case of pure derivatives with respect to ξ1, ξ2, it gives m = 0 and n = 0,
respectively, and GDQ coefficients come into the following relation:

ςξr(0)

pv = δpv for r = 1, 2 (97)

being δpv the Kronecker delta operator. For a generic non-uniform grid of IN × IM points, the GDQ
weighting coefficients for the derivative of the (n + m)-th order are calculated by means of Eqs. (96)
and (97) are collected in a INIM × INIM squared matrix denoted with ς ξ1(n)ξ2(m). Starting from Eq. (96),
the matrix at issue can be obtained from a proper expansion of matrix ς ξr(q) for q = n, m and r = 1, 2
of dimensions IQ × IQ with IQ = IN, IM , respectively, accounting for the derivatives of n-th and m-th
order along ξ1, ξ2:

ς ξ1(n)ξ2(m) = ς ξ2(m) ⊗ ς ξ1(n) (98)

Based on Eq. (97), it is ς ξr(0) = I. In this way, the numerical derivation employing the GDQ method
with respect to ξ1, ξ2 can be performed as:

	f(n+m) = ς ξ1(n)ξ2(m)	f (99)

where f is a IN × IM matrix whose general component is f
(
ξ1i, ξ1j

)
for i = 1, . . . , IN and j = 1, . . . , IM .

In the same way, the generic element of f(n+m) is ∂n+mf
(
ξ1i, ξ2j

)/
∂ξ n

1 ∂ξm
2 .

A 2D Legendre-Gauss-Lobatto (LGL) grid of dimensions IN ×IM referred to the domain [−1, 1]×
[−1, 1] has been here adopted, such that:(

1 − ξ 2
r

)
AIP−1 (ξr) = 0 for

IP = IN, IM

r = 1, 2 (100)

In Eq. (100), AIP−1 (ξr) with r = 1, 2 denotes the Lobatto polynomials of the IP-th order, which can
be calculated from the IP-th derivation of the Legendre polynomials LIP−1 (ξr) with respect to ξr [16]:

AIP−1 (ξr) = d
dξr

(
LIP (ξr)

)
for

IP = IN, IM

r = 1, 2
ξr ∈ [−1, 1]

(101)

Since the fundamental governing relations (86) account for derivations along α1, α2 principal
directions, we consider the GDQ rule of Eq. (95) referred to natural coordinates ξ1, ξ2. The matrix
approach is then followed, starting from Eq. (98). Employing the generalized blending functions
reported in Eq. (13), the matrices ς α1(1)α2(0) and ς α1(0)α2(1) for the first order derivatives along α1, α2 of
a generic bivariate function f (α1, α2) can be computed as:

ς α1(1)α2(0) = 	P11 ◦ ς ξ1(1)ξ2(0) + 	P21 ◦ ς ξ1(0)ξ2(1)

ς α1(0)α2(1) = 	P12 ◦ ς ξ1(1)ξ2(0) + 	P22 ◦ ς ξ1(0)ξ2(1)
(102)
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being 	Pij with i, j = 1, 2 the vectorized form by means of Eq. (29) of the coordinate transformation
computed by Eq. (19). In the same way, starting from Eq. (22) and Eq. (24) the discrete form of second
order derivatives can be assessed introducing the quantities Prij with r, i, j = 1, 2:

ς α1(2)α2(0) = 	Po2

11 ◦ ς ξ1(2)ξ2(0) + 	Po2

21 ◦ ς ξ1(0)ξ2(2) + 2	P11 ◦ 	P21 ◦ ς ξ1(1)ξ2(1) + 	P111 ◦ ς ξ1(1)ξ2(0) + 	P211 ◦ ς ξ1(0)ξ2(1)

ς α1(0)α2(2) = 	Po2

12 ◦ ς ξ1(2)ξ2(0) + 	Po2

22 ◦ ς ξ1(0)ξ2(2) + 2	P12 ◦ 	P22 ◦ ς ξ1(1)ξ2(1) + 	P122 ◦ ς ξ1(1)ξ2(0) + 	P222 ◦ ς ξ1(0)ξ2(1)

ς α1(1)α2(1) = 	P11 ◦ 	P12 ◦ ς ξ1(2)ξ2(0) + 	P21 ◦ 	P22 ◦ ς ξ1(0)ξ2(2) +
(	P11 ◦ 	P22 + 	P12 ◦ 	P21

)
◦ ς ξ1(1)ξ2(1)

+ 	P112 ◦ ς ξ1(1)ξ2(0) + 	P212 ◦ ς ξ1(0)ξ2(1) (103)

The employment of the GDQ method allows to obtain the discrete form of the governing
equations. When the assembly of the fundamental relations is performed alongside the entire IN × IM

computational domain, it is useful to distinguish the inner domain nodes “d” from those located along
the boundaries (“b” nodes). As a matter of fact, the DOFs associated with the latter are collected in a
column vector denoted with δb, whereas those referring to the former are arranged within the vector
δd. Thus, the fundamental system accounts as follows [16]:[

K̄bb K̄bd

K̄db K̄dd

] [
δb

δd

]
=
[

Q̄b

Q̄d

]
(104)

Performing a static condensation of Eq. (104) with respect to δd according to the procedure
reported in Eq. (16), the final form of the discrete system of dimensions 3 (N + 2) INIM ×3 (N + 2) INIM

comes out, being I the identity matrix:(
K̄dd − K̄db

(
K̄bb

)−1
K̄bd

)
δd = Q̄d − K̄db

(
K̄bb

)−1
Q̄b (105)

The numerical integrations that are involved in the formulation of the present manuscript are
performed by means of the GIQ procedure [16]. Referring to a generic univariate function f = f (x)

defined in the closed interval [a, b] with a < b ∈ R, a discrete grid is selected from the 1D domain,
namely xk ∈ [a, b] with k = 1, 2, . . . , IN. Accordingly, the integral of f restricted to the sub-interval[
xi, xj

] ⊆ [a, b] with xi, xj belonging to the grid at issue can be computed as a weighted sum of the
values f (xk) for k = 1, 2, . . . , IN assumed by the function at each point of the computational grid of
[a, b]:

xj∫
xi

f (x) dx =
IN∑

k=1

wij
kf (xk) (106)

where wij
k = wjk −wik are referred to the interval

[
xi, xj

]
. The coefficients wjk, wik are computed following

the extensive procedure of reference [16], starting from the shifted GDQ weighting coefficients
reported hereafter, setting ε = 1 × 10−10:

ς̄
ζ (1)

ij = ζi − ε

ζj − ε
ς

ζ(1)

ij for i �= j

ς̄
ζ (1)

ij = ς
ζ(1)

ii + 1
ζi − ε

for i = j
(107)
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Then, they are collected in the matrix ς̄
ζ (1) of dimensions IN × IN. Thus, the coefficients wik, wjk

referred to the integral of f restricted to the interval [ε, xr] ⊆ [a, b] are the elements of the GIQ matrix,
reading as:

W = (
ς̄

ζ (1)
)−1

(108)

All the terms wij
k introduced in Eq. (106) can be collected in a vector of dimensions 1 × IN

denoted with w(x), setting x the integration variable. In the same way, the 1 × IM vector w(y) can be
introduced when the integration of the univariate function f = f (y) is required. For a bivariate
function f = f (x, y), Eq. (106) turns into the following expression, setting a generic 2D IN × IM grid
from a rectangular domain [a, b] × [c, d] of extremes a < b ∈ R and c < d ∈ R [16]:

d∫
c

b∫
a

f (x, y) dxdy =
IN∑
i=1

IM∑
j=1

w1IN
i w1IM

j f
(
xi, yj

) =
INM∑
k=1

w1INM
k fk (109)

where fk values for k = 1, . . . , INM = INIM are arranged employing the above introduced by-column
vectorization operation of Eq. (29). On the other hand, w1IN IM

k GIQ coefficients are computed using
the previously introduced vectors w(x), w(y), as reported:

w(xy) = w(y) ⊗ w(x) = [
w1IM

1 · · ·w1IM
IM

] ⊗ [
w1IN

1 · · ·w1IN
IN

]
(110)

Referring to the bivariate function f = f (x, y), it is also possible performing a univariate
integration along a parametric line of the rectangular computational domain parallel to x and y,
respectively, employing the GIQ rule. For this purpose, w(x0) and w(0y) are defined starting from
Eq. (110):

w(0y) = w(y) ⊗ o(x)

w(x0) = o(y) ⊗ w(x) (111)

For the sake of completeness, symbol o(x), o(y) are row vectors of ones of dimensions 1 × IN and
1 × IM , respectively. Thus, the following relations can be derived:

b∫
a

f (x, y) dx =
IN∑
i=1

IM∑
j=1

w1IN
i w(0)

j f
(
xi, yj

)
d∫

c

f (x, y) dy =
IN∑
i=1

IM∑
j=1

w(0)

i w1IM
j f

(
xi, yj

) (112)

We recall that in Eq. (87) the global stiffness matrix of the shell has been provided, starting from
a parametrization of the reference surface r (α1, α2) employing principal coordinates. As it has been
shown, for arbitrarily-shaped structures K(τη)

�
for τ , η = 0, . . . , N + 1 is described by means of natural

coordinates ξ1, ξ2 in Eq. (88). For this purpose, it is useful to define a matrix of dimensions 3INIM ×
3I 2

NI 2
M for the transformation at issue:

P =
(

w(ξ1 ξ2) ◦
(	A1 ◦ 	A2 ◦ 	DJ

)T
)

⊗ O (113)

being O a ones squared matrix of dimensions 3INIM . Accordingly, w(ξ1 ξ2)=w(ξ2) ⊗ w(ξ1) following
Eq. (110), whereas DJ, A1, and A2 accounts for the determinant of the Jacobian matrix J, as well
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as the Lamè parameters A1, A2 of the shell. If the index k = n + (m − 1) IN with n = 1, . . . , IN and
m = 1, . . . , IM is assessed, we obtain the vectorized form of K(τη)

�
, accounting for the IN × IM grid of the

computational domain:

K̃
(τη)

�
=
[
K

(τη)αiαj
�(1) K

(τη)αiαj
�(2) · · · K

(τη)αiαj
�(k) · · · K

(τη)αiαj

�(IN IM)

]T

(114)

Employing Eqs. (113) and (114), the stiffness matrix K̂
(τη)

�(nm)
for an arbitrarily-shaped shell structure

can be computed:

K̂
(τη)

�(nm)
= P K̃

(τη)

�
(115)

In the following, the discrete form of the generalized external loads of Eq. (84) is provided by
means of the GIQ method presented in Eq. (106):

Ñ
(τ )α1

1 = w(0α2)T ◦ 	A2 ◦ N̄
(τ )α1
1

Ñ
(τ )α2

12 = w(0α2)T ◦ 	A2 ◦ N̄
(τ )α2
12

T̃
(τ )α3

1 = w(0α2)T ◦ 	A2 ◦ T̄
(τ )α3
1

Ñ
(τ )α1

21 = w(α10)T ◦ 	A1 ◦ N̄
(τ )α1
21

Ñ
(τ )α2

2 = w(α10)T ◦ 	A1 ◦ N̄
(τ )α2
2

T̃
(τ )α3

2 = w(α10)T ◦ 	A1 ◦ T̄
(τ )α3
2

(116)

In the same way, Eq. (116) becomes suitable for an arbitrary mapped domain. According to the
nomenclature introduced in Eq. (12), it gives for ξ2 = −1:

Ñ
(τ )α1

n = L(1)

2
w̃(α10)T ◦ N̄

(τ )α1
n

Ñ
(τ )α2

ns = L(1)

2
w̃(α10)T ◦ N̄

(τ )α2
ns

T̃
(τ )α3

ζ
= L(1)

2
w̃(α10)T ◦ T̄

(τ )α3
ζ

(117)

The edge characterized by ξ1 = 1 behaves as:

Ñ
(τ )α1

n = L(2)

2
w̃(0α2)T ◦ N̄

(τ )α1
n

Ñ
(τ )α2

ns = L(2)

2
w̃(0α2)T ◦ N̄

(τ )α2
ns

T̃
(τ )α3

ζ
= L(2)

2
w̃(0α2)T ◦ T̄

(τ )α3
ζ

(118)

On the other hand, for ξ2 = 1 it is:

Ñ
(τ )α1

n = L(3)

2
w̃(α10)T ◦ N̄

(τ )α1
n

Ñ
(τ )α2

ns = L(3)

2
w̃(α10)T ◦ N̄

(τ )α2
ns

T̃
(τ )α3

ζ
= L(3)

2
w̃(α10)T ◦ T̄

(τ )α3
ζ

(119)
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Finally, the edge identified with ξ1 = −1 reads as:

Ñ
(τ )α1

n = L(4)

2
w̃(0α2)T ◦ N̄

(τ )α1
n

Ñ
(τ )α2

ns = L(4)

2
w̃(0α2)T ◦ N̄

(τ )α2
ns

T̃
(τ )α3

ζ
= L(4)

2
w̃(0α2)T ◦ T̄

(τ )α3
ζ

(120)

8 Post-Processing Analysis

Once the fundamental governing relations reported in Eq. (87) have been solved by means of
the GDQ method, the solution in terms of the generalized displacement field component vector
u(τ ) is obtained. Actually, the 3D distributions of both kinematic and mechanical quantities along
the shell thickness should be recovered starting from the outcomes of the 2D model. To this
purpose, the Chebyshev-Gauss-Lobatto (CGL) non-uniform grid is introduced. The location ξg of
the computational points is provided for the [−1, 1] dimensionless interval [16]:

ξg = − cos
(

g − 1
IT − 1

π

)
for

ξg ∈ [−1, 1]
g = 1, . . . , IT

(121)

being IT the number of the selected discrete points. Referring to the interval [ζk, ζk+1] for k = 1, . . . , l
representing the k-th layer of the staking sequence within the 3D physical domain, Eq. (121) should
be transformed according to the following relation:

ζg = ζk+1 − ζk

2

(
ξg + 1

) + ζk for
ξg ∈ [−1, 1]

g = 1, . . . , IT

k = 1, . . . , l
(122)

Employing the unified ESL assessment of the displacement field introduced in Eq. (26) it is
possible to derive the through-the-thickness distribution of the displacement field component vector
U(k)

(ijg)
with i = 1, . . . , IN, j = 1, . . . , IM and g = 1, . . . , IT for each k-th layer of the stacking sequence [16]:

U(k)

(ijg)
=

N+1∑
τ=0

F(k)

τ (g)
u(τ )

(ij)

(
α1i, α2j

) ⇔
⎡
⎢⎣

U (k)

1(ijg)

(
α1i, α2j, ζ (k)

g

)
U (k)

2(ijg)

(
α1i, α2j, ζ (k)

g

)
U (k)

3(ijg)

(
α1i, α2j, ζ (k)

g

)
⎤
⎥⎦

=
N+1∑
τ=0

⎡
⎢⎣

Fα1(k)

τ (g)

(
ζ (k)

g

)
0 0

0 Fα2(k)

τ (g)

(
ζ (k)

g

)
0

0 0 Fα3(k)

τ (g)

(
ζ (k)

g

)
⎤
⎥⎦
⎡
⎢⎣

u(τ )

1(ij)

(
α1i, α2j

)
u(τ )

2(ij)

(
α1i, α2j

)
u(τ )

3(ij)

(
α1i, α2j

)
⎤
⎥⎦ (123)

being Fα1(k)

τ (g)

(
ζ (k)

g

)
, Fα2(k)

τ (g)

(
ζ (k)

g

)
, Fα3(k)

τ (g)

(
ζ (k)

g

)
the generalized thickness functions set calculated at the(

α1i, α2j, ζ (k)

g

)
point of the 3D solid, whereas u(τ )

1(ij), u(τ )

2(ij), u(τ )

3(ij) are the generalized displacement field
components for the τ -th kinematic expansion order referred to the point

(
α1i, α2j

)
of the physical

domain, for i = 1, . . . , IN, j = 1, . . . , IM . In the same way, the generalized strain component vector
ε

(τ )αq
(ij) for q = 1, 2, 3 and τ = 0, . . . , N + 1 are computed in terms of the discrete 3D strain component

vector ε
(k)

(ijg) = [
ε

(k)

1(ijg) ε
(k)

2(ijg) γ
(k)

12(ijg) γ
(k)

13(ijg) γ
(k)

23(ijg) ε
(k)

3(ijg)

]T
within each k-th lamina, leading to the following

expression:
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ε(k)

(ijg)
=

N+1∑
τ=0

3∑
q=1

Z (kτ)αi
(ijg) ε

(τ )αq
(ij) (124)

Referring to the generic
(
α1i, α2j, ζ (k)

g

)
point of the shell structure, membrane stresses can be

calculated according to the generally anisotropic law of Eq. (51), leading to the following relation,
setting Ē(kg)

ij for i, j = 1, . . . , 6 the elastic stiffness coefficients of the k-th layer referred to the geometric
reference system employed for the computation of σ

(k)

1 , σ (k)

2 , τ (k)

12 stresses:

⎡
⎢⎣

σ
(k)

1(ijg)

σ
(k)

2(ijg)

τ
(k)

12(ijg)

⎤
⎥⎦ =

⎡
⎢⎣

Ē(k)

11(ijg) Ē(k)

12(ijg) Ē(k)

16(ijg) Ē(k)

14(ijg) Ē(k)

15(ijg) Ē(k)

13(ijg)

Ē(k)

12(ijg) Ē(k)

22(ijg) Ē(k)

26(ijg) Ē(k)

24(ijg) Ē(k)

25(ijg) Ē(k)

23(ijg)

Ē(k)

16(ijg) Ē(k)

26(ijg) Ē(k)

66(ijg) Ē(k)

46(ijg) Ē(k)

56(ijg) Ē(k)

36(ijg)

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(k)

1(ijg)

ε
(k)

2(ijg)

γ
(k)

12(ijg)

γ
(k)

13(ijg)

γ
(k)

23(ijg)

ε
(k)

3(ijg)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(125)

Nevertheless, the remaining stress components τ
(k)

13 , τ (k)

23 , σ (k)

3 are not calculated starting from
the constitutive relation (51). The 3D equilibrium equations [16] expressed in curvilinear principal
coordinates are employed, instead, as:

⎡
⎢⎢⎢⎢⎢⎣

∂

∂ζ
+ 1

R1 + ζ
+ 1

R2 + ζ
0 0

0
∂

∂ζ
+ 1

R1 + ζ
+ 1

R2 + ζ
0

0 0
∂

∂ζ
+ 1

R1 + ζ
+ 1

R2 + ζ

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎣

τ
(k)

13

τ
(k)

23

σ
(k)

3

⎤
⎥⎦ =

⎡
⎢⎣

a(k)

b(k)

c(k)

⎤
⎥⎦

(126)

where R1, R2 are the principal curvature radii of the reference surface r (α1, α2), whereas the terms
a(k), b(k), c(k) depend on the quantities calculated in Eq. (125), reading as:

a(k) = − 1

A 1

(
1 + ζ

/
R 1

) ∂σ
(k)

1

∂α1

+ σ
(k)

2 − σ
(k)

1

A1A2

(
1 + ζ

/
R2

) ∂A2

∂α1

− 1

A2

(
1 + ζ

/
R2

) ∂τ
(k)

12

∂α2

− 2τ
(k)

12

A1A2

(
1 + ζ

/
R1

) ∂A1

∂α2

b(k) = − 1

A2

(
1 + ζ

/
R2

) ∂σ
(k)

2

∂α2

+ σ
(k)

1 − σ
(k)

2

A1A2

(
1 + ζ

/
R1

) ∂A1

∂α2

− 1

A1

(
1 + ζ

/
R1

) ∂τ
(k)

12

∂α1

− 2τ
(k)

12

A1A2

(
1 + ζ

/
R2

) ∂A2

∂α1

c(k) = − 1

A1

(
1 + ζ

/
R1

) ∂τ
(k)

13

∂α1

− τ
(k)

13

A1A2

(
1 + ζ

/
R2

) ∂A2

∂α1

− 1

A2

(
1 + ζ

/
R2

) ∂τ
(k)

23

∂α2

− τ
(k)

23

A1A2

(
1 + ζ

/
R1

) ∂A1

∂α2

+ σ
(k)

1

R1 + ζ
+ σ

(k)

2

R2 + ζ
(127)

It should be noted that the expression of c(k) contains the terms τ
(k)

13 , τ (k)

23 . For this reason, the
first two relations of Eq. (126) should be solved independently in the first step. Then, the solution
of the third equation can be easily found. To this end, the discrete form of the derivatives of in-
plane stresses σ

(k)

1 , σ (k)

2 , τ (k)

12 with respect to α1, α2 occurring in the first two expressions of Eq. (127)
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should be performed employing the GDQ method for each k-th layer of the lamination scheme, setting
k = 1, . . . , l:

σ
(k)

1,1(ijg) = ∂σ
(k)

1

∂α1

∣∣∣∣
(ijg)

∼=
IN∑
q=1

ς
α1(1)

iq σ
(k)

1(qjg), σ
(k)

2,2(ijg) = ∂σ
(k)

2

∂α2

∣∣∣∣
(ijg)

∼=
IM∑
q=1

ς
α2(1)

jq σ
(k)

2(qjg)

τ
(k)

12,1(ijg) = ∂τ
(k)

12

∂α1

∣∣∣∣
(ijg)

∼=
IN∑
q=1

ς
α1(1)

iq τ
(k)

12(qjg), τ
(k)

12,2(ijg) = ∂τ
(k)

12

∂α2

∣∣∣∣
(ijg)

∼=
IM∑
q=1

ς
α2(1)

jq τ
(k)

12(qjg)

(128)

The first order differential relations (126) should fulfill a single boundary condition. Referring to
the first lamina of the stacking sequence (k = 1), the external loads applied at the bottom side of the
structure

(
ζ = −h

/
2
)

satisfy the following boundary conditions:

τ̃
(1)

13(ij1) = q(−)

1a(ij)

τ̃
(1)

23(ij1) = q(−)

2a(ij)

(129)

being q(−)

1a(ij), q(−)

2a(ij) the in-plane static loads referred to the
(
α1i, α2j

)
point of the bottom skin of the

structure following the convention in Eq. (63). On the other hand, for an arbitrary k-th layer, the first
two relations of Eq. (126) can be solved at each discrete grid point

(
α1i, α2j, ζ (k)

g

)
by means of the GDQ

computations of Eq. (128) enforcing the unknown stress compatibility conditions between the k-th
and the (k + 1)-th laminae as follows:

τ̃
(k)

13(ijIT)
= τ̃

(k+1)

13(ij1)

τ̃
(k)

23(ijIT)
= τ̃

(k+1)

23(ij1)

for
i = 1, . . . , IN

j = 1, . . . , IM

k = 1, . . . , l − 1
(130)

For the surface loads q(+)

1a(ij) and q(+)

2a(ij) at the top side, an adjustment algorithm is provided starting
from the solution of Eq. (126) by means of the boundary conditions (129) and (130). Accordingly, the
exact fulfilment of the compatibility conditions between stresses and in-plane external loads is ensured
at the external shell skins [16]:

τ13(ijs) = τ̃13(ijs) +
(

ζs + h(ij)

2

) q(+)

1a(ij) − τ̃
13(ijIL)

h
(ij)

τ23(ijs) = τ̃23(ijs) +
(

ζs + h(ij)

2

) q(+)

2a(ij) − τ̃
23(ijIL)

h
(ij)

for
i = 1, . . . , IN

j = 1, . . . , IM

s = 1, . . . , IL = l · IT

(131)

In the previous equation an index s = kg has been introduced, accounting for g = 1, . . . , IT points
defined according to Eq. (122) for the k-th lamina alongside the entire shell thickness h(ij) = h

(
αi, αj

)
for i = 1, . . . , IN and j = 1, . . . , IM . As a matter of fact, stresses τ̃

13(ijIL)
, τ̃

23(ijIL)
come from the direct

solution of the balance Eq. (126). The introduction of the index s leads to vectors τ̃ 13, τ̃ 23 employed for
the numerical implementation of Eq. (131), accounting for an assembly of out-of-plane shear stresses
alongside the entire lamination scheme:

τ̃ 13 =
[
τ̃

(1)

13(ij1) · · ·τ̃ (1)

13(ijIT) τ̃
(2)

13(ij1) · · ·τ̃ (2)

13(ijIT)
· · · τ̃ (k)

13(ij1) · · ·τ̃ (k)

13(ijIT)
· · · τ̃ (l)

13(ij1) · · ·τ̃ (l)

13(ijIT)

]T

τ̃ 23 =
[
τ̃

(1)

23(ij1) · · ·τ̃ (1)

23(ijIT) τ̃
(2)

23(ij1) · · ·τ̃ (2)

23(ijIT)
· · · τ̃ (k)

23(ij1) · · ·τ̃ (k)

23(ijIT)
· · · τ̃ (l)

23(ij1) · · ·τ̃ (l)

23(ijIT)

]T

(132)
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Once the corrected values τ13(ijs), τ23(ijs) of stresses are found employing Eq. (131), the index associ-
ation τ

(k)

13(ijm) = τ13(ijs) and τ
(k)

23(ijm) = τ23(ijs) is performed. In this way, the first order derivatives of τ
(k)

13 , τ (k)

23

with respect to α1, α2 can be performed within each k-th lamina based on the GDQ algorithm:

∂τ
(k)

13

∂α1

∣∣∣∣
(ijm)

∼=
IN∑
q=1

ς
α1(1)

iq τ (k)

13(qjm)
,

∂τ
(k)

23

∂α2

∣∣∣∣
(ijm)

∼=
IM∑
q=1

ς
α2(1)

jq τ (k)

23(qjm)
(133)

Now, it is possible to solve the third differential relation in (126), while enforcing the stress
compatibility condition for the surface external loads q(−)

3a at the boundary of the shell. Referring to
the discrete point located at

(
α1i, α2j

)
, one gets:

σ̃ (1)

3(ij1)
= q(−)

3a(ij) (134)

In the same way, the following relation should be fulfilled at the interface level between the k-th
and (k + 1)-th lamina, being k = 1, . . . , l − 1:

σ̃
(k)

3(ijIT)
= σ̃ (k+1)

3(ij1)
(135)

Following a similar procedure to Eq. (132) for τ
(k)

13 , τ (k)

23 shear stresses, the association σ̃
(k)

3(ijm) = σ̃3(ijs)

is performed, thus leading to the definition of the following vector:

σ̃ 3 =
[
σ̃

(1)

3(ij1) · · ·σ̃ (1)

3(ijIT) σ̃
(2)

3(ij1) · · ·σ̃ (2)

3(ijIT)
· · · σ̃ (k)

3(ij1) · · ·σ̃ (k)

3(ijIT)
· · · σ̃ (l)

3(ij1) · · ·σ̃ (l)

3(ijIT)

]T

(136)

Therefore, the load boundary conditions at the top surface of the shell read as [16]:

σ3(ijs) = σ̃3(ijm)
+
(

ζs + h(ij)

2

) q(+)

3a(ij) − σ̃
3(ijIL)

h(ij)

(137)

being q(+)

3a(ij) the component of external loads applied at ζ = +h
/

2 at each
(
α1i, α2j

)
point.

Starting from the main outcomes of Eqs. (131) and (137), the corrected values of the out-of-plane
3D deformations collected γ

(k)

13 , γ (k)

23 , ε(k)

13 of the k-th layer can be calculated as well, according to what
has been stated in reference [16]. To this end, the constitutive law for generally anisotropic materials
introduced in Eq. (51) is employed. Performing a computation in each discrete point

(
α1i, α2j, ζ (k)

g

)
with

i = 1, . . . , IN, j = 1, . . . , IM and g = 1, . . . , IT , it gives the discrete vector x(k)

(ijg) = [
γ

(k)

13(ijg) γ
(k)

23(ijg) ε
(k)

3(ijg)

]T
:

A(k)

(ijg)
x(k)

(ijg)
= b(k)

(ijg)
(138)

where

A(k)

(ijg)
=
⎡
⎣Ē(k)

44(ijg) Ē(k)

45(ijg) Ē(k)

34(ijg)

Ē(k)

45(ijg) Ē(k)

55(ijg) Ē(k)

35(ijg)

Ē(k)

34(ijg) Ē(k)

35(ijg) Ē(k)

33(ijg)

⎤
⎦ b(k)

(ijg)
=
⎡
⎣τ

(k)

13(ijg)

τ
(k)

23(ijg)

σ
(k)

3(ijg)

⎤
⎦ −

⎡
⎣Ē(k)

14(ijg) Ē(k)

24(ijg) Ē(k)

46(ijg)

Ē(k)

15(ijg) Ē(k)

25(ijg) Ē(k)

56(ijg)

Ē(k)

13(ijg) Ē(k)

23(ijg) Ē(k)

36(ijg)

⎤
⎦
⎡
⎣ ε

(k)

1(ijg)

ε
(k)

2(ijg)

γ
(k)

12(ijg)

⎤
⎦ (139)

From the inversion of the fundamental linear system of Eq. (138), the corrected values of
γ

(k)

13(ijg), γ
(k)

23(ijg), ε
(k)

3(ijg) 3D strains are provided at each discrete point of the shell
(
α1i, α2j, ζ (k)

g

)
with i =

1, . . . , IN, j = 1, . . . , IM and g = 1, . . . , IT :
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γ (k)

13(ijg)
= 1

det A(k)

(ijg)

(
Ē(k)

33(ijg)
Ē(k)

55(ijg)
− (

Ē(k)

35(ijg)

)2
) (

τ (k)

13(ijg)
− Ē(k)

14(ijg)
ε(k)

1(ijg)
− Ē(k)

24(ijg)
ε(k)

2(ijg)
− Ē(k)

46(ijg)
γ (k)

12(ijg)

)

+ 1

det A(k)

(ijg)

(
Ē(k)

34(ijg)
Ē(k)

35(ijg)
− Ē(k)

33(ijg)
Ē(k)

45(ijg)

) (
τ (k)

23(ijg)
− Ē(k)

15(ijg)
ε(k)

1(ijg)
− Ē(k)

25(ijg)
ε(k)

2(ijg)
− Ē(k)

56(ijg)
γ (k)

12(ijg)

)

+ 1

det A(k)

(ijg)

(
Ē(k)

35(ijg)
Ē(k)

45(ijg)
− Ē(k)

34(ijg)
Ē(k)

55(ijg)

) (
σ (k)

3(ijg)
− Ē(k)

13(ijg)
ε(k)

1(ijg)
− Ē(k)

23(ijg)
ε(k)

2(ijg)
− Ē(k)

36(ijg)
γ (k)

12(ijg)

)

γ (k)

23(ijg)
= 1

det A(k)

(ijg)

(
Ē(k)

34(ijg)
Ē(k)

35(ijg)
− Ē(k)

33(ijg)
Ē(k)

45(ijg)

) (
τ (k)

13(ijg)
− Ē(k)

14(ijg)
ε(k)

1(ijg)
− Ē(k)

24(ijg)
ε(k)

2(ijg)
− Ē(k)

46(ijg)
γ (k)

12(ijg)

)

+ 1

det A(k)

(ijg)

(
Ē(k)

33(ijg)
Ē(k)

44(ijg)
− (

Ē(k)

34(ijg)

)2
) (

τ (k)

23(ijg)
− Ē(k)

15(ijg)
ε(k)

1(ijg)
− Ē(k)

25(ijg)
ε(k)

2(ijg)
− Ē(k)

56(ijg)
γ (k)

12(ijg)

)

+ 1

det A(k)

(ijg)

(
Ē(k)

34(ijg)
Ē(k)

45(ijg)
− Ē(k)

35(ijg)
Ē(k)

44(ijg)

) (
σ (k)

3(ijg)
− Ē(k)

13(ijg)
ε(k)

1(ijg)
− Ē(k)

23(ijg)
ε(k)

2(ijg)
− Ē(k)

36(ijg)
γ (k)

12(ijg)

)

ε(k)

3(ijg)
= 1

det A(k)

(ijg)

(
Ē(k)

35(ijg)
Ē(k)

45(ijg)
− Ē(k)

34(ijg)
Ē(k)

55(ijg)

) (
τ (k)

13(ijg)
− Ē(k)

14(ijg)
ε(k)

1(ijg)
− Ē(k)

24(ijg)
ε(k)

2(ijg)
− Ē(k)

46(ijg)
γ (k)

12(ijg)

)

+ 1

det A(k)

(ijg)

(
Ē(k)

34(ijg)
Ē(k)

45(ijg)
− Ē(k)

35(ijg)
Ē(k)

44(ijg)

) (
τ (k)

23(ijg)
− Ē(k)

15(ijg)
ε(k)

1(ijg)
− Ē(k)

25(ijg)
ε(k)

2(ijg)
− Ē(k)

56(ijg)
γ (k)

12(ijg)

)

+ 1

det A(k)

(ijg)

(
Ē(k)

44(ijg)
Ē(k)

55(ijg)
− (

Ē(k)

45(ijg)

)2
) (

σ (k)

3(ijg)
− Ē(k)

13(ijg)
ε(k)

1(ijg)
− Ē(k)

23(ijg)
ε(k)

2(ijg)
− Ē(k)

36(ijg)
γ (k)

12(ijg)

)
(140)

In the last Eq. (140), det A(k)

(ijg)
refers the determinant of the matrix A(k)

(ijg)
of Eq. (138):

det A(k)

(ijg)
= Ē(k)

33(ijg)
Ē(k)

44(ijg)
Ē(k)

55(ijg)
+ 2Ē(k)

34(ijg)
Ē(k)

35(ijg)
Ē(k)

45(ijg)

− Ē(k)

44(ijg)

(
Ē(k)

35(ijg)

)2 − Ē(k)

33(ijg)

(
Ē(k)

45(ijg)

)2 − Ē(k)

55(ijg)

(
Ē(k)

34(ijg)

)2
(141)

The corrected strain values can be employed for the correction of membrane stresses σ
(k)

1(ijg), σ
(k)

2(ijg),
τ

(k)

12(ijg) at each point of the discrete computational domain associated to the structure.

9 Numerical Investigations

We now present a series of case studies to validate the proposed methodology. Different structures
have been considered, characterized by a variety of lamination schemes and curvatures. More
specifically, the linear static response of zero-, singly- and doubly-curved panels have been investi-
gated. Geometries of arbitrary shape have been considered, accounting for the generalized mapping
technique of Eq. (13). The results provided by the ESL methodology presented in the manuscript have
been compared to predictions obtained from refined 3D FEM simulations with parabolic elements as
provided by a commercial software. The numerical investigations check for the accuracy of the model
for different displacement field axiomatic assumptions according to Eq. (26), governing parameters
of the employed distributions of external loads, and boundary linear springs distributions.
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9.1 Materials Employed in the Analyses
In the present section we describe the mechanical input properties of materials for numerical

analyses. For each component, the stiffness matrix E(k) is provided according to conventions from
Eq. (49), referring to the material reference system O′α̂(k)

1 α̂
(k)

2 ζ̂ (k). In particular, a triclinic and a trigonal
material have been employed belonging to the class of generally anisotropic materials. Referring to the
class of orthotropic medium, a classic composite graphite-epoxy has been considered. Moreover, some
considerations are provided for a 3D honeycomb lattice cell, characterized by an orthotropic softcore
behaviour.

In the following, the 3D stiffness matrix of the triclinic material
(
ρ(k) = 7750 kg

/
m3

)
has been

reported, setting E(k)

ij with i, j = 1, . . . , 6 the generalized stiffness constants:

E(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(k)
11 E(k)

12 E(k)
16 E(k)

14 E(k)
15 E(k)

13
E(k)

12 E(k)
22 E(k)

26 E(k)
24 E(k)

25 E(k)
23

E(k)
16 E(k)

26 E(k)
66 E(k)

46 E(k)
56 E(k)

36
E(k)

14 E(k)
24 E(k)

46 E(k)
44 E(k)

45 E(k)
34

E(k)
15 E(k)

25 E(k)
56 E(k)

45 E(k)
55 E(k)

35
E(k)

13 E(k)
23 E(k)

36 E(k)
34 E(k)

35 E(k)
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

98.84 53.92 0.03 1.05 −0.1 50.78
53.92 99.19 0.03 0.55 −0.18 50.87
0.03 0.03 22.55 −0.04 0.25 0.02
1.05 0.55 −0.04 21.1 0.07 1.03
−0.1 −0.18 0.25 0.07 21.14 −0.18
50.78 50.87 0.02 1.03 −0.18 87.23

⎤
⎥⎥⎥⎥⎥⎥⎦

GPa (142)

The trigonal material
(
ρ(k) = 2649 kg

/
m3

)
accounts for the following stiffness matrix E(k):

E(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

E(k)

11 E(k)

12 E(k)

16 E(k)

14 E(k)

15 E(k)

13

E(k)

12 E(k)

22 E(k)

26 E(k)

24 E(k)

25 E(k)

23

E(k)

16 E(k)

26 E(k)

66 E(k)

46 E(k)

56 E(k)

36

E(k)

14 E(k)

24 E(k)

46 E(k)

44 E(k)

45 E(k)

34

E(k)

15 E(k)

25 E(k)

56 E(k)

45 E(k)

55 E(k)

35

E(k)

13 E(k)

23 E(k)

36 E(k)

34 E(k)

35 E(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

86.74 6.99 0 0 −17.91 11.91
6.99 86.74 0 0 17.91 11.91

0 0 39.88 −17.91 0 0
0 0 −17.91 57.94 0 0

−17.91 17.91 0 0 57.94 0
11.91 11.91 0 0 0 107.20

⎤
⎥⎥⎥⎥⎥⎥⎦

GPa (143)

Referring to the orthotropic graphite-epoxy
(
ρ(k) = 1450 kg

/
m3

)
, the mechanical properties have

been provided in terms of the nine independent engineering constants, namely the Young moduli
E(k)

1 , E(k)

2 , E(k)

3 , the shear moduli G(k)

12 , G(k)

13 , G(k)

23 and the Poisson’s coefficients ν
(k)

12 , ν(k)

13 , ν(k)

23 :

E(k)

1 = 137.90 GPa
E(k)

2 = 8.96 GPa
E(k)

3 = 8.96 GPa

G(k)

12 = 7.10 GPa
G(k)

13 = 7.10 GPa
G(k)

23 = 6.21 GPa

ν
(k)

12 = 0.30
ν

(k)

13 = 0.30
ν

(k)

23 = 0.49
(144)

The correlations between quantities reported in Eq. (144) and anisotropic elastic constants E(k)

ij

for i, j = 1, . . . , 6 have been reported in Appendix C.

A 3D lattice structure is now presented, called 3D Augmented Re-entrant Cellular Structure
(3D ARCS), which has been extensively outlined in references [109,110]. In Fig. 3 a geometric
representation of a 3D ARCS unit cell, together with all the geometric features, is presented. As can
be seen, the main characteristics of the cell can be referred to a 2D pattern, which has been properly
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highlighted. When referring to the principal reference system of the shell O′α1α2ζ , the heights of both
vertical ribs are denoted with h̄ and h̄0, whereas the length of the inclined rib of the angle ϑ is identified
with l. All the cell frames have a squared cross section of width t. Due to the geometric and material
symmetry of the unit cell, the equivalence of in-plane directions α1, α2 can be declared according to the
Neumann’s principle. The constituent material is intended to be isotropic, characterized by an elastic
modulus Es and a density ρs. It is useful to introduce for the unit cell, the dimensionless cell slenderness
denoted with α, β, γ , η [109]:

α = h̄
l

, β = t
l
, γ = t

h̄
, η = t

h̄0

(145)

Figure 3: Geometric representation of a 3D Augmented Re-entrant Cellular Structure (3D ARCS)
unit cell. The configuration of the 2D unit pattern provides an auxetic behaviour of the equivalent
continuum along in-plane directions α1, α2

Starting from reference [109], the classical beam theory is adopted to model each frame, here
assumed as thin frame with rigid node area. A preliminary geometric overlapping verification should
be performed. The vertical struts do not superimpose to each other if the following geometric relation
is respected:

t < l sin ϑ1 (146)

being ϑ1 = π
/

2 − ϑ . Moreover, the overlapping test for inclined tips is based on the following
inequality:

(1 − cos ϑ1) t
sin ϑ1

+ 2l cos ϑ1 < h̄ (147)

The following stiffnesses are conveniently introduced, accounting for the extensional behaviour
and the bending deflections of the frame [109]:

kl
s = Estβ kh

s = Estγ kh0
s = Estη

kl
f = Estβ

3 kh0
f = Estη

3 kh
f = Estγ

3 (148)

Moreover, the generalized stiffness parameter φ is defined as:

φ = cos2ϑ

kl
f

+ sin2
ϑ

kl
s

(149)
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Based on the Eqs. (148) and (149), the quantities A, B are defined as:

A =
φ − 1

kl
s

φ + 1

kh0
s

+ 1
kh

s

1

kh0
s

+ 1
kh

s

2φ
, B = 1

kl
f

− 1
kl

s

(150)

Following the procedure in reference [109], the 3D ARCS k-th layer can be homogenized as an
orthotropic medium. The correspondent Elastic moduli E(k)

1 , E(k)

2 , E(k)

3 are expressed as:

E(k)

1 = E(k)

2 = 2

h̄0 + h̄

1
1

kl
s
+
(

A + 1

φ kl
s

)
B sin2

ϑ
, E(k)

3 = h̄0 + h̄
l2cos2ϑ

φ kh0
s kh

s + kh0
s + kh

s

φkh0
s + φkh

s + 4
(151)

whereas the shear moduli G(k)

12 , G(k)

13 , G(k)

23 are defined as:

G(k)

12 = kl
f

h̄0 + h̄

G(k)

13 = G(k)

23

= β

cos ϑ

1

1

kh0
f + kh

f

4tl cos ϑ

h̄0 + h̄
+
⎛
⎝ t cos ϑ

(
h̄ − l sin ϑ

)
kl

f

+ kh
f − kh0

f

kl
f

(
kh

f + kh0
f

) tl cos ϑ sin ϑ

⎞
⎠(

1
l

− sin ϑ

h̄0 + h̄

)

(152)

In the following, the expressions for Poisson’s orthotropic coefficients ν
(k)

12 , ν(k)

13 , ν(k)

23 can be found:

ν(k)

12 = − ABsin2
ϑ

1
kl

s

+
(

A + 1
φ kl

s

)
B sin ϑ

, ν(k)

13 = ν(k)

23 = − l

h̄0 + h̄

(
φ − 1

kl
s

) (
kh

s − kh0
s

)
φkh0

s kh
s + kh0

s + kh
s

1
kl

s

+
(

A + 1
φ kl

s

)
B sin ϑ

(153)

In addition, the homogenized density of the 3D ARCS layer is computed according to the
following expression, applying the procedure of void fraction introduced in reference [110]:

ρ(k) = ρs

(
α + 4 − 3 + cos ϑ1

sin ϑ1

β + 2
h̄0

l

)
β2

2sin2
ϑ1 (α − cos θ)

(154)

9.2 Straight Panels
The first set of numerical investigations considers some rectangular plates of constant thickness

with general boundary conditions and subjected to a static uniform load. All the mechanic and
geometric properties of the structure are reported in Fig. 4. A convergence study starts considering
a fully clamped rectangular plate of dimensions Lx = 1.5 m and Lx = 1 m subjected to uniform
pressure q(+)

3a = −1.0 × 104 Pa. The lamination scheme accounts for two external triclinic layers and a
central orthotropic lamina made of graphite-epoxy. A reference 3D FEM solution has been provided,
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and the vertical deflection of the central part of the structure has been computed. The results are
summarized in Table 1, with a clear fast convergence for all the displacement field assumptions.

Figure 4: Geometric and mechanical properties for an anisotropic rectangular plate enforced with
non-conventional boundary conditions and subjected to a general loading
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Table 1: Convergence analysis of a fully-clamped rectangular plated under uniform surface pressure.
The vertical deflection at the centre of the structure has been computed by setting a different number
of grid points, as well as various kinematic expansion orders. A reference 3D FEM solution has been
provided for the comparison. The results are reported in 10−6 m

Rectangular plate (CCCC) maximum central deflection

3D-FEM 9.9764

IN = IM FSDTZ TSDT TSDTZ EDZ2 ED3 EDZ3 ED4 EDZ4

9 −9.8866 −10.0505 −10.0913 −10.0713 −9.4795 −9.7284 −9.4817 −9.8091
11 −9.8032 −10.0198 −10.0590 −10.2007 −9.6122 −9.8569 −9.6193 −9.8689
13 −9.8492 −10.0603 −10.1019 −10.3018 −9.7231 −9.9660 −9.7321 −9.9024
15 −9.8224 −10.0339 −10.0737 −10.2952 −9.7061 −9.9525 −9.7231 −9.9024
17 −9.8346 −10.0442 −10.0852 −10.3046 −9.7207 −9.9661 −9.7357 −9.9518
19 −9.8273 −10.0384 −10.0785 −10.3013 −9.7089 −9.9573 −9.7338 −9.9729
21 −9.8305 −10.0407 −10.0815 −10.3030 −9.7131 −9.9613 −9.7359 −9.9739
23 −9.8286 −10.0393 −10.0796 −10.3000 −9.7063 −9.9549 −9.7372 −9.9844
25 −9.8295 −10.0401 −10.0806 −10.3002 −9.7080 −9.9563 −9.7369 −9.9844
27 −9.8289 −10.0396 −10.0800 −10.2982 −9.7043 −9.9532 −9.7275 −9.9893
29 −9.8293 −10.0399 −10.0804 −10.2982 −9.7053 −9.9532 −9.7371 −9.9953
31 −9.8291 −10.0397 −10.0802 −10.2969 −9.7034 −9.9505 −9.7342 −9.9912

Stacking Sequence: 1st layer: triclinic, 2nd layer: graphite-epoxy, 3rd layer: triclinic (30/0/60)

Geometric Inputs: Lx = 1.5 m, Ly = 1 m, h0
1 = h0

3 = 0.02 m, h0
2 = 0.04 m

Surface Loads: q(+)

3a = −1.0 × 104 Pa

In particular, two different configurations have been considered. For the Case 01, four layers
with general orientations (0/30/45/70) have been employed in the lamination scheme, embedding the
triclinic material of Eq. (142) and the trigonal material introduced in Eq. (143). As far as the external
constraints is concerned, the super elliptic distribution of Eq. (77) has been employed, leading to a
half edge clamped condition. A general uniform pressure q̃

(
α1, α2

) = 1 has been applied on the top
surface of the shell, characterized by both normal q(+)

3a and tangential components q(+)

1a , q(+)

2a with respect
to α1, α2, ζ principal directions. A reference solution has been computed with a 3D FEM model,
employing 371685 DOFs. The GDQ simulations, instead, were performed on a computational grid
based on the LGL distribution of Eq. (100) characterized by IN = 37 and IM = 31. Different higher
order theories have been considered according to Eq. (27), together with the zigzag effects. The static
structural response has been reported in Figs. 5–7. The 3D displacement field components U1, U2, U3

through-the-thickness distributions of Fig. 5 taken from the point located in the centre of the structure
show that an almost linear distribution of in-plane components is predicted with all the assumptions,
whereas a constant dispersion of U3 is assumed.
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Figure 5: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional displacement field vector U (α1, α2, ζ ) of a rectangular plate composed of four generally
anisotropic layers under static loads

(
q̃(+)

3 = −10000 Pa
)

enforced with general boundary conditions(
FBK

SSSFC
)
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Figure 6: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional strain vector ε (α1, α2, ζ ) of a rectangular plate composed of four generally anisotropic
layers under static loads

(
q̃(+)

3 = −10000 Pa
)

enforced with general boundary conditions
(
FBK

SSSFC
)

On the other hand, the best agreement with the 3D FEM outcomes is provided by the EDZ4
theory for all the components. As far as the 3D strain vector dispersions are concerned (Fig. 6),
the GDQ approach predicts well the kinematic variables. In this case, the simulation with a fourth
kinematic expansion order without the zigzag effect (ED4) seems to be more accurate, even though
all the approaches provide very good results. The employment of a higher order assumption for the
displacement field is crucial for the γ13 distortion component, since in the third layer the 3D FEM
predicts a slight nonlinear dispersion. The through-the-thickness distributions of stresses reported in
Fig. 7 employing the EDZ4 higher order assumption of the displacement field are perfectly in line
with those belonging to the 3D reference solution. It can be seen that lower order ED1 and EDZ1
shell theories cannot give results of the same accuracy, even when embedding a zigzag function within
the formulation.
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Figure 7: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional stress vector σ (α1, α2, ζ ) of a rectangular plate composed of four generally anisotropic
layers under static loads

(
q̃(+)

3 = −10000 Pa
)

enforced with general boundary conditions
(
FBK

SSSFC
)
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Figure 8: Through-the-thickness distributions at
(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional displacement field vector U (α1, α2, ζ ) of a fully-clamped (CCCC) rectangular plate
composed of three generally anisotropic layers under static loads

(
q̃(+)

3 = −5000 Pa
)

enforced with
general boundary conditions

(
FBK

SSSFC
)
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Figure 9: Through-the-thickness distributions at
(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional strain vector ε (α1, α2, ζ ) of a fully-clamped (CCCC) rectangular plate composed of three
generally anisotropic layers under static loads

(
q̃(+)

3 = −5000 Pa
)

enforced with general boundary
conditions

(
FBK

SSSFC
)
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Figure 10: Through-the-thickness distributions at
(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional stress vector σ (α1, α2, ζ ) of a fully-clamped (CCCC) rectangular plate composed of three
generally anisotropic layers under static loads

(
q̃(+)

3 = −5000 Pa
)

enforced with general boundary
conditions

(
FBK

SSSFC
)

The second investigation was performed on a fully-clamped (CCCC) rectangular plate under
a uniform static pressure along the ζ coordinate. The structure is characterized by two external
layers of the triclinic material assessed in Eq. (142) and a central core made of an orthotropic
3D ARCS, whose mechanical properties are computed employing the homogenization provided by
Eqs. (151)–(154). In particular, the geometric input quantities have been selected so that h̄ = 0.0024 m,
h̄0 = l = 0.0012 m and ϑ = π

/
6. The tips and struts thicknesses are chosen so that t = 0.05 l. The

constitutive material is intended to be isotropic with an elastic modulus Es = 196 GPa and a density
equal to ρs = 7800 kg

/
m3. The central isotropic layer is obtained from a superimposition of five cells.

Thickness plots have been derived at
(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
, and they have been reported in

Figs. 8–10. In this case, since the central layer behaves like a softcore, two different stable reference
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solutions have been computed, namely the 3D FEM and a fourth-order Layer-Wise (LD4) calculated
by means of the GDQ method [19]. For the sake of completeness, the simulation has been performed
also with the EDZ4 displacement field theory, employing the strong formulation [27]. Fig. 8 shows that
the employment of higher order theories, together with the zigzag assumption, is required for seeking
results in line with other theories for both in-plane and out-of-plane displacement field components.
This is due to the fact that the central softcore layer of 3D ARCS induces an unconventional in-plane
deflection of the structure due to the static pressure. Similar considerations can be made for the 3D
strain components of Fig. 9. Note that both the 3D FEM and LD4 predict a behaviour typical of
lamination schemes embedding softcore layers. Also for this case, the zigzag effect is very evident,
since common ED−N theories are not adequate. Referring to out-of-plane distortions γ13 and γ23, the
squeezing effect of the central core of the plate is outlined. Actually, the ESL simulations not including
the zigzag axiomatic assumption of Eq. (27) are not capable of predicting the right structural response.
The EDZ3 solution is in line with LD4 and 3D FEM predictions for all strain components. Also for the
stress component vector through-the-thickness dispersions reported in Fig. 10, the employment of the
zigzag function leads to good predictions in line with reference simulations, regardless the kinematic
expansion order. In the case of σ

(k)

3 three-dimensional stress component, higher order theories provide
results in line with the 3D FEM outcomes. Lower order theories account only for the fulfilment of the
external loads, because of the recovery algorithm assessed in Eq. (137).

9.3 Panels with Curvatures
In the present section the linear static analysis is performed for laminated structures characterized

by the presence of curvature. Accordingly, a singly-curved shell and two doubly-curved panels have
been considered, each of them enforced with generalized external constraints. The lamination schemes
account for layers characterized by a general orientation with respect to the curvilinear principal
reference system. As far as surface pressures are concerned, various loading conditions have been
considered. They have been modelled within the ESL framework employing the distributions q̄ (α1, α2)

outlined in Eqs. (65)–(67).

In Fig. 11, there are all the information regarding the analysed cylindrical panel. According to the
ESL approach, the shape of the structure is described starting from the reference surface, as shown
in Eq. (2). In the following, the expression of the reference surface is reported employing principal
curvilinear coordinates α1, α2, setting Rb the radius of the circle [16]:

r (α1, α2) = Rb cos α2 e1 − Rb sin α2 e2 + α1 e3 (155)

The stacking sequence accounts for three layers. Namely, a central triclinic material has been
covered by two external sheets of graphite-epoxy of the same thickness. A uniform surface load q(+)

3a =
−1.0·104 Pa has been applied to the top surface

(
ζ = +h

/
2
)

of the shell. Boundary conditions account
for the clamping of the South (S) edge, whereas the East (E) side is constrained in a portion of its
length by means of the super elliptic distribution described in Eq. (77). The structural response has
been outlined in Figs. 12–14 which refer to the dispersions of kinematic and static quantities along
with the shell thickness in the region located at the centre of the physical domain. 3D displacement
field components U1, U2, U3 have been reported in Fig. 12. It is shown that the 3D FEM solution is
properly predicted by the higher order models, especially for the out-of-plane component which cannot
be predicted by lower order assumptions like the ED1 displacement field. The in-plane components
are characterized by a linear distribution instead. On the other hand, an excellent agreement between
different ESL approaches can be found in Fig. 13, regardless of the employment of the zigzag function.
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Also, for this case, ED1 predictions are not in line with the outcomes from refined 3D FEM. As can
be seen from Fig. 14, also the 3D stress component vectors coming from different ESL approaches are
in line with those obtained from the commercial software. Referring to the τ13, τ23 and σ3 dispersions,
the exact fulfilment of the external load conditions can be easily seen. The worst accuracy is obtained
when N = 1.

Figure 11: Geometric and mechanical properties for an anisotropic cylindrical panel enforced with
non-conventional boundary conditions and subjected to general loads
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Figure 12: Through-the-thickness distributions at
(
0.50(ξ 1

1 − ξ 0
1 ), 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional displacement field vector U (α1, α2, ζ ) of a cylindrical panel composed of three generally
anisotropic layers under static loads

(
q̃(+)

3 = −10000 Pa
)

enforced with general boundary conditions(
FCBK

SSSF
)
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Figure 13: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional strain vector ε (α1, α2, ζ ) of a cylindrical panel composed of three generally anisotropic
layers under static loads

(
q̃(+)

3 = −10000 Pa
)

enforced with general boundary conditions
(
FCBK

SSSF
)

Next numerical investigation is performed on a doubly-curved panel of translation of mapped
geometry. In particular, a hyperbolic paraboloid has been considered, whose reference surface equation
in principal coordinates is reported [16]:
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Figure 14: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional stress vector σ (α1, α2, ζ ) of a cylindrical panel composed of three generally anisotropic
layers under static loads

(
q̃(+)

3 = −10000 Pa
)

enforced with general boundary conditions
(
FCBK

SSSF
)



770 CMES, 2022, vol.133, no.3

r (α1, α2) =
(

1
2

kα1 tan α1 + 1
4

kα2tan2 α2 sin α1

)
e1 +

(
−1

2
kα2tan2α2

)
e2

+
(

1
4

kα1 tan2 α1 + 1
4

kα2tan2 α2 cos α1

)
e3

(156)

being kα1 , kα2 two characteristic parameters depending on the curvature of the principal lines. A
geometric representation of the structure at issue is reported in Fig. 15, together with all the lamination
scheme information and the boundary conditions. The physical domain mapping has been assessed by
means of the NURBS-based procedure of Eq. (13) with all the information related to each surface edge
reported in Fig. 15. External constraints have been modelled on the structure setting the West (W) side
fully clamped. The employment of the Double–Weibull distribution defined in Eq. (78) accounts for
the perfect clamping of the two external points of the East (E) edge. A uniform load has been applied
in a quarter of the structure on the top surface. Within the GDQ simulation, such discrete variation
of the load has been modelled by means of the Super Elliptic distribution reported in Eq. (67). In
the out-of-plane direction, linear elastic springs follows a uniform dispersion

(
λ̄ (ζ ) = 1

)
. In Fig. 16,

the dispersion of the displacement field components U1, U2, U3 at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
are

collected coming from various higher order theories. The refined 3D FEM outcomes are taken as
references. It is shown that the U1 deflection is well predicted by the proposed formulation with a higher
order assumption of the displacement field. On the other hand, other in-plane field variable is not well
predicted. As far as the vertical deflection is concerned, the structure at issue is characterized by a
certain stretching along with the shell thickness. The shape of the distribution is depicted as well. The
three-dimensional strain components are collected in Fig. 17. It is shown that the 3D FEM solution
can be fit by higher order assumptions of the displacement field together with the zigzag function.
In particular, best performances are provided by the EDZ4 solution. The same considerations can
be repeated for the three-dimensional stress vector σ (α1, α2, ζ ) of Fig. 18. In fact, the shape of the
distributions is well predicted by all the proposed theories. It is interesting to note that the implemented
recovery algorithm leads to the perfect fulfilment of the equilibrium boundary conditions coming from
external surface loads.



CMES, 2022, vol.133, no.3 771

Figure 15: Geometric and mechanical properties of an anisotropic mapped Hyperbolic Paraboloid
enforced with non-conventional boundary conditions and subjected to general loads
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Figure 16: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional displacement field vector U (α1, α2, ζ ) of a hyperbolic paraboloid of arbitrary shape
composed of three generally anisotropic layers under static loads

(
q̃(+)

3 = −5000 Pa
)

enforced with
general boundary conditions

(
CFBK

DDDF
)
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Figure 17: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional strain vector ε (α1, α2, ζ ) of a hyperbolic paraboloid of arbitrary shape composed of
three generally anisotropic layers under static loads

(
q̃(+)

3 = −5000 Pa
)

enforced with general boundary
conditions

(
CFBK

DDDF
)

The last numerical investigation has been performed on a super elliptic panel of revolution
enforced with general external constraints along the West (W) mapped edge. Since the shell at issue is a
doubly-curved revolution panel, the reference surface equation is computed starting from the general
relation based on spherical coordinates [16]:

r (α1, α2) = (R0 (α1) cos α2) e1 − (R0 (α1) sin α2) e2 + x3 (α2) e3 (157)

where R0 (α1) denotes the radius of the parallel, whereas x3 (α2) is valuated in terms of α2:

R0 (α1) = a1a2 cos α1(
an

2|cos α1|n + an
1|sin α1|n) 1

n
, x3 (α2) = − a1a2 sin α1(

an
2|cos α1|n + an

1|sin α1|n) 1
n

(158)
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In Eq. (158), a1, a2 are two geometric characteristic parameters, whereas n denotes the order of the
meridian curve. In Fig. 19 a representation of the domain distortion has been provided, together with
the knot vector, the weights and the control points coordinate alongside the physical domain.

Figure 18: Through-the-thickness distributions at
(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional stress vector σ (α1, α2, ζ ) of a hyperbolic paraboloid of arbitrary shape composed of
three generally anisotropic layers under static loads

(
q̃(+)

3 = −5000 Pa
)

enforced with general boundary
conditions

(
CFBK

DDDF
)
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Figure 19: Geometric and mechanical properties of a super elliptic panel of revolution of mapped
geometry enforced with non-conventional boundary conditions and subjected to general loads
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It is interesting to note that the employed NURBS procedure allows tackling straight curves
as a particular case. A general surface load has been applied to the structure, following a smooth
distribution according to the Gaussian bivariate function of Eq. (67). The central core is orthotropic,
in line with the 3D ARCS employed for the rectangular plate; since it has already been shown that
the LD4 simulation predicts well the refined 3D FEM solutions, this time the LW model has been
adopted as a reference structural response. Moreover, since the lamination scheme is characterized
by a central softcore and two external layers of triclinic material (142), the ESL solution has been
calculated only with the employment of the zigzag hypothesis on the displacement field and various N-
th kinematic expansion orders, according to what exerted in Eq. (27). The static deflections, computed
at

(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
, have been collected in Fig. 20. The in-plane displacement field

components show that the EDZ4 assumption in both the strong and weak form best fits the results
provided by the LD4 reference simulation in both triclinic layers and in the central 3D ARCS softcore.
A great accordance is noticed between different approaches involving the strong and weak form of
the EDZ4 structural theory. The shape of the distribution coming from the LD4 model is also well
predicted by the ESL theory with zigzag functions characterized by N = 4. On the other hand, the
ESL solution provides a linear distribution in the displacement field in-plane components, whereas
the LD4 simulation accounts for a nonlinear dispersion due to the softcore behaviour of the lattice
layer. Referring to the through-the-thickness dispersions of the three-dimensional strains reported in
Fig. 21, the squeezing phenomenon due to the presence of the 3D ARCS is evident. The EDZ4 theory
in both its strong and weak formulation well predicts the deformations of the two external triclinic
layers. Referring to the central core, the structural response is strongly dependent on the choice of the
axiomatic displacement field thickness function. The employment of a higher order for the kinematic
expansion provides results close to the LW outcomes, especially for the case of out-of-plane distortions
γ13, γ23 and stretching component ε3.
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Figure 20: Through-the-thickness distributions at
(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional displacement field vector U (α1, α2, ζ ) of a super elliptic panel of revolution of arbitrary
shape composed of two generally anisotropic layers under static loads

(
q̃(+)

3 = −3000 Pa
)

enforced with
general boundary conditions

(
BK

DDDFCF
)
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Figure 21: Through-the-thickness distributions at
(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional strain vector ε (α1, α2, ζ ) of a super elliptic panel of revolution of arbitrary shape
composed of two generally anisotropic layers under static loads

(
q̃(+)

3 = −3000 Pa
)

enforced with
general boundary conditions

(
BK

DDDFCF
)

Some concluding remarks are made on the three-dimensional stress components σ (α1, α2, ζ ),
as visible in Fig. 22. Since the equivalent elastic stiffnesses provided via the implementation of the
engineering constants from Eqs. (151) and (152) are lower than those of a triclinic material provided in
Eq. (142), in the central area of the structure very low in-plane normal and shear stresses are obtained.
On the contrary, the two outer layers provide higher values of stresses, following a linear dispersion.
A parabolic distribution is traced in the τ13, τ23 and σ3 representation, due to the enforcement of
the equilibrium boundary conditions. A great accordance can be found between the LD4 reference
simulation and the results obtained from the ESL solution regardless the maximum order of the
kinematic expansion.
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Figure 22: Through-the-thickness distributions at
(
0.25

(
ξ 1

1 − ξ 0
1

)
, 0.25

(
ξ 1

2 − ξ 0
2

))
of the three-

dimensional stress vector σ (α1, α2, ζ ) of a super elliptic panel of revolution of arbitrary shape
composed of two generally anisotropic layers under static loads

(
q̃(+)

3 = −3000 Pa
)

enforced with
general boundary conditions

(
BK

DDDFCF
)

Above all, it is shown that the proposed formulation is very reliable for the static study of
arbitrarily-shaped laminated structures under static loads. Moreover, the accuracy of the model is
not affected by the presence of a layer with lattice features.

10 Conclusions

In the present work, an ESL formulation based on higher order theories has been proposed for the
linear static analysis of structures with double curvature and arbitrary shape accounting for a general
assessment of external boundary conditions and lamination schemes, involving a generalized in-plane
and out-of-plane dispersion of linear elastic springs. Furthermore, a general shape of the external
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loads has been provided based on various bivariate distributions. The formulation has been developed
following a generalized variational approach, accounting for an interpolation of the field variable
of higher order based on Lagrange polynomials and a generic number of grid points. Differently
from classical variational approaches, the structural problem is now characterized by refined shape
functions, with a significant reduction in the computational cost. As a matter of fact, the computation
of the fundamental matrices is performed by means of a numerical integration throughout the entire
physical domain.

In the post-processing phase, an equilibrium-based recovery procedure has allowed for an
exact fulfilment of boundary conditions coming from the externally applied surface loads. A series
of validating examples has been proposed, where the static response of structures with different
curvatures has been successfully checked. The accuracy of the solution has been evaluated from a direct
comparison of the results obtained from refined 3D and LW theories. The proposed formulation has
been demonstrated to be very reliable for disparate situations in terms of materials, lamination schemes
and load conditions.
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Appendix A. Higher order coefficients for boundary conditions

In the previous paragraphs, referring to a generic τ -th kinematic expansion order with τ =
0, . . . , N + 1, a relation has been provided in Eq. (57) in a compact matrix form that computes
the generalized stress resultant vector S(τ )αi of Eq. (52) for αi = α1, α2, α3 in terms of generalized
displacement field component vector u(τ ) introduced in Eq. (26). In the following, we report an
extended version of coefficients O

(τη)αiαj
gr of the matrix O(τη)αiαj , being i, j, r = 1, 2, 3 and g = 1, . . . , 9.

Since the fundamental governing equations have been assessed in a IN × IM discrete grid, fundamental
coefficients have been provided in the correspondent discrete form Õ

(τη)αiαj

gr , defined as follows:

Õ
(τη)αiαj

gr = �O(τη)αiαj

gr(1)
◦ ς α1(1)α2(0)+ �O(τη)αiαj

gr(2)
◦ ς α1(0)α2(1) + �O(τη)αiαj

gr(3)
◦ ς α1(0)α2(0) (A1)

where ς α1(n)α2(m) contains the GDQ weighting coefficients for the derivative of the (n + m)-th order
referred to the principal directions of the shell α1, α2. For the sake of completeness, it should be recalled
that the symbol ◦ stands for the Hadamard product. In the following, the interested reader can find

the extended version of �O(τη)αiαj

gr(s) , setting g = 1, . . . , 9, s = 1, 2, 3 and i, j, r = 1, 2, 3.

First column of the generalized operator

	O(τη)αiα1

11(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα1

11(20)

	O(τη)αiα1

11(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα1

16(11)

	O(τη)αiα1

11(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[00]αiα1

12(11)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[00]αiα1

16(20)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[00]αiα1

14(20)
+ 	A(τη)[01]αiα1

14(10)

(A2)
	O(τη)αiα1

21(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα1

12(11)

	O(τη)α1α1

21(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα1

26(02)

	O(τη)α1α1

21(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[00]αiα1

22(02)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[00]αiα1

26(11)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[00]αiα1

24(11)
+ 	A(τη)[01]αiα1

24(01)

(A3)
	O(τη)αiα1

31(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα1

16(20)

	O(τη)αiα1

31(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα1

66(11)

	O(τη)αiα1

31(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[00]αiα1

26(11)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[00]αiα1

66(20)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[00]αiα1

46(20)
+ 	A(τη)[01]αiα1

46(10)

(A4)
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	O(τη)αiα1

41(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα1

16(11)

	O(τη)αiα1

41(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα1

66(02)

	O(τη)αiα1

41(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[00]αiα1

26(02)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[00]αiα1

66(11)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[00]αiα1

46(11)
+ 	A(τη)[01]αiα1

46(01)

(A5)
	O(τη)αiα1

51(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα1

14(20)

	O(τη)αiα1

51(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα1

46(11)

	O(τη)αiα1

51(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[00]αiα1

24(11)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[00]αiα1

46(20)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[00]αiα1

44(20)
+ 	A(τη)[01]αiα1

44(10)

(A6)
	O(τη)αiα1

61(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα1

15(11)

	O(τη)αiα1

61(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα1

56(02)

	O(τη)αiα1

61(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[00]αiα1

25(02)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[00]αiα1

56(11)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[00]αiα1

45(11)
+ 	A(τη)[01]αiα1

45(01)

(A7)
	O(τη)αiα1

71(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα1

14(10)

	O(τη)αiα1

71(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα1

46(01)

	O(τη)αiα1

71(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[10]αiα1

24(01)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[10]αiα1

46(10)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[10]αiα1

44(10)
+ 	A(τη)[11]αiα1

44(00)

(A8)
	O(τη)αiα1

81(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα1

15(10)

	O(τη)αiα1

81(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα1

56(01)

	O(τη)αiα1

81(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[10]αiα1

25(01)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[10]αiα1

56(10)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[10]αiα1

45(10)
+ 	A(τη)[11]αiα1

45(00)

(A9)
	O(τη)αiα1

91(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα1

13(10)

	O(τη)αiα1

91(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα1

36(01)

	O(τη)αiα1

91(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(	A(τη)[10]αiα1

23(01)
◦ ς α1(1)α2(0) 	A2 − 	A(τη)[10]αiα1

36(10)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

1 ◦ 	A(τη)[10]αiα1

34(10)
+ 	A(τη)[11]αiα1

34(00)

(A10)

Second column of the generalized operator

	O(τη)αiα2

12(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα2

16(20)

	O(τη)αiα2

12(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα2

12(11)

	O(τη)αiα2

12(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[00]αiα2

16(11)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[00]αiα2

11(20)
◦ ς α1(0)α2(1) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[00]αiα2

15(11)
+ 	A(τη)[01]αiα2

15(10)
(A11)
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	O(τη)αiα2

22(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα2

26(11)

	O(τη)αiα2

22(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα2

22(02)

	O(τη)αiα2

22(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[00]αiα2

26(02)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[00]αiα2

12(11)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[00]αiα2

25(02)
+ 	A(τη)[01]αiα2

25(01)
(A12)

	O(τη)αiα2

32(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα2

66(20)

	O(τη)αiα2

32(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα2

26(11)

	O(τη)αiα2

32(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[00]αiα2

66(11)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[00]αiα2

16(20)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[00]αiα2

56(11)
+ 	A(τη)[01]αiα2

56(10)
(A13)

	O(τη)αiα2

42(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα2

66(11)

	O(τη)αiα2

42(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα2

26(02)

	O(τη)αiα2

42(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[00]αiα2

66(02)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[00]αiα2

16(11)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[00]αiα2

56(02)
+ 	A(τη)[01]αiα2

56(01)
(A14)

	O(τη)αiα2

52(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα2

46(20)

	O(τη)αiα2

52(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα2

24(11)

	O(τη)αiα2

52(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[00]αiα2

46(11)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[00]αiα2

14(20)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[00]αiα2

45(11)
+ 	A(τη)[01]αiα2

45(10)
(A15)

	O(τη)αiα2

62(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα2

56(11)

	O(τη)αiα2

62(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα2

25(02)

	O(τη)αiα2

62(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[00]αiα2

56(02)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[00]αiα2

15(11)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[00]αiα2

55(02)
+ 	A(τη)[01]αiα2

55(01)
(A16)

	O(τη)αiα2

72(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα2

46(10)

	O(τη)αiα2

72(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα2

24(01)

	O(τη)αiα2

72(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[10]αiα2

46(01)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[10]αiα2

14(10)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[10]αiα2

45(01)
+ 	A(τη)[11]αiα2

45(00)
(A17)
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	O(τη)αiα2

82(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα2

56(10)

	O(τη)αiα2

82(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα2

25(01)

	O(τη)αiα2

82(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[10]αiα2

56(01)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[10]αiα2

15(10)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[10]αiα2

55(01)
+ 	A(τη)[11]αiα2

55(00)
(A18)

	O(τη)αiα2

92(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα2

36(10)

	O(τη)αiα2

92(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα2

23(01)

	O(τη)αiα2

92(3)
= 	Ao−1

1 ◦ 	Ao−1

2 ◦
(
−	A(τη)[10]αiα2

36(01)
◦ ς α1(1)α2(0) 	A2 + 	A(τη)[10]αiα2

13(10)
◦ ς α1(0)α2(2) 	A1

)
− 	Ro−1

2 ◦ 	A(τη)[10]αiα2

35(01)
+ 	A(τη)[11]αiα2

35(00)
(A19)

Third column of the generalized operator

	O(τη)αiα3

13(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα3

14(20)

	O(τη)αiα3

13(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα3

15(11)

	O(τη)αiα3

13(3)
= 	Ro−1

1 ◦ 	A(τη)[00]αiα3

11(20)
+ 	Ro−1

2 ◦ 	A(τη)[00]αiα3

12(11)
+ 	A(τη)[01]αiα3

13(10)
(A20)

	O(τη)αiα3

23(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα3

24(11)

	O(τη)αiα3

23(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα3

25(02)

	O(τη)αiα3

23(3)
= 	Ro−1

1 ◦ 	A(τη)[00]αiα3

12(11)
+ 	Ro−1

2 ◦ 	A(τη)[00]αiα3

22(02)
+ 	A(τη)[01]αiα3

23(01)
(A21)

	O(τη)αiα3

33(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα3

46(20)

	O(τη)αiα3

33(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα3

56(11)

	O(τη)αiα3

33(3)
= 	Ro−1

1 ◦ 	A(τη)[00]αiα3

16(20)
+ 	Ro−1

2 ◦ 	A(τη)[00]αiα3

26(11)
+ 	A(τη)[01]αiα3

36(10)
(A22)

	O(τη)αiα3

43(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα3

46(11)

	O(τη)αiα3

43(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα3

56(02)

	O(τη)αiα3

43(3)
= 	Ro−1

1 ◦ 	A(τη)[00]αiα3

16(11)
+ 	Ro−1

2 ◦ 	A(τη)[00]αiα3

26(02)
+ 	A(τη)[01]αiα3

36(01)
(A23)



CMES, 2022, vol.133, no.3 791

	O(τη)αiα3

53(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα3

44(20)

	O(τη)αiα3

53(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα3

45(11)

	O(τη)αiα3

53(3)
= 	Ro−1

1 ◦ 	A(τη)[00]αiα3

14(20)
+ 	Ro−1

2 ◦ 	A(τη)[00]αiα3

24(11)
+ 	A(τη)[01]αiα3

34(10)
(A24)

	O(τη)αiα3

63(1)
= 	Ao−1

1 ◦ 	A(τη)[00]αiα3

45(11)

	O(τη)αiα3

63(2)
= 	Ao−1

2 ◦ 	A(τη)[00]αiα3

55(02)

	O(τη)αiα3

63(3)
= 	Ro−1

1 ◦ 	A(τη)[00]αiα3

15(11)
+ 	Ro−1

2 ◦ 	A(τη)[00]αiα3

25(02)
+ 	A(τη)[01]αiα3

35(01)
(A25)

	O(τη)αiα3

73(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα3

44(10)

	O(τη)αiα3

73(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα3

45(01)

	O(τη)αiα3

73(3)
= 	Ro−1

1 ◦ 	A(τη)[10]αiα3

14(10)
+ 	Ro−1

2 ◦ 	A(τη)[10]αiα3

24(01)
+ 	A(τη)[11]αiα3

34(00)
(A26)

	O(τη)αiα3

83(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα3

45(10)

	O(τη)αiα3

83(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα3

55(01)

	O(τη)αiα3

83(3)
= 	Ro−1

1 ◦ 	A(τη)[10]αiα3

15(10)
+ 	Ro−1

2 ◦ 	A(τη)[10]αiα3

25(01)
+ 	A(τη)[11]αiα3

35(00)
(A27)

	O(τη)αiα3

93(1)
= 	Ao−1

1 ◦ 	A(τη)[10]αiα3

34(10)

	O(τη)αiα3

93(2)
= 	Ao−1

2 ◦ 	A(τη)[10]αiα3

35(01)

	O(τη)αiα3

93(3)
= 	Ro−1

1 ◦ 	A(τη)[10]αiα3

13(10)
+ 	Ro−1

2 ◦ 	A(τη)[10]αiα3

23(01)
+ 	A(τη)[11]αiα3

33(00)
(A28)

Appendix B. Higher order fundamental stiffness matrix coefficients

In the present section we report the complete expression of the fundamental coefficients K
(τη)αjαi
�

of the stiffness matrix of Eq. (62), defined for each τ , η = 0, . . . , N + 1 and αi, αj = α1, α2, α3 principal
direction of the shell. As can be seen, a formulation employing the Kronecker tensorial product ⊗ is
provided, as well as vectors lα1

, lα2
of the Lagrange interpolating polynomials of Eq. (34), as well as their

first order derivatives l (1)

α1
, l (1)

α2
. For the sake of completeness, the terms of the generalized stiffness matrix

A(τη)αiαj are computed according to the expression reported in Eq. (54) for each τ , η = 0, . . . , N +1 and
αi, αj = α1, α2, α3. All the terms at issue are collected by row.
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First row of the fundamental stiffness matrix

K(τη)α1α1
�

= (Bα1)
TA(τη)α1α1Bα1

= A(τη)[00]α1α1
11(20)

A2
1

((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l (1)

α1

)
+ A(τη)[00]α1α1

16(11)

A1A2

(((
l
α2

)T

l (1)

α2

)
⊗
((

l (1)

α1

)T

l
α1

)

+
((

l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

))
+ A(τη)[00]α1α1

66(02)

A2
2

((
l (1)

α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)
+
(

A(τη)[00]α1α1
12(11)

A2
1A2

∂A2

∂α1

−A(τη)[00]α1α1
16(20)

A2
1A2

∂A1

∂α2

− A(τη)[00]α1α1
14(20)

A1R1

)(((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l
α1

)
+
((

l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

))

+ A(τη)[01]α1α1
14(10)

A1

((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l
α1

)
+ A(τη)[10]α1α1

14(10)

A1

((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)
+
(

A(τη)[00]α1α1
26(02)

A1A2
2

∂A2

∂α1

−A(τη)[00]α1α1
66(11)

A1A2
2

∂A1

∂α2

− A(τη)[00]α1α1
46(11)

A2R1

)(((
l
α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)
+
((

l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

))

+ A(τη)[01]α1α1
46(01)

A2

((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)
+ A(τη)[10]α1α1

46(01)

A2

((
l
α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+
((

A(τη)[01]α1α1
24(01) + A(τη)[10]α1α1

24(01)

A1A2

− 2A(τη)[00]α1α1
24(11)

A1A2R1

)
∂A2

∂α1

+
(

−A(τη)[01]α1α1
46(10) + A(τη)[10]α1α1

46(10)

A1A2

+ 2A(τη)[00]α1α1
46(20)

A1A2R1

)
∂A1

∂α2

+A(τη)[00]α1α1
22(02)

A2
1A2

2

(
∂A2

∂α1

)2

+ A(τη)[00]α1α1
66(20)

A2
1A2

2

(
∂A1

∂α2

)2

− 2A(τη)[00]α1α1
26(11)

A2
1A2

2

∂A1

∂α2

∂A2

∂α1

+ A(τη)[00]α1α1
44(20)

R2
1

− A(τη)[01]α1α1
44(10) + A(τη)[10]α1α1

44(10)

R1

+A(τη)[11]α1α1
44(00)

)((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)
(A29)

K(τη)α1α2
�

= (Bα1)
TA(τη)α1α2Bα2

= A(τη)[00]α1α2
16(20)

A2
1

((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l (1)

α1

)
+ A(τη)[00]α1α2

12(11)

A1A2

((
l
α2

)T

l (1)

α2

)
⊗
((

l (1)

α1

)T

l
α1

)

+ A(τη)[00]α1α2
66(11)

A1A2

((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)
+ A(τη)[00]α1α2

26(02)

A2
2

((
l (1)

α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+
(

A(τη)[00]α1α2
11(20)

A2
1A2

∂A1

∂α2

− A(τη)[00]α1α2
16(11)

A2
1A2

∂A2

∂α1

− A(τη)[00]α1α2
15(11)

A1R2

+ A(τη)[01]α1α2
15(10)

A1

)((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l
α1

)

+
(

A(τη)[00]α1α2
26(11)

A2
1A2

∂A2

∂α1

− A(τη)[00]α1α2
66(20)

A2
1A2

∂A1

∂α2

− A(τη)[00]α1α2
46(20)

A1R1

+ A(τη)[10]αiα2
46(10)

A1

)((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)

+
(

A(τη)[00]α1α2
22(02)

A1A2
2

∂A2

∂α1

− A(τη)[00]α1α2
26(11)

A1A2
2

∂A1

∂α2

− A(τη)[00]α1α2
24(11)

A2R1

+ A(τη)[10]α1α2
24(01)

A2

)((
l
α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)
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+
(

A(τη)[00]α1α2
16(11)

A1A2
2

∂A1

∂α2

− A(τη)[00]α1α2
66(02)

A1A2
2

∂A2

∂α1

− A(τη)[00]α1α2
56(02)

A2R2

+ A(τη)[01]α1α2
56(01)

A2

)((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)

+
((

A(τη)[00]α1α2
46(11)

A1A2R1

− A(τη)[00]α1α2
25(02)

A1A2R2

+ A(τη)[01]α1α2
25(01) − A(τη)[10]α1α2

46(01)

A1A2

)
∂A2

∂α1

+
(

−A(τη)[00]α1α2
14(20)

A1A2R1

+ A(τη)[00]α1α2
56(11)

A1A2R2

+ A(τη)[10]α1α2
14(10) − A(τη)[01]α1α2

56(10)

A1A2

)
∂A1

∂α2

+ A(τη)[00]α1α2
12(11) + A(τη)[00]α1α2

66(11)

A2
1A2

2

∂A1

∂α2

∂A2

∂α1

− A(τη)[00]α1α2
26(02)

A2
1A2

2

(
∂A2

∂α1

)2

− A(τη)[00]α1α2
16(20)

A2
1A2

2

(
∂A1

∂α2

)2

+A(τη)[00]α1α2
45(11)

R1R2

− A(τη)[01]α1α2
45(10)

R1

− A(τη)[10]α1α2
45(10)

R2

+ A(τη)[11]α1α2
45(00)

)((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)
(A30)

K(τη)α1α3
�

= (Bα1)
TA(τη)α1α3Bα3

= A(τη)[00]α1α3
14(20)

A2
1

((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l (1)

α1

)
+ A(τη)[00]α1α3

15(11)

A1A2

((
l
α2

)T

l (1)

α2

)
⊗
((

l (1)

α1

)T

l
α1

)

+ A(τη)[00]α1α3
46(11)

A1A2

((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)
+ A(τη)[00]α1α3

56(02)

A2
2

((
l (1)

α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+
(

A(τη)[00]α1α3
11(20)

A1R1

+ A(τη)[00]α1α3
12(11)

A1R2

+ A(τη)[01]α1α3
13(10)

A1

)((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l
α1

)

+
(

A(τη)[00]α1α3
24(11)

A2
1A2

∂A2

∂α1

− A(τη)[00]α1α3
46(20)

A2
1A2

∂A1

∂α2

+ A(τη)[10]α1α3
44(10)

A1

− A(τη)[00]α1α3
44(20)

A1R1

)((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)

+
(

A(τη)[00]α1α3
25(02)

A1A2
2

∂A2

∂α1

− A(τη)[00]α1α3
56(11)

A1A2
2

∂A1

∂α2

+ A(τη)[10]α1α3
45(01)

A2

− A(τη)[00]α1α3
45(11)

A2R1

)((
l
α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+
(

A(τη)[00]α1α3
16(11)

A2R1

+ A(τη)[00]α1α3
26(02)

A2R2

+ A(τη)[01]α1α3
36(01)

A2

)((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)

+
((

A(τη)[00]α1α3
12(11)

A1A2R1

+ A(τη)[00]α1α3
22(02)

A1A2R2

+ A(τη)[01]α1α3
23(01)

A1A2

)
∂A2

∂α1

−
(

A(τη)[00]α1α3
16(20)

A1A2R1

+ A(τη)[00]α1α3
26(11)

A1A2R2

+ A(τη)[01]α1α3
36(10)

A1A2

)
∂A1

∂α2

−A(τη)[00]α1α3
14(20)

R2
1

− A(τη)[00]α1α3
24(11)

R1R2

+ A(τη)[10]α1α3
14(10) − A(τη)[01]α1α3

34(10)

R1

+ A(τη)[10]α1α3
24(01)

R2

+ A(τη)[11]α1α3
34(00)

)((
l
α2

)T

l
α2

)

⊗
((

l
α1

)T

l
α1

)
(A31)
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Second row of the fundamental stiffness matrix

K(τη)α2α1
�

= (Bα2)
TA(τη)α2α1Bα1

= A(τη)[00]α2α1
16(20)

A2
1

((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l (1)

α1

)
+ A(τη)[00]α2α1

26(02)

A2
2

((
l (1)

α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+ A(τη)[00]α2α1
66(11)

A1A2

((
l
α2

)T

l (1)

α2

)
⊗
((

l (1)

α1

)T

l
α1

)
+ A(τη)[00]α2α1

12(11)

A1A2

((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)

+
(

A(τη)[00]α2α1
26(11)

A2
1A2

∂A2

∂α1

− A(τη)[00]α2α1
66(20)

A2
1A2

∂A1

∂α2

− A(τη)[00]α2α1
46(20)

A1R1

+ A(τη)[01]α2α1
46(10)

A1

)((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l
α1

)

+
(

A(τη)[00]α2α1
11(20)

A2
1A2

∂A1

∂α2

− A(τη)[00]α2α1
16(11)

A2
1A2

∂A2

∂α1

− A(τη)[00]α2α1
15(11)

A1R2

+ A(τη)[10]α2α1
15(10)

A1

)((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)

+
(

A(τη)[00]α2α1
16(11)

A1A2
2

∂A1

∂α2

− A(τη)[00]α2α1
66(02)

A1A2
2

∂A2

∂α1

− A(τη)[00]α2α1
56(02)

A2R2

+ A(τη)[10]α2α1
56(01)

A2

)((
l
α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+
(

A(τη)[00]α2α1
22(02)

A1A2
2

∂A2

∂α1

− A(τη)[00]α2α1
26(11)

A1A2
2

∂A1

∂α2

− A(τη)[00]α2α1
24(11)

A2R1

+ A(τη)[01]α2α1
24(01)

A2

)((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)

+
((

−A(τη)[00]α2α1
14(20)

A1A2R1

+ A(τη)[00]α2α1
56(11)

A1A2R2

+ A(τη)[01]α2α1
14(10) − A(τη)[01]α2α1

56(10)

A1A2

)
∂A1

∂α2

+
(

A(τη)[00]α2α1
46(11)

A1A2R1

− A(τη)[00]α2α1
25(02)

A1A2R2

+ A(τη)[10]α2α1
25(01) − A(τη)[01]α2α1

46(01)

A1A2

)
∂A2

∂α1

+ A(τη)[00]α2α1
12(11) + A(τη)[00]α2α1

66(11)

A2
1A2

2

∂A1

∂α2

∂A2

∂α1

− A(τη)[00]α2α1
26(02)

A2
1A2

2

(
∂A2

∂α1

)2

− A(τη)[00]α2α1
16(20)

A2
1A2

2

(
∂A1

∂α2

)2

+A(τη)[00]α2α1
45(11)

R2R1

− A(τη)[01]α2α1
45(01)

R2

− A(τη)[10]α2α1
45(10)

R1

+ A(τη)[11]α2α1
45(00)

)((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)
(A32)

K(τη)α2α2
�

= (Bα2)
TA(τη)α2α2Bα2

= A(τη)[00]α2α2
66(20)

A2
1

((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l (1)

α1

)
+ A(τη)[00]α2α2

26(11)

A1A2

(((
l
α2

)T

l (1)

α2

)
⊗
((

l (1)

α1

)T

l
α1

)
+
((

l (1)

α2

)T

l
α2

)

⊗
((

l
α1

)T

l (1)

α1

))
+ A(τη)[00]α2α2

22(02)

A2
2

((
l (1)

α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+
(

A(τη)[00]α2α2
16(20)

A2
1A2

∂A1

∂α2

− A(τη)[00]α2α2
66(11)

A2
1A2

∂A2

∂α1

− A(τη)[00]α2α2
56(11)

A1R2

)(((
l
α2

)T

l
α2

)

⊗
((

l (1)

α1

)T

l
α1

)
+
((

l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

))
+ A(τη)[01]α2α2

56(10)

A1

((
l
α2

)T

l
α2

)
⊗
((

l (1)

α1

)T

l
α1

)
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+ A(τη)[10]α2α2
56(10)

A1

((
l
α2

)T

l
α2

)
⊗
((

l
α1

)T

l (1)

α1

)
+
(

A(τη)[00]α2α2
12(11)

A1A2
2

∂A1

∂α2

− A(τη)[00]α2α2
26(02)

A1A2
2

∂A2

∂α1

− A(τη)[00]α2α2
25(02)

A2R2

)

×
(((

l
α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)
+
((

l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

))

+ A(τη)[01]α2α2
25(01)

A2

((
l (1)

α2

)T

l
α2

)
⊗
((

l
α1

)T

l
α1

)
+ A(τη)[10]α2α2

25(01)

A2

((
l
α2

)T

l (1)

α2

)
⊗
((

l
α1

)T

l
α1

)

+
((

2A(τη)[00]α2α1
56(02)

A1A2R2

− A(τη)[01]α2α1
56(01) + A(τη)[10]α2α2

56(01)

A1A2

)
∂A2

∂α1

+
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Third row of the fundamental stiffness matrix
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Appendix C. Constitutive relationship for an orthotropic medium

With particular references of numerical investigations accounting for orthotropic materials, the
expressions of C(k)

ij with i, j = 1, . . . , 6 and k = 1, . . . , l of the three-dimensional constitutive
relationship reported in Eq. (49) should be considered. Actually, the mechanical properties of the k-
th lamina are provided in terms of the well-known engineering constants, namely the elastic moduli
E(k)

1 , E(k)

2 , E(k)

3 , the shear moduli G(k)

12 , G(k)

13 , G(k)

23 and the Poisson’s coefficients ν
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In the previous equation, quantity �(k) reads as follows:

�(k) = 1 − ν
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(A39)

It should be recalled that the Poisson’s coefficients satisfy the well-known reciprocity relation [16]:

ν
(k)

ij

E(k)

i

= ν
(k)

ji

E(k)

j

for i, j = 1, 2, 3 (A40)
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