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ABSTRACT

As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range
under GNSS denied environment, a novel consensus constrained relative navigation algorithm based on the lever
arm effect of the sensor offset from the spacecraft center of mass is proposed. Firstly, the orbital propagation
model for the relative motion of multi-spacecraft is established based on Hill-Clohessy-Wiltshire dynamics and
the line-of-sight measurement under sensor offset condition is modeled in Local Vertical Local Horizontal frame.
Secondly, the consensus constraint model for the relative orbit state is constructed by introducing the geometry
constraint between the spacecraft, based on which the consensus unscented Kalman filter is designed. Thirdly, the
observability analysis is done and the necessary conditions of the sensor offset to make the state observable are
obtained. Lastly, digital simulations are conducted to verify the proposed algorithm, where the comparison to the
unconstrained case is also done. The results show that the estimated error of the relative position converges very
quickly, the location error is smaller than 10 m under the condition of 10−3 rad level camera and 5 m offset.
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1 Introduction

Maintaining formation configuration and restructuring control is essential for cooperative space-
craft to accomplish specific missions, and formation control depends on precise relative navigation
between the members [1–3]. Estimating based on certain dynamic model, measuring with sensors on
the spacecraft, and finally using the EKF filter algorithm or the UKF filter algorithm to update
the relative state is the basic framework of the current navigation algorithm [4,5]. Relative dynamic
model, the accuracy of on-board sensors together with navigation algorithm affect the accuracy and
the observability of relative navigation.

At present, the commonly used sensors for relative measurement of spacecraft formation flying
mainly include: relative GPS, microwave radar, LIDAR, visible light camera, infrared camera and laser
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rangefinder, etc. However, relative navigation based on GPS can be easily interfered by the environ-
ment. In addition, members in the formation will lose common star to do the relative measurement
if they are far away from each other. Radio ranging navigation has the defect of mirror orbit [6,7].
Angles-only navigation method based on optical camera has the problem of unobservability or weak
observability in relative orbit, and the environment in space greatly affects measurement accuracy of
the camera [8–10]. In addition, the method that combines radio signals and laser can be applied, which
uses the full sky coverage characteristics of radio beams to achieve target orientation, and then guides
laser signals to complete distance measurement. However, formation flying of spacecraft often has
strict restrictions on the volume and size of measurement equipment and payloads, which requires the
use of as few measurement devices as possible to determine the relative orbit.

Range-only measurement via radio signals and angels-only optical navigation devices are relatively
simple and reliable in spacecraft formation flying, thus becoming major trend in the field, and lots of
research has been conducted by scholars. Dianetti et al. [11] utilized UWB ranging and phase angle
difference information to solve the relative spacecraft navigation problem in short-range rendezvous
and docking. Woffiden et al. [12] proposed orbital maneuver method to improve angles-only relative
navigation system, but frequent orbital maneuvers will cause fuel consumption. Gaias et al. [13] studied
the angles-only relative navigation from the perspective of relative orbit elements, and concluded that
the semi-major axis of the orbit is not observable. Newman et al. [14] established a second-order
nonlinear relative motion equation using QV (Quadratic Volterra) series, thus, to some extent, solved
the observability problem of angles-only relative navigation, though the computational complexity is
relatively large. Chen et al. [15–17] adopted a cooperative dual-satellite measurement strategy, Gao
et al. [18] introduced measurement baseline to solve the observability problem of angles-only relative
navigation by adopting dual-camera measurement strategy, which increases hardware cost. Wang et al.
[19] solved the unobservability of range-only relative navigation in near-circular orbit by introducing
consensus constraints in spacecraft formation, but relative orbit ambiguity problem still exists for
angles-only relative navigation.

The main contribution of this paper is to develop a novel consensus constrained relative navigation
algorithm for Multi-Spacecraft Formation in Close-Range that based on the lever arm effect of the
sensor offset from the spacecraft center of mass, which will avoid angles-only relative navigation
algorithm from converging to the mirror orbit. Orbital maneuver and computational burden brought
by complex dynamic model are avoided in the proposed method, only single optical camera is needed
to realize relative navigation of close-range spacecraft formation flying.

This paper begins with a brief review of Hill-Clohessy-Wiltshire dynamics and camera offset
measurement model in Section 2. In Section 3, the consensus constraint model for the relative orbit
state is constructed based on which the consensus unscented Kalman filter is designed. In Section 4,
the observability analysis of the proposed angles-only relative navigation algorithm is addressed.
In Section 5, Monte Carlo simulations with errors and uncertainties are conducted to verify the
theoretical results. At last, conclusions are presented in Section 6.

2 Problem Statement and Formulation
2.1 Relative Motion Dynamic

The origin of a rotating local vertical local horizontal (LVLH) reference frame is collocated with
the chief spacecraft center of mass. The axes of the LVLH frame are aligned with the chief spacecraft
inertial position vector (x axis or radial), the normal to orbit plane (z axis or cross track), and the
along-track direction (y axis completes the orthogonal set).
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The position and velocity of the deputy spacecraft center of mass relative to the chief center of
mass observed from the chief LVLH coordinates is denoted by r(t) and v(t), respectively. Let the relative
orbit state is X(t) = [rT , vT ]T , the superscript T stands for the operator of transposition. Vectors
without a superscript are assumed to be coordinatized in LVLH coordinates.

Then, under the assumptions of two-body problem and the range between the chief and deputy
spacecraft is small compared to the radial distance to the center of Earth, the relative motion of the
deputy with respect to the chief that is orbiting near-circular can be governed by the well-known Hill-
Clohessy-Wiltshire dynamics [20] as follows:

Ẋ(t) = AX(t) + Bu (t) , A =
[

03×3 I 3×3

K D

]
(1)

where K = diag [3n2, 0, −n2],B = [03×3, I 3×3]
T , D = −2ω×, and ω× is a skew-symmetric matrix

representation of the cross product defined by

ω× =
⎡
⎣ 0 −n 0

n 0 0
0 0 0

⎤
⎦ (2)

where n is the angular velocity of the chief spacecraft. B is the input matrix of control forces u (t) =
[ux, uy, uz]T , which is loaded on the deputy along the three axes of LVLH frame. Lastly, I 3×3 denotes 3
by 3 identity matrix. The analytic solution of Hill-Clohessy-Wiltshire dynamics for a given initial state
can be expressed as follows:

X(t) = �(t, t0)X(t0) +
∫ t

t0

�(τ , t0)Bu(τ ) dτ (3)

�(t, t0) is the transition matrix from time instance t0 to t, by taking t denoting t − t0 for short,
�(t, t0) can be given in partition form as follows:

�(t, t0) =
[
�rr �rv

�vr �vv

]
(4)

�rr =
⎡
⎣ 4 − 3 cos nt 0 0

6 sin nt − 6nt 1 0
0 0 cos nt

⎤
⎦ (5)

�rv = 1
n

⎡
⎣ sin nt 2 − 2 cos nt 0

2 cos nt − 2 4 sin nt − 3nt 0
0 0 sin nt

⎤
⎦ (6)

�vr =
⎡
⎣ 3n sin nt 0 0

6n(cos nt − 1) 0 0
0 0 −n sin nt

⎤
⎦ (7)

�vv =
⎡
⎣ cos nt 2 sin nt 0

−2 sin nt 4 cos nt − 3 0
0 0 cos nt

⎤
⎦ (8)

2.2 Angles-Only Measurement Model
It is assumed that the origin of the chief-fixed body reference frame is co-located with the chief

center of mass. Without loss of generality, an optical-sensor (camera is considered in this work) offset
from the chaser center of mass in the chief fixed body frame, i.e., db = [dx, dy, dz]T , is assumed to be
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fixed. The unit line-of-sight (also named angles-only) measurement can be modeled in the LVLH frame
as follows

y = h (r) = r (i) −C lvlh
b (i) db∥∥r (i) −C lvlh
b (i) db

∥∥ + ε (9)

where ‖·‖ is the operator of 2-norm; ε is the line-of-sight measurement noise which is commonly
modeled as zero-mean Gaussian noise with the covariance E[ε(k)ε(k)T ] = Rk; C lvlh

b (i) is the
instantaneous body-to-LVLH attitude rotation matrix at time instant ti and assumed to be known
for it can be calculated by using the knowledge of inertial attitude, position, and velocity of the chief.
It is assumed that the camera measurement frame is aligned with the focal-plane of the camera, and
its orientation relative to the chief-fixed body frame is assumed to be a known state. If the chief holds
a known attitude relative to the LVLH frame, an alternative expression of measurement model for
line-of-sight vector can be governed as follows:

y = h (r) = r (i)−d
‖r (i)−d‖ + ε (10)

where the assumption of constant attitude could be realized by attitude control which has been
demonstrated by D’Amico et al. [21].

3 Relative Orbit Estimation Algorithm

Consider a formation of multiple (at least two) spacecraft, in which the inertial orbit of each
spacecraft is assumed to be unknown. Furthermore, it is assumed that each spacecraft installs a
directed camera used to measure the line-of-sight relative to other spacecraft and transmits its own
estimation to other spacecraft by undirected broadcasting network.

As shown in Fig. 1, there is the distributed measurement and estimation scheme, each spacecraft
obtains the measurement and estimate the relative orbit towards another spacecraft in its own LVLH
frame. Obviously, if three or more spacecraft are involved in the formation, the relative orbits could
form a vector loop which may be used to constrain the estimation. However, the constraint of vector
loop would disappeared if only two spacecraft are considered. Then, different estimation method could
be designed based on different available information. Thus, these two cases are discussed respectively
in the following subsections.

s1

12r

23r

31r

s2

s3

si

Figure 1: Distributed measurement and estimation scheme where si denotes spacecraft i
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3.1 Two-Spacecraft Formation Case
When only two spacecraft are in flight as a formation, there will be no other information except the

angles-only measurements could be used to estimate the relative orbit. EKF algorithm is only suitable
for the estimation of weakly nonlinear system because it expands the original system and measurement
by Taylor series and retains only the linear term. Since the proposed angles-only navigation algorithm
represents a nonlinear system, then the UKF introduced by Wan et al. [22] can be utilized to process the
measurements for estimation. UKF does not have the linearization process for any nonlinear systems,
so it can obtain higher estimation accuracy than EKF. Under the assumption of that the process
and measurement noises are purely additive, four steps of the addictive form of UKF algorithm are
summarized as follows:

(1) Initialization

X̂0 = E [X0] (11)

P0 = E
[(

X0−X̂0

) (
X0−X̂0

)T
]

(12)

(2) Calculate sigma points and scale weights

χk−1 =
[
X̂k−1; X̂k−1 + √

n + τ
(√

Pk−1

)
i
; X̂k−1 − √

n + τ
(√

Pk−1

)
i−n

]
(13)

ωm
0 = τ

n + τ

ωc
0 = τ

n + τ
+ 1 − α2 + β

ωm
i = ωc

i = 1
2 (n + τ)

, i = 1, · · · , 2n

(14)

where n is the dimension of the states, α, β and τ are the scaling parameters for sigma points. τ is
calculated as

τ = α2 (n + κ) − n (15)

where α = 10−3, β = 2 and κ = 0 are chosen in this work.

(3) Time update

χk|k−1 = �k,k−1χk−1 +
∫ tk

tk−1

�(τ , tk−1)Bu(τ )dτ (16)

X̂
−
k =

2n∑
i=0

ωm
i χi,k|k−1 (17)

P−
k =

2n∑
i=0

ωc
i

(
χi,k|k−1 − X̂

−
k

)(
χi,k|k−1 − X̂

−
k

)T

+ Qk−1 (18)

Zk|k−1 = H
(
χk|k−1

)
(19)

ẑ−
k =

2n∑
i=0

ωm
i Z i,k|k−1 (20)
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(4) Measurement update

Pẑk ẑk
=

2n∑
i=0

ωc
i

(
Z i,k|k−1 − ẑ−

k

) (
Z i,k|k−1 − ẑ−

k

)T + Rk (21)

PX̂k ẑk
=

2n∑
i=0

ωc
i

(
χi,k|k−1 − X̂k

) (
Z i,k|k−1 − ẑ−

k

)T
(22)

Kk = PX̂k ẑk
P−1

ẑk ẑk
(23)

X̂k = X̂
−
k + Kk

(
yk − ẑ−

k

)
(24)

Pk = P−
k − KkPẑk ẑk

KT
k (25)

where the superscript–marks the priori estimate, Pk is the estimate error covariance matrix.

3.2 Three or More Spacecraft Formation Case
When multiple (at least three or more) spacecraft are involved in the formation, the constraint

based on geometrical topology information between spacecraft may be used to improve the estimation.
Then, Consensus Unscented Kalman Filter (CUKF) is a good and easy way to utilize the constraint
to achieve a better estimation. The key of conducting CUKF to the orbital estimation is to construct
the consensus condition. Thus, the consensus would be modeled firstly for the problem and then used
in designing CUKF algorithm in the following.

As can be seen from Fig. 1, the position vectors of every three spacecraft are formed a vector loop
which naturally is a physical constraint on the orbit estimations. From the viewpoint of observability,
the observability of a system improves whenever additional constraints are applied on the system
[19]. Thus, it is natural and feasible to force the orbit estimations to satisfy this physical constraint
for improving the state observability. Further, satisfying the constraint is also a process of achieving
consensus between the members of the formation.

Since the distributed estimate strategy is considered, the relative orbit estimations are resolved in
different LVLH frames of each spacecraft. Thus, after coordinate transformation, the position vector
loop can be expressed as follows:

rij + C i
jrjk + C i

krki = 0 (26)

where i, j, and k are the labels of different spacecraft; rij is the projection of the relative position from
spacecraft i to j in the LVLH frame of spacecraft i.

Differentiating on the both side of (26) yields the constraint between the spacecraft velocities

vij + C i
jvjk − C i

j

(
C j

iωi − ωj

)×
rjk + C i

kvki − C i
k

(
Ck

i ωi − ωk

)×
rki = 0 (27)

Then, combing and re-organizing (26) and in matrix form produces

X ij +
[

C i
j 03×3

−C i
j

(
C j

iωi − ωj

)×
C j

j

]
X jk +

[
C i

k 03×3

−C i
k

(
Ck

i ωi − ωk

)×
C i

k

]
Xki = 0 (28)

where X ij is the projection of the relative orbital state from spacecraft i to j in the LVLH frame of
spacecraft i, ωi stands for the orbital angular velocity of spacecraft i in the LVLH i frame.

So far, the physical constraint on the relative orbital vectors of the in-loop spacecraft is achieved,
which can be used as the consensus condition.
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Next, the distributed Consensus Unscented Kalman Filter is considered to be used to estimate the
relative orbit for each spacecraft, because of the convergence characteristic of CUKF when smooth
and bounded vector field of the dynamics and the measurement are given [23]. According to the
theorem of CUKF, all the other steps of CUKF are the same as those of UKF shown in (11)–(25)
except the measurement update, as follows:

X̂ ij = X̂
−
ij + K ij

(
yij − h

(
X̂ ij

))
− λ

P−
ij∥∥P−

ij

∥∥
F

(
X̂

−
ij − X̃

−
ij

)
(29)

where λ > 0 is the consensus feedback gain which have to be chosen carefully to ensure the convergence
of consensus [24]. ‖·‖F is the operator of Frobenius norm, X̃

−
ij presents the priori estimation in the

LVLH i frame under the physical constraint shown in , i.e., X̃
−
ij is calculated from the priori estimation

of X̂
−
jk and X̂

−
ki as follows:

X̃
−
ij = −

[
C i

j 03×3

−C i
j

(
C j

iωi − ωj

)×
C j

j

]
X̂

−
jk −

[
C i

k 03×3

−C i
k

(
Ck

i ωi − ωk

)×
C i

k

]
X̂

−
ki (30)

4 Observability Analysis for Relative Orbit

In this section, the Lie derivative method of the observability analysis for nonlinear systems
is introduced, then theoretical observability analysis for the proposed offset camera line-of-sight
measurement relative navigation system is presented.

4.1 Lie Derivative Criteria
For a general nonlinear dynamic system defined as


:
{

ẋ = f (x, u)

y = h (x)
(31)

where x = [x1, x2, . . . , xn]
T ∈ Rn×1 is the estimated state vector, u = [u1, u2, . . . , ul]

T ∈ Rl×1 is the input
control vector, and y = [y1, y2, . . . , ym]T ∈ Rm×1 is the measurement vector, the observability matrix is
defined by the nth-order Lie derivatives as

N (x) = ∂

∂x

⎡
⎢⎢⎢⎣

L0
f h (x)

L1
f h (x)

...
Ln−1

f h (x)

⎤
⎥⎥⎥⎦ ∈ Rmn×n (32)

where⎧⎨
⎩

L0
f h (x) = h ∈ Rm×1

Li
f h (x) = ∂Li−1

f h (x)

∂x
f (x) ∈ Rm×1 (33)

It has been shown that if rank(N) = n, the system is locally observable. According to the theory of
local weak observability of nonlinear systems, when the observability matrix composed of low-order
Lie derivatives does not satisfy the rank criterion, high-order Lie derivatives in terms of the system must
be introduced for analysis until the observability criterion is satisfied. In addition, the system state is
unobservable when the recursive Lie derivative does not satisfy the observability rank criterion.
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4.2 Observability Analysis
The system state is a 6-dimensional vector, and the observation state is a 3-dimensional unit vector

but 2 bearing angles in essence. In order to make the observability matrix potentially full rank, the Lie
derivatives are required to calculated at least three times. Without loss of generality, the line-of-sight
measurement is adopted to perform the observability analysis of the system. The complex observability
matrix is as follows:

N (X) =
⎡
⎣K 03×3

P K
H M

⎤
⎦ ∈ R9×6 (34)

where

K = ‖r − d‖2I 3×3 − (r − d) (r − d)
T

‖r − d‖3 (35)

P = −v(r − d)
T

‖r − d‖3 − (r − d) vT

‖r − d‖3 − (r − d)
TvI 3×3

‖r − d‖3 + 3
(r − d) (r − d)

Tv(r − d)
T

‖r − d‖5 (36)

H = − 2
vvT

‖r − d‖3 + 6
v(r − d)

Tv(r − d)
T

‖r − d‖5 − vTvI 3×3

‖r − d‖3 + 3
(r − d) vTv(r − d)

T

‖r − d‖5

+ 3
(r − d)

Tv(r − d)
TvI 3×3

‖r − d‖5 + 6
(r − d)

Tv (r − d) vT

‖r − d‖5 + K
‖r − d‖

− 15
(r − d) (r − d)

Tv(r − d)
Tv(r − d)

T

‖r − d‖7 − (Kr + Dv) (r − d)
T

‖r − d‖3

− (r − d)
T
(Kr + Dv) I 3×3

‖r − d‖3 − (r − d) (Kr + Dv)T

‖r − d‖3

− (r − d) (r − d)
TK

‖r − d‖3 + 3
(r − d) (r − d)

T
(Kr + Dv) (r − d)

T

‖r − d‖5 (37)

M = − 2
(r − d)

TvI 3×3 + v(r − d)
T

‖r − d‖3 − 2
(r − d) vT

‖r − d‖3

+ 6
(r − d) (r − d)

Tv(r − d)
T

‖r − d‖5 + D
‖r − d‖ − (r − d) (r − d)

TD
‖r − d‖3 (38)

Consider a constant vector c = [c1; c2] ∈ R6, where ci ∈ R3, i = 1, 2. If the homogeneous linear
equations Nc = 0 in consideration of c only have zero solutions, then the system observability is
guaranteed. By expanding Nc = 0, we can get

‖r − d‖2I 3×3 − (r − d) (r − d)
T

‖r − d‖3 c1 = 0 (39)
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Pc1 + ‖r − d‖2I 3×3 − (r − d) (r − d)
T

‖r − d‖3 c2 = 0 (40)

Hc1 + Mc2 = 0 (41)

the relationship between c1 and r − d described in Eq. (39) is

c1=α (r − d) (42)

where α is an arbitrary scalar. Substituting Eq. (42) into Eq. (40) follows:[‖r − d‖2I 3×3 − (r − d) (r − d)
T

‖r − d‖3

]
(c2 − αv) = 0 (43)

therefore, we can infer that

c2 = αv + β(r − d) (44)

where β is another scalar. Substituting Eqs. (42) and (44) into Eq. (41) which is the last constraint
results[

I 3×3

‖r − d‖ − (r − d) (r − d)
T

‖r − d‖3

]
[−2βv+βD(r − d) − αKd] =0 (45)

similarly, from Eq. (45) we can get

− 2βv+βD(r − d) − αKd = η(r − d) (46)

where η is an arbitrary scalar. Put all parameters to the left of equation we have

η(r − d)+β [2v − D(r − d)] + αKd = 0 (47)

If and only if (r − d), v+ω×(r − d) and v+ω×(r − d), which represents position, velocity and
acceleration vector respectively, are not in the same plane, the α=β=η=0 can be inferred. Then we
have c1 = c2 = 0 from Eqs. (42) and (44) under the condition of α=β=0, which means the observability
matrix is full rank and the system is locally observable. At the same time, a necessary condition for
observability can be obtained simply given by

Kd �= 0 (48)

Eq. (48) tells us that the system is unobservable if d = 0 which indicates that the camera offset
is not considered. But we must be aware that d �= 0 is a necessary but not sufficient condition. For
example, when the camera bias is in the direction of along-track, which means d = [

0 d 0
]T

, the
Eq. (48) is still violated.

5 Numerical Simulations

The proposed algorithm is established in MATLAB simulation environment to verify theoretical
conclusions mentioned above. The spacecraft parameter settings are shown in Table 1, and UKF filter
parameter settings are shown in Table 2. The Hill-Clohessy-Wiltshire dynamics assumes that the chief
spacecraft is running in a near-circular orbit. Therefore, the eccentricity settings of the three spacecraft
should be small enough, as shown in Table 1 is 0, 0.0002 and 0.0003, respectively. The spacecraft fly
in near-earth orbit, and the distance between the members is 1∼7 km, and the perturbation factors
such as J2 perturbation and atmospheric drag are not considered in the simulation. Precision of
camera angles measurement is set 8.4 × 10−4rad(0.048◦). The offset of angles-only camera is related
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to the distance between the spacecraft. As the distance between spacecraft increases, the offset of the
camera should also increase accordingly. For the relative navigation of the spacecraft within 10 km, it
is more appropriate to set the offset of the camera at 5∼10 m. The consensus feedback coefficient is
an optimized value obtained through empirical adjustment, which is set to 0.03 in the simulation.

Table 1: Spacecraft orbit parameter settings

Spacecraft a [km] e 
 [°] i [°] ω [°] f [°]

1 6800 0.0000 0 1.01 0 0.01
2 6800 0.0002 0 1.02 0 0.02
3 6800 0.0003 0 1.03 0 0.03

Table 2: Key parameters in consensus unscented Kalman filter

Parameter Value Parameter Value

Time 3 orbital period Initial state error
covariance matrix

diag [1 × 104 m2, 1 × 104 m2, 1 × 104

m2, 10 m2/s2, 10 m2/s2, 10 m2/s2]Time Steps 30 s
Initial state error
std. dev

[50 m, 50 m, 50 m,
5 m/s, 5 m/s,
5m/s]T

Process noise
covariance matrix

diag [0, 0, 0, 1 × 10−8 m2/s4, 1 × 10−8

m2/s4, 1 × 10−8 m2/s4]

Consensus
coefficient

0.03 Measurement error
covariance matrix

diag [7 × 10−7 rad2, 7 × 10−7 rad2]

In order to verify the effectiveness and performance of the proposed algorithm, the following two
sets of simulation are performed: in the first group, offset situations are simulated to see whether the
relative motion trajectory estimated by the UKF algorithm converges, and in the second group, same
offset condition is set to compare convergence performance of CUKF algorithm and UKF algorithm.
The statistics of 200 Monte Carlo shooting results are shown in Figs. 2 and 3, the green lines depict the
mean estimated error while the red and blue lines describes ±3σ uncertainty boundaries for a 99.973%
confidence.

5.1 Two-Spacecraft Formation Case
Fig. 2 shows three-axis position and velocity estimation error of the UKF for X12 in consideration

of 5 meters camera offset in radius direction. The filter convergence time is half orbit period, and
the mean error is close to zero after converging. It can be seen from the left three diagrams that
the ±3σ boundary of x-axis position estimation error is 2.1 and −2.5 m, respectively. For y-axis
position estimation error, the boundary is 7.6 and −5.1 m. And for z-axis position estimation error,
the boundary is 1.4 and −1.5 m. Filter accuracy of y-axis is worse than the other two axes. The three
diagrams on the right indicate the relative velocity estimation error. In general, position estimation
accuracy is within 10 m and the filtering algorithm is convergent, which proves the feasibility of the
proposed off-set camera navigation method.
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Figure 2: UKF relative position error for X12 when d = [5m, 0, 0]

Figure 3: Three-axis position estimation error of X23 under UKF and CUKF filter
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In order to intuitively compare the effects of different camera-offset length on the angles-only
relative navigation algorithm proposed in this paper, the following statistics are defined

em (k, t0, t1) = 1
t1 − t0

∫ t1

t0

∣∣∣X̂ ik (k, t) − X ik (k, t)
∣∣∣ dt (49)

where em denotes the average of the absolute value of the difference between the estimated X̂ ik and the
true X ik from t0 when the filter algorithm converges to t1 when the filter algorithm finishes in the k-th
Monte Carlo simulation.

Mm (k, t0, t1) = 1
n

n∑
k=1

em (50)

Pm (k, t0, t1) = 1
n − 1

n∑
k=1

[em − Mm] [em − Mm]T (51)

Applying mean error Mm and covariance error Pm, the estimation accuracy and stability of the
filter algorithm can be compared. A smaller Mm and Pm indicate a more accurate and stable estimation
result. Choosing the filter convergence time t0 as one orbit period, Table 3 shows the estimation error
statistical results of the angles-only relative navigation algorithm when camera-offsets are set as 1,
5 and 10 m along the radial direction of the spacecraft orbit, respectively. Taking the x-axis relative
position estimation error as an example, the mean errors for 1, 5 and 10 m camera-offset situations are
61.9, 3.8, 1.0 m and the standard deviations are 60.2, 44.8, 0.4 m, respectively. In conclusion, it can be
seen from Table 3 that the larger the camera-offset is set, the smaller the mean and standard deviation
of the estimation error of the filtering algorithm, thus a more accurate and stable estimation result can
be obtained.

Table 3: Statistical results of estimation error for X12 under different camera-offset

Relative position [m] Relative velocity [m/s]

x axis y axis z axis x axis y axis z axis

Mean error 1 m 61.9 127.6 34.7 0.067 0.139 0.040
5 m 3.8 7.8 2.0 0.004 0.009 0.003
10 m 1.0 1.7 0.5 0.001 0.002 0.001

Std error 1 m 60.2 122.9 33.8 0.065 0.135 0.039
5 m 44.8 98.5 25.3 0.049 0.101 0.030
10 m 0.4 0.9 0.2 0.000 0.001 0.000

5.2 Three or More Spacecraft Formation Case
Suppose the camera offset of the three spacecraft are

d1 = [5m, 0, 0], d2 = [0, 5m, 0], d3 = [0, 0, 5m]

Under such camera offset conditions, combined with the results of the previous observability
analysis, we can predict: X23 will converge to the fuzzy orbit under the UKF algorithm, but converges
to the true relative orbit under the CUKF algorithm. Fig. 3 shows the position error of X23 using UKF
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and CUKF. The simulation results are consistent with the prediction. The relative orbit estimated by
UKF algorithm converges to fuzzy orbit. But the relative orbit estimated by the CUKF algorithm
gradually converges to the true relative orbit at a cost of more convergence time.

6 Conclusions

A new angles-only cooperative relative navigation algorithm for spacecraft formation in close-
range is studied in this paper. Based on the Hill-Clohessy-Wiltshire dynamics, this paper studied the
convergence of UKF and CUKF when the measurement sensor (camera) is installed offset from the
center of mass of the spacecraft. The research work of this paper mainly includes four aspects: (1) The
relative motion model between spacecraft and the sensor measurement model with camera installed
away from the center of mass are established. (2) The observability of the estimated state is analyzed
by introducing the Lie derivative criterion, and the observability conditions of relative position and
velocity are obtained. (3) A decentralized estimation strategy based on consistent unscented Kalman
filter is designed and the consistent estimation is constructed by using multiple physical constraints.
(4) The effectiveness of the algorithm is verified by standard Monte Carlo simulation, and the
performance of the algorithm is tested. The results show that for the spacecraft formation with a
short distance of 1–7 km, the relative navigation accuracy is within 10 m when 5 m camera offset is
designed. The relative navigation algorithm proposed in this paper is based on three spacecraft. When
more spacecraft participate in formation or cluster, the decentralized strategy and nonlinear estimation
algorithm will be more complex, which will be the main work of future research.
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