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ABSTRACT

Compressed sensing (CS), as an efficient data transmission method, has achieved great success in the field of
data transmission such as image, video and text. It can robustly recover signals from fewer Measurements,
effectively alleviating the bandwidth pressure during data transmission. However, CS has many shortcomings in
the transmission of hyperspectral image (HSI) data. This work aims to consider the application of CS in the
transmission of hyperspectral image (HSI) data, and provides a feasible research scheme for CS of HSI data.
HSI has rich spectral information and spatial information in bands, which can reflect the physical properties of
the target. Most of the hyperspectral image compressed sensing (HSICS) algorithms cannot effectively use the
inter-band information of HSI, resulting in poor reconstruction effects. In this paper, A three-stage hyperspectral
image compression sensing algorithm (Three-stages HSICS) is proposed to obtain intra-band and inter-band
characteristics of HSI, which can improve the reconstruction accuracy of HSI. Here, we establish a multi-objective
band selection (Mop-BS) model, a multi-hypothesis prediction (MHP) model and a residual sparse (ReWSR) model
for HSI, and use a staged reconstruction method to restore the compressed HSI. The simulation results show that
the three-stage HSICS successfully improves the reconstruction accuracy of HSICS, and it performs best among all
comparison algorithms.
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1 Introduction

The emergence of hyperspectral image (HSI) is a key progress in the remote sensing field. It
is usually captured by spectral imagers and spectral sensors mounted on various platforms, which
have rich spectral and spatial information. The spectral information of HSI means it has a huge
number of continuous spectral bands from dozens to hundreds that represent a different spectrum,
which simultaneously image the same target area. The spatial information means it has a lot of
pixels in one band, especially in the characterization of large area ground. HSI is a key part in
the classification of ground features, water quality inversion and other fields because of plentiful
information. However, it also leads to a lot of redundant information, including redundant bands
and pixels, which greatly reduces the efficiency of HSI data acquisition and processing. Hyperspectral
image compression sensing has received extensive attention to solving this problem. Compressed
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sensing theory is different from Shannon’s theory, which can recover robust solutions of signals from
lower sampling rates (SR) than the Nyquist theorem. The sparse signal processing in hyperspectral
image compressed sensing (HSICS) can reduce the cost of HSI’s expensive acquisition and processing,
and ease the data transmission bandwidth. Abedi et al. [1] designed a Gaussian difference kernel
group containing multiple scales to be used in single-pixel compressed sensing sampling. A set of
linearly independent vectors were produced as the rows of the measurement matrix through this
encoding method, improving the sampling efficient. Zhou et al. [2] proposed a multi-channel deep
network model based on the similarity between image blocks for block compressed sensing (BCS).
This model can recover the blocks with a variety of SR, showing excellent performance. Pham et al.
[3] proposed a deep enhancement network based on compressed sensing multi-signal recovery. The
deep enhancement network was built to exploit the important information that was recovered by
different CS reconstruction algorithms, which improved the PSNR of reconstruction signal. A two-
stage CS algorithm was proposed for video reconstruction [4]. The initial images of each frame were
recovered through video spatial correlation in the first phase, and the second stage recovered the final
image through inter-frame prediction and weighted residual sparse model. The image quality can be
continuously improved until the algorithm converges through iterative updating of weights.

Various data forms have different requirements for the CS reconstruction algorithm. In HSICS,
using inter-band and intra-band information can improve the reconstruction effect of CS. Wang et
al. [5] converted the HSI to the product of the abundance matrix and the endmember matrix, and
used two compression methods to estimate it when the number of endmembers is unknown, so as to
recover the hyperspectral image. Zhang et al. [6] proposed the N-way block OMP algorithm under
the tensor framework which uses Gaussian function to approximate the tensor-l0 norm, improving
the reconstruction accuracy. A CS reconstruction method based on context awareness was proposed
in [7], which used online dictionary learning and joint sparse constraints to represent spectral pixels.
The sparse reconstruction model was established by weighted smoothing regularization to preserve
the spectral structure and spatial structure of the HSI [8,9]. Zhang et al. [10] proposed a minimization
model, which combined kernel norm and total variation (TV) norm, based on distance metric. It
jointly considered the spatial and spectral characteristics of HSI, which used spatial smoothness,
spatial sparseness, and inter-spectra similarity to improve HSI reconstruction accuracy. A prior image
constrained compressive sensing (PICCS)-based HSI was also proposed in [10]. The HSI of each band
is restored based on the image of the previous band, using the sparsity in each band and the similarity
between adjacent bands. However, adjacent bands are not necessarily the most similar in HSI, so this
method has limitations. In [11], a new compressed HSI method is proposed. This method learns an
over-complete dictionary to sample HSI sparserly, and designs a more powerful sparse reconstruction
method based on the over-complete dictionary. Yuan et al. [12] proposed a blind compressive sensing
algorithm. This method mapped the 3D image to the 2D image and learned coupling dictionaries by
using the 2D image and 3D image information to improve the quality of HSI reconstruction. Zhang et
al. [13] proposed a cluster sparsity field based HSI reconstruction framework to model the correlation
between specific pixels, obtaining a good reconstruction effect. Xue et al. [14] proposed a nonlocal
tensor sparse and low-rank regularization (NTSRLR) approach to research nonlocal spatial spectral
correlation hidden in HSI.

The above research shows that multi-band joint reconstruction can effectively improve the
reconstruction effect of HSI, which considers the spectral information between various bands in
HSICS. However, there are a lot of redundant bands in HSI. In multi-band joint reconstruction,
the redundant band has a great influence on the effect of compressed reconstruction. Therefore,
it is necessary to select the optimal band subsets for multi-band joint reconstruction in the CS
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reconstruction process. The band selection process can be analogous to a feature selection process.
The optimal subset is affected by two most important issues, such as the evaluation criteria and
search algorithm [15]. Xie et al. [16] proposed an artificial bee colony optimization algorithm for
band selection, using correlation coefficients and spectral curves to divide HSI into subspaces [17].
Kalidindi et al. [18] used entropy measurement and Gaussian filter to extract noise-free bands, then
a multi-agent particle swarm optimization algorithm was proposed to search for the optimal band
subset. Tschannerl et al. [19] proposed a search algorithm based on gravity and uses shannon entropy
and mutual information to evaluate HSI bands. In [20], the authors used three optimization algorithms
to select the band, and analyzes the performance of the three algorithms on the problem of band
selection. A band selection algorithm with information theory can remove redundant bands while
selecting information-rich bands through evolutionary algorithms [21]. Sawant et al. [22,23] proposed
a modified wind-driven optimization algorithm and cuckoo search algorithm to find the best band,
avoiding premature convergence. Similarly, Yu et al. [24] proposed a quantum evolutionary algorithm
for band selection. In addition to considering the search algorithm for band selection, the band
evaluation criteria are equally important. It is noted that the criterion of bands should be considered
with the situation in different applications like many-objective model [25].

The HSI band selection can be constructed as a multi-objective optimization problem, and a
stochastic optimization algorithm can be used to solve it to obtain the best band subset. In recent years,
research on multi-objective optimization algorithms has made great breakthroughs [26–28]. A new
multi-objective unsupervised frequency band selection model was proposed in [29], which combined
frequency band correlation and information volume and used a multi-strategy integrated multi-
objective artificial bee colony algorithm to solve. A mop is an engineering problem in the real world
[30]. When a problem has multiple conflicting goals, it is constructed as a multi-objective optimization
model [31]. The solutions of this model can be obtained as a balanced solution. As multi-objective
optimization problems are widely used in social engineering, scholars have proposed some classic
Mop algorithms [32–34], including non-dominated sorting algorithms based on reference points [35]
and grid-based evolutionary algorithms [36], multi-objective optimization algorithm [37] based on
inflection point drive and evolutionary algorithm based on decomposition to balance diversity and
convergence [38], etc. These algorithms usually alleviate the diversity and convergence problems in
the process of model solving by improving the matching selection mechanism and the environment
selection mechanism. The specific strategies can be designed according to the characteristics of
different problems [39].

Aiming at the problem of low-precision reconstruction of HSICS, this paper proposes a three-
stage HIS-CS algorithm to reduce the redundancy of HSI. In the first phase, the Mop-BS to obtain
the optimal band subsets. Then, a reweighted sparse residual (ReWSR) model and a multi-hypothesis
prediction (MHP) model are established to iteratively obtain a reconstructed image. In the second
phase, Intra-band reconstruction with the spatial information of the band subsets is used to obtain a
preliminary restored image with the ReWSR model and MHP model. The third phase performs inter-
band reconstruction with inter-spectral information of the band subsets with the ReWSR and MHP
model.

2 Three-Stage Hyperspectral Image Compression Sensing Algorithm

In this section, we specifically introduce the three-stages HSICS. Inspired by the video compres-
sion sensing reconstruction method in [4], we consider multi-band joint reconstruction, that is, using
information in similar bands to recover the initial image. How to select a suitable subset of bands in the
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first stage for multi-band joint reconstruction is a crucial issue. In addition to the bands that cannot
be effectively used, such as noise bands and water bands, bands with large reconstruction errors are
also defined as redundant bands in compressed sensing. In the first phase, taking the Indian_pines
dataset as an example, the band subset used for joint reconstruction in the third stage is selected from
the remaining 200 bands after the water and noise bands are removed from the 224 bands through
the Mop-BS model. The second and third phases are both based on the ReWSR model and the MHP
model to perform BCS reconstruction algorithms. The difference is that the second phase searches for
the most similar block in the current band for prediction and reconstruction. The first band and the
last band in the band subset are selected as key bands. These SRs are higher than those of all other
bands. Therefore, these two key bands can achieve better reconstruction results. This is used to avoid
finding the adjacent band with better image quality for band reconstruction in the third phase. The
third phase is to find the most similar block in the entire band subset for prediction and reconstruction.
Firstly, the current band will search for another band with higher image quality in the band subset.
Secondly, it will find similar blocks to provide prediction information for the reconstruction of the
current block in these bands. It should be noted that the first band and the last band in the band
subset do not need to be reconstructed in the third phase. The algorithm structure diagram is shown
in Fig. 1.

Band selection

Intra-band 
reconstruction

Inter-band 
reconstruction

Mop-BS model

multi-hypothesis 
prediction model

reweighted sparse 
residual model

Model frame

First phase:

Second phase:

Third phase:

Three-stage

Band subsets

Initial image

final image

Figure 1: The algorithm structure diagram

2.1 Multi-Objective Band Selection (Mop-BS) Model
In this section, the HSI band selection is modeled as a multi-objective combination optimization

problem as the first phase. In the multi-band joint reconstruction of HSICS, the similarity between the
bands will greatly improve the effect of joint reconstruction. However, it is not appropriate to simply
use the similarity of the bands to select the band subset of HSICS. It is also necessary to consider the
amount of information in the bands. Only a band with a large amount of information can provide
a better joint reconstruction effect in the second and third stages. Meanwhile, the number of band
subsets is uncertain. We cannot directly judge the influence of the number of band subsets on the
second and third stages. Based on the above factors, this article comprehensively considers the amount
of information, band similarity and reconstruction error to establish the Mop-BS model.
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The HSI compressive sensing algorithm proposed in this paper is expanded on the video block
compressive sensing. In video compressed sensing, the images of each frame in a video have a time
series relationship, so the images of adjacent frames have a strong correlation. After blocking the
image between adjacent frames, better performance can be obtained by searching for similar blocks.
However, in HSI compressed sensing, adjacent bands do not necessarily have a strong correlation. We
analyze the factors that affect the band correlation to establish the Mop-BS model, and use the multi-
objective optimization method to select the optimal bands. This aims to select a band combination
with strong correlation, which is called the optimal band subset. Compressed sensing in subsets can
greatly improve the reconstruction accuracy of HSI. The overall flow of the Mop-BS model is shown
in Fig. 2.

evolution 

Figure 2: Band selection flowchart

HSI contains different amounts of information on different wavebands. This is due to the
environments in which the spectral images are collected. the high-information band presents higher
image quality, clearer structure, and higher accuracy in HSI processing. This article uses information
entropy to measure the amount of band information. The formula is shown in (1):

H(B) = −
∑
β∈�

p(β) log p(β) (1)

in which p(β) is the probability of β, H(B) is the information entropy of random variables B. In the
HSI, B is the image in a band replaced as X, and the β is the pixel of an image. Therefore,

p(β) = h(β)

mn
(2)

in which h(β) is the gray value of the histogram of X . mn is the number of pixels in X . The sum of
whole band’s information entropy as shown in formula (3).

EN = 1/

len∑
1

H(Xi) (3)

The EN represents the inverse of information entropy to measure the total information in the
band. The len is the length of a band subset. The smaller the EN, the greater the information in the
band subset. The purpose of the first stage is to select a band with good reconstruction effect as much as
possible. In addition to considering the amount of information of the band subset, the reconstruction
effect of a single band should also be attended. The reconstruction effect refers to the recovery error
of a single band in compressed sensing. The smaller recovery error, the higher quality in the second
stage, and the higher quality of the final reconstruct. This article defines the error as formula (4).
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ER = ‖Acsa − X‖2
2 (4)

Among them, Acsa represents the measured value of the reconstructed image, X represents the
original image, fitness2 and reconstruction effect are inversely proportional. The ER is squared as
‖Acsa − X‖2, it is converted to a positive number. A larger error has a greater impact on the ER, while
a smaller error will have a less impact on the ER. In the iteration, the fitting effect can be increased, so
that the iteration value can be closer to the true value. The Acsa in formula (3) is solved by orthogonal
matching pursuit (OMP) algorithm [40]. Combining formula (3) and formula (4), we propose fitness1,
as shown in formula (5).

fitness1 = 1/

len∑
1

H(Xi) + ‖Acsa − Xi‖2
2 (5)

The correlation between bands is particularly important for three-stage HSICS. In the third step,
the algorithm will search for similar blocks in the band subset. Here, we use the mean spectral angle
(MSA) to measure the similarity between the bands. MSA measures the similarity between bands by
calculating the angle of two vectors in HSI. The similarity of the band is inversely proportional to the
angle.

fitness2 = arccos(
X T

i X T
j

‖Xi‖
∥∥Xj

∥∥) (6)

in which the Xi and Xj are the i th and j th band in the HSI. Through fitness1 and fitness2, we can
initially establish a multi-objective band selection model, but the length of the band subset cannot be
determined during the optimization process. So, a huge of repeated experiments are required to select
the number of the best band subset. Therefore, the subset length is designed in fitness3 in this paper,
which eliminates the need for repeated experiments, and can better describe the band subset.

fitness3 = length(Y) (7)

where the Y = [X1, X2, . . . Xend] that represents the band subset. In theory, the solution set is obtained
by solving the multi-objective optimization model, which includes many band subsets, and the length
of each subset is different. In practical applications, we do not make a decision on the solution
set, and perform joint band reconstruction on each solution in the solution set. Finally, the entire
HSI compressed reconstructed image will be given. In the experiment, we randomly selected one of
the solutions for the subsequent two-stage experimental simulation research. The Mop-BS model is
written as formula (8).

min(fitness1, fitness2, fitness3) (8)

To solve the above model, we have several inspire-algorithms to compare. A population (p × q) is
randomly generated, where q is the number of individuals in the population and p is the dimension of
each individual. Fig. 3 shows the coding form of the population in each individual.

The dimension of each individual is the total number of bands in HSI. A real number between
[0, 1] is randomly generated for each band in the initialization operation. If the value is greater than
0.5, it means that this band is selected. In encoding, the random numbers between [0, 1] are uniformly
distributed, and the selection probability is set to 0.5 to ensure that each band has the same probability
of selection and non-selection.
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Figure 3: Population coding format

The offspring population is regarded as the solution space. The optimization process is the process
of guiding the solution space convergence according to the model. When the maximum number of
iterations is reached, the optimal band subset will be obtained. The process of solving the Mop-BS
model is the first phase of the HSICS algorithm.

2.2 Reweighted Sparse Residual (ReWSR) Model and Multi-Hypothesis Prediction (MHP) Model
The MHP model and ReWSR model are introduced in detail in this part. These two models

were originally proposed in [4] to video compressed sensing. We apply them to HSICS and make
corresponding improvements.

The BCS has been proved to be effective in CS [41,42]. In the three-stage HSICS, HSI is divided
into blocks as [x1, x2, x3, . . . xj, . . . ], the xj represents the current block to be restored. The blocking
operation is a way with overlap defined as Dk.

x = DkX (9)

This overlapping block method can effectively eliminate image artifacts and suppress possible
block effects. The band X is divided into C patches by Dk. When gathering all the patch to recovery
bands, the overlapping part is calculated by the average pixels to obtain the pixel value, obtaining
better reconstruction results. The MHP model obtains the similarity ranking by calculating the mean
square error (MSE) between xj and each patch, and then selects c patches as the most similar patches
of xj.

MSE = 1
S2

∥∥xj − xi

∥∥2

2
(10)
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where S2 is the size of a patch. These c patches are regarded as the multi-hypothesis prediction value
of patch xj. The multi-hypothesis predicted value vj will be used to construct the reweighted sparse
residual model in the next step. The residual of patch xj is defined as the difference between the pixel
value of xj and its weighted multi-hypothesis prediction value.

R(xj) = xj −
∑
1<j<c

γjvj (11)

in which γ j is the weight of the predicted value of multiple hypotheses, and patches with high similarity
should be given higher weights. To solve the weights, The [43] defines the weight as the reciprocal of
the coefficient.

γ t+1
j = 1∣∣x̃j

∣∣ + ε
(12)

where
∣∣x̃j

∣∣ represents the coefficient of signal. Here, it is the reconstruction sparse coefficient of patch
xj, γ j applies different weights to different coefficients. During reconstruction, a large weight will
reduce the recovery of non-zero coefficients in the image coefficients, and a small weight will promote
the recovery of non-zero coefficients [44]. In each iteration, the ReWSR model will update the weights
based on the previous generation of restoration patches until the algorithm converges.

2.3 The Second Phase and the Third Phase
This section mainly introduces the second and third phase reconstructions in the Three-stage

HSICS algorithm. In fact, the second and third stages are both based on the two models introduced in
the previous section. The difference is that the second stage is intra-band reconstruction and the third
stage is inter-band reconstruction. That is, the second phase searches for similar blocks in a single
band, and the third stage searches for similar blocks from a subset of bands.

The bands in the first phase are initially reconstructed. The first and last two bands of the band
subset are selected as the key bands, and the SR of the key band is set to 0.7. The selection of key bands
is used to increase the information of the band subset after compressing. Through the first stage of
the algorithm, there is a strong correlation between the selected optimal band subsets. However, in
order to improve more reconstruction accuracy of HSI, we set two bands as key bands and perform a
smaller compression ratio, which can retain more information of band subset. In fact, the key bands
can be any two bands in the subset, which has little effect on the performance of the algorithm.

When reconstructing, the images of each band are reconstructed in sequence. In the case of
multi-hypothesis prediction, similar blocks are found from within the band image. For the method
of searching for similar blocks within the band, we refer to the intra-frame reconstruction method of
video compressed sensing in [4]. Due to the higher SR of the first and last bands, the recovered image
quality is also higher than that of other bands. The initial reconstructed image generated in the second
stage will be used as the initial value in the ReWSR model to iteratively generate the optimal weight,
as shown in Fig. 4.

In the third stage, the initial image reconstructed is reconstructed again. When the band Xi is
restored, the image reconstruction quality ranking for every band is generated in the band subset. The
purpose is to treat the bands with higher image quality than band Xi as similar bands. Since HSI is
different from video, there is no motion error between each block, so when we reconstruct block xi by
directly selecting the block corresponding to the similar band, as shown in Fig. 5.
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Figure 5: The third phase reconstruction

The calculation of the optimal weight in the third stage, uses the steepest descent method. The
steepest gradient descent method is given in Table 1. After analysis, a larger weight will lead to a
poorer recovery effect of non-zero coefficients, while a smaller weight can make the recovery of non-
zero coefficients better in compressed sensing. Therefore, we use the number of non-zero coefficients
recovered as the objective, and use the steepest descent method to solve the weights under different
data sets. Finally, a ReWSR model is used for the selected blocks.
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Table 1: The model process

The ReWSR model

Input: initial patch x, v

1) Solve the problem: min
∥∥�x̃

∥∥
1
, s.t.y =�x

...
2) While t < max iteration do:
3) γ = 1
4) γ t+1

j = 1|x̃j|+ε

5) R(xj) = xj − ∑
1<j<c

γjvj

6) End
Output: final patch x

3 Simulation Experiment

We will research and verify the advantages of the three-stage HSICS through three experiments.
The comparative experiments were carried out on 3 public HSI datasets, Indian pines (IN), Salinas
(SA) and Pavia University (PU). The simulation experiment environment is Intel(R) Core (TM) i7-
10710U CPU @ 1.10 GHz, 1.61 GHz, 16.0 GB.

3.1 Parameter Settings
The IN dataset consists of 224 spectral reflection bands, and it has 145145 pixels in every band.

The SA dataset consists of 224 spectral reflection bands, which cover 83 × 86 pixels in every band.
The PU dataset has 115 spectral reflection bands and its size includes 610 × 340 pixels. The datasets
is tailored to meet the experimental needs. L is the length of the band subset. The parameter settings
of the simulation experiment part are indicated in Table 2.

Table 2: Parameter settings

Stage 1 Stage 2 Stage 3

Dataset IN SA PU IN SA PU IN SA PU

p 200 204 115 \ \
q 50 \ \
c \ 10 L
Block size \ 6∗6 9∗9 11∗11 6∗6 9∗9 11∗11
Search window size 20 10 40
Iterations 100 30 30 30 20 20 20

3.2 Comparative Experiment
This article sets up three comparison experiment. In the first stage, four advanced inspire-

algorithms are used to solve on Mop-BS. In the second and third stages, this article takes IN and
SA as examples, and conducts experiments in four cases of sampling 0.2, 0.3, 0.4, and 0.5. Finally, we
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compare with three HSI-CS algorithms to verify the performance of the algorithm proposed in this
article.

3.2.1 The 1-Stage Experiment

We modeled the HSI band selection as a multi-objective combination optimization model, and
conducted experiments using NSGA-III [45], GrEA [46], KnEA [47], and ISDE+ [48] algorithms. The
population size of the four algorithms is set to 50, the iteration number is 100, the individual crossover
probability is 0.9, and the mutation probability is 0.1. The rate of knee points in the population is 0.5
on KnEA.

Table 3 shows the IGD and HV values of the four algorithms on Mop-BS. The result is an
average of 30 runtimes. Through comparison with four algorithms, it is found that GrEA has better
performance when solving Mop-BS. Therefore, this paper chooses GrEA to solve the model. In this
experiment, 50 solutions are finally obtained to form a solution set. The solutions set are the balance
solution of three objectives.

Table 3: The IGD and HV value of the Mop-BS model

Indicators M GrEA KnEA NSGAIII ISDENew

HV 3 5.5725e-2 (1.61e-2) + 3.1009e-2 (1.14e-2)- 2.0526e-2 (4.90e-3)- 3.3981e-2 (6.77e-3)-
IGD 3 1.9586e-1 (4.31e-2) + 2.7364e-1 (4.60e-2)- 3.1606e-1 (2.52e-2)- 2.6202e-1 (2.57e-2)-
+/-/≈ 0/2/0 0/2/0 0/2/0

From Figs. 6–8, IN reached convergence around the 90th generation, SA reached convergence
around the 45th generation, PU reached convergence around the 25th generation.

(a) (b)

Figure 6: (a) is the IGD value of IN, (b) is the HV value of IN
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(a) (b)

Figure 7: (a) is the IGD value of SA, (b) is the HV value of SA

(a) (b)

Figure 8: (a) is the IGD value of PU, (b) is the HV value of PU

Then, we randomly select one of the solution sets for the next two stages. The optimal band subsets
of the three data sets are given in Table 4.

Table 4: The optimal band subset of three HSI datasets

Band subset

IN [27, 28, 30, 31, 44, 45, 46, 55, 70, 120]
SA [41, 46, 58, 59, 61, 65, 76, 117, 198]
PU [21, 35, 42, 53, 60, 70, 83, 97, 101]
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In Fig. 9, the information changes relatively smoothly, which belongs to similar bands. The average
value of the difference between the band with the largest amount of information and the band with
the smallest amount of information is between 0.6 and 1.

(a) (b)

(c)

Figure 9: (a) is the information of IN, (b) is the information of SA, (c) is the information of PU

3.2.2 The 2-Stage Experiment

In the second stage, we used the band subset selected in the first stage to perform intra-band
reconstruction. On the IN dataset, the optimal band subset includes ten bands, and the 27th and
120th bands were regarded as the key bands, which are sampled as 0.7. On the SA dataset, there are
nine bands selected as the optimal band subset, and the 41th and 198th bands are regarded as the key
bands, which are sampled as 0.7. On the PU dataset, nine bands were selected as the optimal band
subset, and the 21th and 101th bands were regarded as the key bands, which are sampled as 0.7. We
will introduce the simulation results on the three data sets below.
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In the second phase, the iterations are set to 20. Fig. 10 shows the second phase reconstructed
image in IN. In Fig. 11, taking the band 70 in SR = 0.2 as an example, after the ReWSR model
is iterated to the 10th time, the model basically converges, and the PSNR is no longer significantly
improved.

band27 band28 band30 band31 band41 band45 band46 band55 band70 band120

0.2

0.3

0.4

0.5

Figure 10: The reconstructed image on SR = 0.2 to 0.5 in the first stage on IN

Figure 11: ReWSR model Iterative graph

The SR ranges from 0.2–0.5, and the PSNR of the restored image is shown in Table 5. The PSNR
value gradually increases from SR = 0.2–0.5. Where the band 27 and the band 120 as the key band, the
sampling value is always 0.7. The recovery quality of the 70th band image is the best, from SR = 0.2
to 0.5. The average reconstruction accuracy of the seven bands is 31.57 by dividing the two key bands
in SR = 0.5. The variance of PSNR values for 8 bands is 1.078 in SR = 0.5. It shows that the 8 bands
are similar, which reflects the importance of the first-stage band selection.
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Table 5: The PSNR from SR= 0.2–0.5 in the second phase on IN

27 key 28 30 31 44 45 46 55 70 120 key

0.2 35.31 25.48 24.74 24.41 26.64 26.82 26.36 25.59 27.24 42.75
0.3 35.31 27.67 26.68 26.35 28.72 28.78 28.43 27.51 29.04 42.75
0.4 35.31 29.45 28.44 28.16 30.63 30.73 30.37 29.28 31.54 42.75
0.5 35.31 31.35 30.35 30.06 32.35 32.43 31.98 31.09 32.98 42.75

Fig. 12 shows that on the SA data set. It has an SR from 0.2 to 0.5. The band shows images in
different spectra, so the form of expression is not the same, such as band 76, 117, 120. Fig. 13 shows
the iterative value of band 70 on the ReWSR model. When the number of iterations is 15, the model
reaches convergence.

0.2

0.3

0.4

0.5

band41 band46 band58 band59 band41 band65 band76 band117 band120

Figure 12: The reconstructed image on SR= 0.2 to 0.5 in the first stage on SA

Figure 13: ReWSR model Iterative graph
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The SR ranges from 0.2–0.5, and the PSNR of the restored image is shown in Table 6. The PSNR
value gradually increases from SR = 0.2–0.5. Where band 41 and band 198 are the key bands, the
sampling value is always 0.7. The recovery quality of the band 65 image is the best, from SR = 0.2 to
0.5. The band with the best recovery effect is band 65 on SA. When the SR is 0.5, the PSNR reaches
41.88. The average reconstruction accuracy of the seven bands is 40.55 by dividing the two key bands
in SR = 0.5. The variance of PSNR values for 7 bands is 1.9267 in SR = 0.5.

Table 6: The PSNR from SR= 0.2–0.5 in the second phase on SA

41 key 46 58 59 61 65 76 117 198 key

0.2 44.19 31.61 31.68 31.90 32.52 32.04 30.13 31.54 50.39
0.3 44.19 31.35 30.35 30.06 32.35 32.43 31.98 31.09 50.39
0.4 44.19 35.40 35.51 35.68 37.25 37.14 33.50 34.50 50.39
0.5 44.19 41.05 41.16 41.26 41.36 41.88 38.86 38.28 50.39

Fig. 14 shows the reconstructed images of 9 bands for the PU dataset with SR from 0.2 to 0.5.
Compared with IN and SA, the PU dataset has a larger size and denser pixels, so the reconstruction
effect is better when sampling within the band in the first stage. Fig. 15 shows the iteration trend of
band 61 in the MHP model. When the number of iterations reaches 15, the model accuracy tends to
converge.
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0.3
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Figure 14: The reconstructed image on SR= 0.2 to 0.5 in the first stage on PU
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Figure 15: ReWSR model Iterative graph

The SR ranges from 0.2–0.5, and the PSNR of the restored image is shown in Table 7. The PSNR
value gradually increases from SR = 0.2–0.5. Where band 21 and band 101 are the key bands, the
sampling value is always 0.7. The recovery quality of the band 35 image is the best from SR = 0.2 to 0.5.
The band with the best recovery effect is band 35 on PU. When the SR is 0.5, the PSNR reaches38.39.
The average reconstruction accuracy of the seven bands is 37.22 by dividing the two key bands in
SR = 0.5. The variance of PSNR values for 7 bands is 1.9764 in SR = 0.5.

Table 7: The PSNR from SR= 0.2–0.5 in the second phase on PU

21key 35 42 53 60 70 83 97 101 key

0.2 43.06 31.87 31.87 31.65 31.52 31.65 28.72 28.98 39.73
0.3 43.06 34.29 34.27 34.08 33.98 34.05 31.18 31.62 39.73
0.4 43.06 36.46 36.34 36.09 35.95 35.99 33.26 33.74 39.73
0.5 43.06 38.38 38.27 38.00 37.73 37.76 34.95 35.46 39.73

3.2.3 The 3-Stage Experiment

In the third stage, we use the initial image reconstructed in the second stage. During the
reconstruction, firstly, the algorithm searches for images with a higher reconstruction quality than
the current band in the initial restored image, and weight coefficients are added to these images. The
key band is set to ensure that a band with a higher reconstruction quality than the current band can
be searched.

Fig. 16 shows the reconstruction values of nine bands when the SR is 0.2–0.5 on IN. There are
obvious differences between bands 27 to 31 and bands 41 to 70, but the similarity is great. It is because
the images show different forms in different spectra. From the image, after the reconstruction of the
three-stage algorithm, IN has obtained a relatively good visualization effect.
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Figure 16: The reconstructed image on SR = 0.2 to 0.5 in the second stage on IN

In the third stage, the band with the best reconstruction quality is the 70 band in Table 8 on
SR = 0.5. When the SR is 0.2, the PSNR increases from 27.24 to 28.18. When the SR is 0.5, the PSNR
increased from 32.08 to 34.72. Overall, the sum of PSNR increased by eight bands is 15.9.

Table 8: The PSNR from SR = 0.2–0.5 in the third phase on IN

27 key 28 30 31 44 45 46 55 70 198 key

0.2 35.31 27.34 26.15 26.03 27.79 27.92 27.57 26.66 28.18 42.75
0.3 35.31 29.80 28.25 28.26 30.08 30.20 29.91 28.94 30.50 42.75
0.4 35.31 31.80 30.24 30.25 32.29 32.37 32.08 30.97 32.81 42.75
0.5 35.31 33.95 32.28 32.26 34.14 34.21 33.94 32.99 34.72 42.75

Fig. 17 shows the reconstruction values of 7 bands when the SR is 0.2–0.5 on SA. Similar to the
IN dataset, the differences between the bands are due to spectral properties. From the image, after the
reconstruction of the three-stage algorithm, SA has obtained a relatively good visualization effect.

Similarly, the band with the best reconstruction quality is the 65 band in Table 9 on SR = 0.5.
When the SR is 0.2, the PSNR increases from 32.04 to 32.88. When the SR is 0.5, the sum of PSNR
increased from 41.88 to 42.68. Overall, the PSNR increased by seven bands is 3.75. The algorithm
does not perform well on SA, which is due to the SA dataset size of 83 × 86. Its dataset size is small,
but the algorithm mainly relies on the relevant information to search for the bands.

Fig. 18 shows the reconstruction values of 7 bands when the SR is 0.2–0.5 on SA. From the
image, PU has obtained a relatively good visualization effect after the reconstruction of the three-
stage algorithm.

The band with the best reconstruction quality is the 97 band in Table 10 on SR = 0.5. When the
SR is 0.2, the PSNR increases from 28.98 to 35.35. When the SR is 0.5, the sum of PSNR increased
from 35.46 to 41.02. Overall, the PSNR increased by 7 bands is 14.17.

Next, we compared four hyperspectral image compressed sensing algorithms, MT-BCS [49], ITV
[50], CCPCA [51] and our work.
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Figure 17: The reconstructed image on 0.2 to 0.5 SR in the second stage on SA

Table 9: The PSNR from SR = 0.2–0.5 in the third phase on SA

41 key 46 58 59 61 65 76 117 198 key

0.2 44.19 32.00 32.07 32.64 32.76 32.88 30.89 31.73 50.39
0.3 44.19 33.95 32.28 32.26 34.14 34.21 33.94 32.99 50.39
0.4 44.19 39.70 39.87 41.00 40.13 41.03 36.99 37.36 50.39
0.5 44.19 41.35 41.50 42.30 41.78 42.68 39.28 38.71 50.39
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Figure 18: The reconstructed image on 0.2 to 0.5 SR in the second stage on PU
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Table 10: The PSNR from SR= 0.2–0.5 in the third phase on PU

21 key 35 42 53 60 70 83 97 101 key

0.2 43.06 35.53 34.2 33.63 33.41 32.93 33.83 35.35 39.66
0.3 43.06 37.29 35.9 35.26 34.97 35.25 35.51 37.15 39.66
0.4 43.06 38.84 38.47 37.78 38.48 37.66 37 38.61 39.66
0.5 43.06 40.47 39.07 38.39 39.08 38.29 39.4 41.02 39.66

In Fig. 19, when SR = 0.2–0.5, the PSNR of the four algorithms shows an increasing trend. The
three-stage HSICS algorithm performs better performance on IN dataset and PU dataset. On the SA
dataset, when the SR is less than 0.3, the PSNR is slightly inferior.

(a) (b)

(c)

Figure 19: (a) is the algorithms comparison in IN. (b) is the algorithms comparison in SA and (c) is
the algorithms comparison in PU

To sum up, taking SR = 0.5 as an example, we compare the average improved PSNR from Stage
2 to Stage 3 of the three datasets, where IN is 1.99, SA is 0.54, and PU is 2.16. This also reflects a
drawback of our work. When the size of the dataset is small, the information obtained by the algorithm
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through inter-band and intra-band will be less, which leads to the performance of the MHP model and
the ReWSR model, which reduces the accuracy of the final reconstructed image.

4 Conclusion

A three-stage HSICS algorithm is proposed to recover HSI. In the first phase, we suggest an HSI
band selection model, which makes the HSI band selection as Mop-BS, and uses advanced inspire-
algorithms to solve it. In the second and third phases, this paper improves the MHP model and ReWSR
model, optimizes the block indexing method in the BCS of HSI. Through the most similar block, intra-
band and inter-bands. The similar blocks are modeled with residuals, and the weights are re-iterated. In
the HSICS, the algorithm can effectively improve the reconstruction accuracy from experience results.

In the future, we will consider modifying the weights of the ReWSR model and designing more
advantageous algorithms to optimize the weights to fit the relationship of band similarity and further
improve the performance of HSICS reconstruction. On the other hand, we will consider reducing the
time consumption in HSICS, and improving the practicality of the algorithm.
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