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ABSTRACT

In this paper, an improved high-order model-free adaptive iterative control (IHOMFAILC) method for a class of
nonlinear discrete-time systems is proposed based on the compact format dynamic linearization method. This
method adds the differential of tracking error in the criteria function to compensate for the effect of the random
disturbance. Meanwhile, a high-order estimation algorithm is used to estimate the value of pseudo partial derivative
(PPD), that is, the current value of PPD is updated by that of previous iterations. Thus the rapid convergence of the
maximum tracking error is not limited by the initial value of PPD. The convergence of the maximum tracking error
is deduced in detail. This method can track the desired output with enhanced convergence and improved tracking
performance. Two examples are used to verify the convergence and effectiveness of the proposed method.
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1 Introduction

Generally, there are two strategies for controller design. One is based on the exact process
information, and the other is based on the input-output data which is a model-free controller design
strategy. Many practical industrial processes contain nonlinearity, uncertainty, and time-varying
characteristics. In this case, model-based control becomes inapplicable because it is difficult to obtain
an accurate mathematical model of the controlled object. In recent years, the model-free methods have
attracted the attention of many researchers because of their remarkable advantages and have achieved
some valuable results [1,2].

Model-free adaptive control (MFAC) is one of the typical data-driven control methods proposed
by Hou [3]. The principle of the MFAC algorithm is to continuously generate a dynamic linearization
model containing pseudo partial derivative (PPD), which transforms the nonlinear system into a time-
varying linearized model that utilizes the input and output data of every step [4]. Compared with
the model-based algorithm, model-free adaptive control has the characteristics of fewer identification
parameters and fewer calculations. This method has been applied in various fields, for example, process
control [5], motor system [6], and so on. Arimoto et al. [7] proposed iterative learning control (ILC),

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2022.020569
mailto:zhiguowang@jiangnan.edu.cn


344 CMES, 2023, vol.134, no.1

which is suitable for a class of controlled objects with repetitive running characteristics, such as robots
with reciprocating operation characteristics [8] and a chemical reactor in a batch process [9]. Iterative
learning control was applied to improve the tracking performance of nonlinear processes whose model
and parameters are unknown [10]. Zhao et al. [11] used iterative learning to design the unbiased finite
impulse response. Combining the advantages of model-free adaptive control with iterative learning
control, model-free adaptive iterative learning control (MFAILC) was proposed in [12]. Unlike the
iterative learning control with fixed learning gain, the learning gain of model-free adaptive iterative
learning control is time-varying. It transforms the original nonlinear time-domain into a nonlinear
iterative domain and can be applied to other nonlinear controlled objects whose structures and
parameters are time-varying [13,14]. Thus MFAILC algorithm has better stability and adaptability
for complex systems [15].

Based on the previous research results, many researchers have further investigated the model-
free adaptive iterative learning control algorithm. In [16], an improved model-free adaptive iterative
learning control method which based on an encoding and decoding quantization mechanism was
proposed for a class of unknown nonlinear systems with data quantization. Li [17] adopted a neural
network to optimize the control law and the penalty of PPD. For a class of nonlinear discrete
systems with load disturbance and data loss, Hua et al. [18] proposed a control method with data
compensation. Model-free adaptive iterative learning control was applied to a multi-agent system by
Bu et al. [19]. Chi et al. [20] proposed a high order model-free adaptive iterative learning control,
which uses the input and output information of the previous iterations to construct a new control
input. It is obvious from the above observations that MFAILC has made great progress in theoretical
research. In the control process, convergence is a critical index for ILC so as to MFAILC [21]. However,
the convergence speed is related to the initial pseudo partial derivative, and it often takes several
experiments to get the appropriate value of the initial PPD [22]. The slower convergence will deteriorate
the performance of the controlled process [23].

To obtain a faster convergence, the high-order algorithm was used to estimate the value of pseudo
partial derivatives, which introduced more parameters to be adjusted unexpectedly [24]. This method
brings more difficulties in tuning parameters. On the basis of the former, this paper proposed an
improved high-order model-free adaptive iterative control (IHOMFAILC). The main contributions
of this paper are as follows:

• An improved PPD estimation algorithm, which takes the average value of the previous PPDs
can achieve faster convergence without introducing more parameters.

• A differential module is introduced into the criteria function of the controller to compensate for
the dynamic performance of the system under random disturbance.

• The proposed method contains fewer parameters to design and with the number of iterations
increases, the maximum error gradually converges to zero.

The rest of this paper is organized as follows: Section 2 introduces the basic principle of model-
free adaptive iterative learning control. The proposed method with disturbance compensation and
enhanced convergence is shown in detail in Section 3. In Section 4, the convergence and stability of
the proposed algorithm are proved in detail. Two examples are used to illustrate the effectiveness of
the method in Section 5 and the conclusions are drawn in Section 6.
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2 Basic Principle of MFAILC

Consider the following nonlinear discrete-time SISO system:

yk (t + 1) = f
(
yk (t) , yk (t − 1) , · · · , yk

(
t − ny

)
, uk (t) , uk (t − 1) , · · · , uk (t − nu)

)
(1)

where uk (t) and yk (t) are the kth iteration input and output of system, respectively, ny and nu are the
unknown orders of system, and f (·) is a nonlinear function.

The following two assumptions are given for system (1) to make the discussion rigorous:

Assumption 1: The partial derivative of the nonlinear function f (·) with respect to its control input
uk (t) is continuous.

Assumption 2: System (1) satisfies the generalized Lipschitz condition, that is, for any time t and
iteration k, if |Δuk (t) | �= 0 , then the system (1) satisfies the following conditions:

|Δyk (t + 1) | ≤ b|Δuk (t) | (2)

where Δyk (t + 1) = yk (t + 1) − yk−1 (t + 1),Δuk (t) = uk (t) − uk−1 (t), and b is a positive constant.
Based on the two assumptions, Lemma 1 can be achieved:

Lemma 1: For any nonlinear system that satisfies assumptions 1 and 2, if |Δuk (t) | �= 0, there
must exist time-varying pseudo-partial derivative φk (t), such that system (1) can be transformed into
the following generic model:

Δyk (t + 1) = φk (t) Δuk (t) (3)

where φk (t) is bounded and satisfies |φk (t) | ≤ b.

In order to design the control law, the following criteria function is considered:

J (uk (t)) = |yr (t + 1) − yk−1 (t + 1) |2 + λ|uk (t) − uk−1 (t) |2 (4)

where λ is a weighting factor used to restrict the control input variation between adjacent iterations,
and yr (t + 1) is the desired output.

Substituting (3) into (4) and minimizing (4) with respect to uk (t), we get the following control law:

uk (t) = uk−1 (t) + ρkφk (t) ek−1 (t + 1)

|φk (t) |2 + λ
(5)

where ρk is a step factor, and ek−1 (t + 1) = yr (t + 1) − yk−1 (t + 1) is the output tracking error.
Since φk (t) is a time-varying parameter which is difficult to acquire its accurate values, it needs to
be estimated based on input and output data.

As with solving uk (t), the following criteria function is denoted:

J (φk (t)) = |Δyk−1 (t + 1) − φ̂k (t)Δuk−1 (t) |2 + μ|φ̂k (t) − φ̂k−1 (t) |2 (6)

where μ > 0 is a weighting factor, φ̂k (t) is the estimation of φk (t).

Taking the derivative of Eq. (4) with respect to φ̂k (t) results in the following parameter estimation
algorithm:

φ̂k (t) = φ̂k−1 (t) + ηkΔuk−1 (t)
μ + |Δuk−1 (t) |2

(
Δyk−1 (t + 1) − φ̂k−1 (t) Δuk−1 (t)

)
(7)

where ηk > 0 is a step factor.
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In order to make the algorithm estimate value of Eq. (7) more accurate, the following reset

algorithm is denoted: if |φ̂k (t) | < ε or |Δuk (t) | ≤ ε or sign
(
φ̂k (t)

)
�= sign

(
φ̂0 (t)

)
φ̂k (t) = φ̂0 (t) (8)

where ε is a small positive constant, and φ̂0 (t) is the initial value of iteration. The reset algorithm
ensures the condition of Lemma 1 and the stronger tracking ability of Eq. (7) for time-varying
parameters.

However, the rapidity of convergence of the maximum error of MFAILC is related to the value of
the initial PPD. The larger the value is, the slower the convergence rate is and the larger the error is.
Therefore, an improved method is proposed to solve the above problem.

3 Improved High-Order Model-Free Adaptive Iterative Learning Control Method

In the proposed method, a differential link is added to compensate for the impact of random
disturbance on the system and only use input and output data to design the control law.

Consider the following criteria function:

J (uk (t)) = |yr (t + 1) − yk (t + 1) |2 + λ|uk (t) − uk−1 (t) |2 + γ |ek−1 (t + 1) − ek−2 (t + 1) |2 (9)

where γ ≥ 0 is weighting factor limits the change of tracking error, and when γ = 0 the criteria
function is the same as Eq. (4). Substituting (3) into (9), we can get:

J (uk (t)) = |ek−1 (t + 1) − φk (t) Δuk (t) |2 + λ|uk (t) − uk−1 (t) |2

+γ |ek−1 (t + 1) − φk (t)Δuk (t) − [ek−2 (t + 1) − φk−1 (t)Δuk−1 (t)] |2 (10)

To get the optional solution, we minimizing (10) with respect to uk (t) leads to following con-
trol law:

uk (t) =uk−1 (t) + ρkφk (t)
λ + |φk (t) |2 + γ |φk (t) |2

(yr (t + 1) − yk−1 (t + 1))

+ γφk (t) (ek−1 (t + 1) − ek−2 (t + 1) + φk−1 (t)Δuk (t))
λ + |φk (t) |2 + γ |φk (t) |2

(11)

according to (11), φk (t) is an unknown time-varying parameter that needs to be estimated utilizing
input and output data.

Unlike other high-order algorithms designed based on control input [25] and tracking error terms
[26], the improved high-order algorithm uses previous iterations to estimate the PPD. Compared to
the algorithm in [24], the improved algorithm does not need to take different weight coefficients for
the previous PPDs.

If the number of iterations is less than the iteration learning n, the estimation algorithm of Eq. (7)
is adopted:

φ̂k (t) = φ̂k−1 (t) + ηkΔuk−1 (t)
μ + |Δuk−1 (t) |2

(
Δyk−1 (t + 1) − φ̂k−1 (t)Δuk−1 (t)

)
(12)
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when the number of iterations is larger than the iteration learning n, the following algorithm is adopted
to reduce the dependence of the error convergence speed on the initial PPD value. Denote the following
criteria function:

J
(
φ̂k (t)

)
= |Δyk−1 (t + 1) − φ̂k (t) Δuk−1 (t) |2 + μ|φ̂k (t) − 1

n

n∑
i=1

φ̂k−i (t) |2 (13)

Taking the partial derivative of φ̂k (t) in Eq. (13):

∂J
(
φ̂k (t)

)
∂φ̂k (t)

= 2
(
−φ̂k (t)

) (
Δyk−1 (t + 1) − φ̂k (t) Δuk−1 (t)

)
+ 2μ

(
φ̂k (t) − 1

n

n∑
i=1

φ̂k−i (t)

)
(14)

Minimizing Eq. (14) by solving ∂
(
φ̂k (t)

)
/∂φ̂k (t) = 0, the estimate algorithm is expressed:

φ̂k (t) = Δyk−1 (t + 1) Δuk−1 (t)
μ + |Δuk−1 (t) |2

+ μηk

μ + |Δuk−1 (t) |2

1
n

n∑
i=1

φ̂k−i (t) (15)

where n is number of iterative learning. The reset algorithm of φ̂k (t) is the same as Eq. (8).
The improved algorithm uses the PPDs of previous n iterations to estimate the current PPD. Thus the
PPD can learn more from past data, making the tracking error has fast convergence. Therefore, the
overall control scheme of IHOMFAILC consists of (16)–(18):⎧⎪⎪⎨
⎪⎪⎩

φ̂k (t) = φ̂k−1 (t) + ηkΔuk−1 (t)
μ + |Δuk−1 (t) |2

(
Δyk−1 (t + 1) − φ̂k−1 (t) Δuk−1 (t)

)
2 ≤ k < n

φ̂k (t) = Δyk−1 (t + 1) Δuk−1 (t)
μ + |Δuk−1 (t) |2

+ μηk

μ + |Δuk−1 (t) |2

1
n

∑n

i=1 φ̂k−i (t) k ≥ n
(16)

uk (t) =uk−1 (t) + ρkφk (t)
λ + |φk (t) |2 + γ |φk (t) |2

(yr (t + 1) − yk−1 (t + 1))

+ γφk (t) (ek−1 (t + 1) − ek−2 (t + 1) + φk−1 (t) Δuk (t))
λ + |φk (t) |2 + γ |φk (t) |2

(17)

φ̂k (t) = φ̂0 (t) , if |φ̂k (t) | < ε or |	uk (t) | ≤ ε (18)

4 Convergence Analysis

In this section, the convergence of the proposed method is mainly proved. In order to make the
following discussion more rigorous, the following assumption is given:

Assumption 3: For all k ∈ {0, 1, 2, . . . , N − 1} and t ∈ {0, 1, 2, . . . , T − 1}, if |Δuk (t) | �= 0,
φk (t) > 0.

Assumption 3 is similar to a restriction on the direction of control input gain.

Lemma 2: If system (1) satisfies assumption 1–3, there must exist λmin > 0 so that when λ > λmin,
the IHOMFAILC method has the following properties:

1. For all k ∈ {0, 1, 2, . . . , N − 1} and t ∈ {0, 1, 2, . . . , T − 1}, φ̂k (t) is bounded.

2. When k → ∞, the system output tracking error converges to 0.

3. The close-loop system is BIBO stability, for all k ∈ {0, 1, 2, . . . , N − 1} and
t ∈ {0, 1, 2, . . . , T − 1}, uk (t) is bounded.
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Proof: The first step is to prove that φ̂k (t) is bounded.

when |φ̂k (t) | ≤ ε or |uk (t) | ≤ ε,φ̂k (t) = φ̂0 (t), φ̂k (t) is bounded.

In other cases, when 2 ≤ k < n, denote the following estimation error of the PPD parameters:



φk (t) = φ̂k (t) − φk (t) (19)

Subtracting φk (t) from both sides of Eq. (12):



φk (t) = 


φk−1 (t) − (φk (t) − φk−1 (t)) + ηΔuk−1 (t)
μ + |Δuk−1 (t) | ×

(
Δyk−1 (t) − φ̂k−1 (t)Δuk−1 (t)

)
(20)

Denote Δφk (t) = φk (t) − φk−1 (t), substituting (3) into (20), we have:



φk (t) =
{

1 − η|Δuk−1 (t) |2

μ + |Δuk−1 (t) |2

}



φk−1 (t) − Δφk (t) (21)

When 0 < η ≤ 1, μ > 0, from Eq. (21) we can get:

0 <

∣∣∣∣1 − η|Δuk−1 (t) |2

μ + |Δuk−1 (t) |2

∣∣∣∣ < 1 (22)

From Lemma 1 we get |φk (t) | ≤ b, so |φk (t)−φk−1 (t) | ≤ 2b. Taking absolute worthwhile at both
sides of Eq. (21):



φk (t) ≤ d|


φk−1 (t) | + 2b ≤ dn|


φ0 (t) | +
(
1 − dn−1

)
1 − d

2b (23)

where d =
{

1 − η|Δuk−1(t)|2
μ+|Δuk−1(t)|2

}
, therefore




φk (t) is bounded.

when n ≤ k and |uk (t) | > ε, we have:

φ̂k (t) = Δyk−1 (t + 1)Δuk−1 (t)
μ + |Δuk−1 (t) |2

+ μηk

μ + |Δuk−1 (t) |2

1
n

n∑
i=1

φk−i (t) (24)

Substituting Eq. (3) into (24) and taking absolute worthwhile at both sides, we have:

|φ̂k (t) | =
∣∣∣∣∣ Δφk−1 (t) Δu2

k−1 (t)
μ + |Δuk−1 (t) |2

+ μηk

μ + |Δuk−1 (t) |2

1
n

n∑
i=1

φ̂k−i (t)

∣∣∣∣∣ < |φk−1 (t) | + |ηk

n
|

n∑
i=1

|φ̂k−i (t) | (25)

Eq. (25) can finally be simplified as follows:

|φ̂k (t) | < |φk−n+1 (t) | + |ηk

n
|

k−n+1∑
j=1

n∑
i=1

|φ̂k−i (t) | (26)

From Lemma 1, we know φk (t) is bounded and therefore |φk−n (t) | is bounded. Finally from
Eq. (26), we can prove that φ̂k (t) is bounded.

Then the convergence of tracking error and the bounded control input are proved as follows:
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Denote if k ≤ 1, then |Δuk (t)| = 0. Taking absolute worthwhile at both sides of Eq. (11):

|Δuk (t)| =
∣∣∣∣∣∣
ρkφ̂k (t) ek−1 (t + 1) + γ φ̂k (t)

(
φ̂k−1 (t) − φk−1 (t)

)
Δuk−1 (t)

λ + |φ̂k (t) |2 + γ |φ̂k (t) |2

∣∣∣∣∣∣ (27)

Since φk (t) and φ̂k (t) are bounded, when λ > λmin > 0, then there must exist M1, M2, M3 satisfy
the following inequality:∣∣∣∣∣ φ̂k (t)

λ + |φ̂k (t) |2 + γ |φ̂k (t) |2

∣∣∣∣∣ ≤
∣∣∣∣∣ φ̂k (t)

2
√

λ (1 + γ ) |φ̂k (t) |

∣∣∣∣∣ <

∣∣∣∣∣ 1

2
√

λmin (1 + γ ) |

∣∣∣∣∣ = M1 ≤ 0.5
b

(28)

0 < M2 <

∣∣∣∣∣ γ φ̂k (t) φk (t)

λ + |φ̂k (t) |2 + γ |φ̂k (t) |2

∣∣∣∣∣ ≤ b

∣∣∣∣∣ γ φ̂k (t)

2
√

λ (1 + γ ) |φ̂k (t) |

∣∣∣∣∣ <

∣∣∣∣∣ γ b

2
√

λmin (1 + γ ) |

∣∣∣∣∣ < 0.5 (29)

From Eqs. (28) and (29) we get:

M1φk (t) ≤ M3 < 0.5 (30)

M2 + M3 < 1 (31)

Since φk (t) and φ̂k (t) are bounded, there exists d1 that:∣∣∣∣∣∣
γ φ̂k (t)

(
φ̂k−1 (t) − φk−1 (t)

)
λ + |φ̂k (t) |2 + γ |φ̂k (t) |2

∣∣∣∣∣∣ ≤ d1 <

∣∣∣∣∣ γ φ̂k (t) b

λ + |φ̂k (t) |2 + γ |φ̂k (t) |2

∣∣∣∣∣ ≤ M3 (32)

According to Eqs. (28)–(31), we have:

Δuk (t) < ρM1 |ek−1 (t + 1)| + d1 |Δuk−1 (t)| < ρM1

k−1∑
i=1

dk−1−i
1 |ei (t + 1)| (33)

From Eq. (33) we can get, if ek (t) converges to 0, then uk (t) is bounded.

|ek (t + 1)| = |yr (t + 1) − yk (t + 1)| = |yr (t + 1) − yk−1 (t + 1) − φk (t)Δuk (t)|
<

∣∣∣1 − ρkφk(t)φ̂k(t)

λ+|φ̂k(t)|2+γ |φ̂k(t)|2

∣∣∣ × |ek−1 (t + 1)| + φk (t)
∣∣∣ γ φ̂k(t)(φ̂k−1(t)−φk−1(t))

λ+|φ̂k(t)|2+γ |φ̂k(t)|2

∣∣∣ |Δuk−1 (t)| (34)

Let d2 = 1 − ρM2, substituting Eq. (33) into (34) we have:

|ek (t + 1)| < d2 |ek−1 (t + 1)| + d1φk (t) |Δuk−1 (t)| (35)

Then Eq. (35) can be described as follows:

|ek (t + 1)| < dk−1
2 |e1 (t + 1)| + d1

k−2∑
i=1

dk−2−i
2 φi+1 (t) ρM1

i−1∑
J=1

di−1−j
1

∣∣ej (t + 1)
∣∣ (36)

Let d3 = ρM3, according to Eq. (29) we get M1φk (t) ≤ M3 < 0.5, so M1φi+1 (t) ≤ M3 < 0.5.
Eq. (36) can be transformed into:

|ek (t + 1)| < dk−1
2 |e1 (t + 1)| + d1d3

k−2∑
i=1

dk−2−i
2

i−1∑
j=1

di−1−j
1

∣∣ej (t + 1)
∣∣ (37)
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Let gk (t + 1) = dk−1
2 |e1 (t + 1)| + d1d3

∑k−2

i=1 dk−2−i
2

∑i−1

j=1 di−1−j
1

∣∣ej (t + 1)
∣∣, from Eq. (37) we have:

|ek (t + 1)| < gk (t + 1) (38)

where g2 (t + 1) = d2 |e1 (t + 1)|. According to (38), when k → ∞, if gk (t + 1)converges to 0 then
ek (t + 1) will converge to 0. Therefore, it is possible to prove the convergence of gk (t + 1) rather than
ek (t + 1) directly.

gk+1 (t + 1) = dk
2 |e1 (t + 1)| + d1d3

∑k−1

i=1 dk−1−i
2

∑i−1

j=1 di−1−j
1

∣∣ej (t + 1)
∣∣

= d2gk (t + 1) + d3dk−1
1 |e1 (t + 1)| + · · · + d3d2

1 |ek−1 (t + 1)| + d3d1 |ek−1 (t + 1)|
< d2gk (t + 1) + d3dk−1

1 |e1 (t + 1)| + · · · + d3d2
1 |ek−1 (t + 1)| + d3d1 |gk−1 (t + 1)|

= d2gk (t + 1) + hk−1 (t + 1)

(39)

where hk−1 (t + 1) = d3dk−1
1 |e1 (t + 1)| + · · · + d3d2

1 |ek−1 (t + 1)| + d3d1 |gk−1 (t + 1)|.
According to Eq. (31): M2 + M3 < 1, so we have:

d2 = 1 − ρM2 > ρ (M2 + M3) − ρM2 = ρM3 = d3 (40)

Substituting Eq. (40) into hk−1 (t + 1), we get the following inequality:

hk−1 (t + 1) < d3dk−1
1 |e1 (t + 1)| + · · · + d3d2

1 |ek−1 (t + 1)| + d3d1 |gk−1 (t + 1)| < d3dk−1
1 |e1 (t + 1)|

+ · · · d3d2
1 |ek−1 (t + 1)| + d2d1

(
dk−2

2 |e1 (t + 1)| + d1d3

k−3∑
i=1

dk−3−i
2

i−1∑
j=1

di−1−j
1

∣∣ej (t + 1)
∣∣) (41)

Eq. (41) hk−1 (t + 1) can finally be expressed as:

hk−1 (t + 1) = d1

(
dk−1

2 |e1 (t + 1)| + d1d3

k−2∑
i=1

dk−2−i
2

i−1∑
j=1

di−1−j
1

∣∣ej (t + 1)
∣∣) = d1gk (t + 1) (42)

Substituting (42) into (39) yields:

gk+1 (t + 1) < (d2 + d1) gk (t + 1) (43)

When d2 + d1 < 1, gk (t + 1) converges gradually. Selecting ρ ∈ (0, 1) , γ > 0 to make:

1 −
∣∣∣∣∣ ρkφk (t) φ̂k (t)

λ + |φ̂k (t) |2 + γ |φ̂k (t) |2

∣∣∣∣∣ +
∣∣∣∣∣∣
γ φ̂k (t)

(
φ̂k−1 (t) − φk−1 (t)

)
λ + |φ̂k (t) |2 + γ |φ̂k (t) |2

∣∣∣∣∣∣ < 1 (44)

Thus the following inequality is given:

γ <

∣∣∣∣ ρφk (t)

φ̂k−1 (t) − φk−1 (t)

∣∣∣∣ (45)

Substituting d2 + d1 < 1 into Eq. (43),

lim
k→∞

gk+1 (t + 1) < lim
k→∞

(d2 + d1) gk (t + 1) < lim
k→∞

(d2 + d1)
k−1 g2 (t + 1) = 0 (46)
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According to inequality (38) and (46), with the increase of the number of iterations k, gk (t + 1)

converge to 0 gradually, and therefore ek (t + 1) will converge to 0 finally.

From inequality (33), we have:

|uk (t)| ≤
k∑

i=1

|Δuk (t)| < ρM1

k∑
i=1

i−1∑
j=1

di−1−j
1

∣∣ej (t + 1)
∣∣

<
ρM1

1 − d1

(e1 (t + 1) + g2 (t + 1) + · · · + gk−1 (t + 1)) (47)

Eq. (47) can be reorganized as follows:

|uk (t) | <
ρM1

1 − d1

(
e1 (t + 1) + g2 (t + 1)

1 − d1 − d2

)
(48)

This implies that uk (t) is bounded. Lemma 2 (1)–(3) are established.

5 Simulation

Example 1: Consider the following time-varying system [14]:

y (t + 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y (t)

1 + y (t)2 + u (t)3 0 ≤ t ≤ 50

(y (t) y (t − 1) y (t − 2) u (t − 1))

× (y (t − 2) − 1) + α (t) u (t)
/
(
1 + y (t − 1)

2 + y (t − 2)
2
)

50 < t ≤ 100

(49)

The desired output is:

yr (t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

0.5 × (−1)
round(t/10) 0 ≤ t ≤ 30

0.5 × sin (tπ/10)

+0.3 × cos (tπ/10) 30 < t ≤ 70
0.5 × (−1)

round(t/10) 70 < t ≤ 100

(50)

where α (t) = 1 + round (t/50) is a time-varying parameter of the system (49). For IHOMAFILC, the
controller parameters are set as: λ = 0.4, ρ = 1, μ = 1, η = 0.5, γ = 0.01 and ε = 10−5. The number
of previous iterative learning is set as n = 3.The initial value of PPD is set to φ0 (t) = 10.

Table 1 shows the ITAE performance index of the two methods. When the number of iterations
is set to 10, 20, 30, and 40 while other parameters are unchanged, the IATE values of IHOMFAILC
is less than that of MFAILC. As the number of iterations increase, the IATE values of both methods
shows a downward trend. Therefore the proposed method performance index is better.

Table 1: The ITAE performance index of two methods with different iterations

k The IATE of MFAILC The IATE of IHOMFAILC

10
20
40

193.6497
29.1529
2.94247

142.9738
8.0834
1.4892

60 1.6799 1.2036
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Fig. 1 shows the tracking results of IHOMFAILC and MFAILC with different iterations. From
the 15th iteration result, the proposed method can gradually approach desired output ultimately tracks
it at 40 iterations. The output of the MFAILC method at the 40th iteration still has a large error with
the expected output.

(a) (b)

Figure 1: Tracking results of IHOMFAILC and MFAILC with different iterations

The maximum tracking error of IHOMFAILC and MFAILC with different initial PPDs is shown
in Fig. 2. As the picture shows, the change of the initial value of PPD has a great impact on the error
convergence speed of MFAILC. The proposed method ensures fast convergence and the final error
convergence to 0. Results demonstrate that IHOMFAILC can achieve fast convergence with a few
attempts to select the best initial value of PPD.

(a) (b)

Figure 2: Comparison of max tracking error of MFAILC and IHOMFAILC with different initial PPDs
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Example 2: In order to verify the effectiveness of the proposed algorithm, simulation is performed
on a permanent magnet DC linear motor [1]. The dynamic characteristics of the motor are described
as follows:
ẋ (t) = υ̇ (t)

υ̇ (t) = u (t) − ffriction (t) − fripple (t)
m

(51)

where x (t) is the position of linear motor (m), υ (t) is the speed (m/s), ffriction (t) is the friction force (N),
fripple (t) is the ripple force (N), u (t) is the developed force (N) , t is the continuous-time (s).

The mathematical model between friction force and ripple force is described as follows:

ffriction(t) = (fc + (fs − fc)e−(ẋ/ẋδ )δ + fυẋ)sgnẋfripple(t) = b1 sin(ω0x(t)) (52)

where fc is the minimum value of coulomb friction and fs is the static friction, xδ is the lubrication
parameters and fυ is the load parameters,δ is an additional empirical parameter. m = 0.59, xδ = 0.1,
δ = 1, fc = 10, fs = 20, fυ = 10, b1 = 8.5, ω0 = 314s−1.

Denote x1 (t) = x (t), x2 (t) = υ (t). Eq. (45) can be described as follows:[
ẋ1 (t)
ẋ2 (t)

]
=

[
x2 (t)
− ffriction(t)+fripple(t)

m

]
+

[
0
1
m

]
× u (t)

y (t) = x2 (t) + d (t)
(53)

where d (t) is a zero-mean white noise with a variance 0.005. The desired output is yr (t) = 10 sin (πt).
Discretize (46) by Euler Formula and take sample time as ts = 0.001. The controller parameters are
set asλ = 0.06, ρ = 1, μ = 0.3, η = 1, and γ = 0.005. Fig. 3 shows the maximum tracking error
convergence of IHOMFAILC and MFAILC. It can be seen from the figure that the errors of the two
methods are the same at the 11th and 14th iterations and the convergence errors of the IHOMFAILC
in other iterations are all less than MFAILC. This simulation shows that the proposed method has fast
error convergence even though the system exists interference.

Figure 3: Max tracking error convergence of MFAILC and IHOMFAILC
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6 Conclusion

Based on the model-free adaptive iterative learning control, a novel IHOMFAILC method has
been proposed in this paper based on compact form dynamic linearization. When the system is
disturbed, the proposed method can still keep track of the desired output. Furthermore, this method
can achieve enhanced convergence without many experiments to find a suitable PPD value. Two
examples show that the proposed method has good trajectory tracking and disturbance resistance.
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