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ABSTRACT

Interpreting deep neural networks is of great importance to understand and verify deep models for natural language
processing (NLP) tasks. However, most existing approaches only focus on improving the performance of models
but ignore their interpretability. In this work, we propose a Randomly Wired Graph Neural Network (RWGNN)
by using graph to model the structure of Neural Network, which could solve two major problems (word-boundary
ambiguity and polysemy) of Chinese NER. Besides, we develop a pipeline to explain the RWGNN by using Saliency
Map and Adversarial Attacks. Experimental results demonstrate that our approach can identify meaningful and
reasonable interpretations for hidden states of RWGNN.
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1 Introduction

Deep learning has achieved a lot of success in many fields [1–4] because of the rapid expansion of
data sets and computational power. On the one hand, researchers and industry are excited about deep
learning’s powerful representation and feature extraction capabilities. On the other hand, they are also
concerned about the reliability and trustfulness of models constructed by deep learning and hope to
understand what is going on inside the box that people cannot observe. Making deep learning models
to be understood by humans is an important research topic that breaks the most fundamental dilemma
of deep learning, because for some fields that require a high degree of trustworthiness, performance
is not necessary, and trustworthiness is the top priority, such as finance and medical care, Court
judgments, etc.

In recent years, deep neural network models have been widely applied to many natural language
processing (NLP) applications [3,5,6], but one complaint they often suffer from is their lack of
interpretability. The field of computer vision has forged its own path to enhancing deep learning model
interpretability, most notably through post-hoc interpretation methods like saliency. For NLP, large
neural NLP models, most notably BERT-like models [7–10], have become highly widespread, both
in research and industry applications. This increase of model complexity is motivated by a general
correlation between model size and test performance. Due to their immense complexity, these models
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are generally considered black-box models. A growing concern is therefore if it is responsible to
deploy these models. Concerns such as safety, ethics, and accountability are particularly important
when machine learning is used for high-stakes decisions, including NLP-focused applications such as
translation [11], dialog systems [12], resume screening [13], search [14], etc. [15]. Understanding why it
is that the NLP predicting model works is becoming crucially influential. For such insights, post-hoc
explanation approaches are valuable, for example, to determine whether a model is doing the “job
correctly” before deployment [16,17], to increase human trust into black box systems [15], and to help
diagnose model biases [18].

The structure of the neural network has an impact on the performance of models and has
evolved from simple chain-like patterns to more sophisticated wiring paths (i.e., skip connection in
ResNets [19]). The efficiency of the randomly wired neural network for improving the neural network’s
performance on image recognition tasks was demonstrated by Xie et al. [10]. Inspired by such the
advantage, we further extend the principle of wired neural network to the field of natural language
processing (NLP). The purpose of image classification is to distinguish different types of pictures,
similar to the goal of named entity recognition, classifying different entities. Meanwhile, the limitation
of the RNN [20] which is incapable of dealing with hierarchic sentence has been demonstrated in
a study on the Lattice LSTM [21]. Hence, we propose a Randomly Wired Graph Neural Network
(RWGNN) to construct a more robust model by exploring its connectivity to improve the accuracy
of Chinese NER. The proposed RWGNN can overcome the limitation of the traditional chain-like
structure of the neural network by enhancing semantic information and high-level features of a given
context. We also use the lexical knowledge to associate characters to capture the local composition.
Besides, an attention mechanism is used to capture similar entity attention. The node representation
is computed by sequentially aggregating its incoming edges in RWGNN’s neighborhood aggregation
strategy.

Most existing approaches for interpreting NLP models focus on investigate the causation between
input text and output decisions to explore which input tokens are more essential when making the final
decisions [22,23]. However, the inner workings of networks should also be studied to answer important
questions regarding hidden layers, such as which hidden units are more important for a decision and
why they are important. Yuan et al. [24] first employ saliency map and optimization techniques to
approximate the detected information of hidden neurons from input sentences. Thus, we use saliency
map and adversarial attack-based approach to explain the inner workings of RWGNN.

This paper’s primary contributions can be summarized as follows: 1) We propose an interpreting
pipeline to explain the GNN-based model-RWGNN; 2) We use two interpreting methods, saliency
map and adversarial attacks, to explain the reason why the RWGNN works. 3) We conduct several
experiments to visualize the hidden states of RWGNN.

2 Related Work
2.1 Saliency Maps to NLP

Saliency Maps is an important technology that mainly used for model interpretation. By using this
technology, human can understand which variables are important for the model. Moreover, Saliency
Maps can be understood as the feature map of data. For image classification, it is to use this method
to capture some pixels that have an impact on the results in the picture, and to extend it to the NER in
natural language processing is to capture some words that have an impact on the results in sentences.

Li et al. [23] used Saliency Maps which method they used called First-Derivative Saliency to
quantified the impact of each input on the final results of the model. This quantification can reflect
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the negative asymmetry and spatial locality of the model. They used this approach to compare the
interpretability and performance of three different models (RNN [25], LSTM and Bi-LSTM [26]) in
sentiment analysis tasks. Guan et al. [27] inspired by previous researchers, used Saliency Map as an
important tool to reveal Coherency in the model. They used Saliency Map to show the changes in the
neural network layer with different input words, showing the changes in the amount of information
contained in different neural network layers. This method verifies the information-based measurement
method proposed by them, which quantitatively explains how the intermediate layer of the deep NLP
model uses the input word information. In the analysis of NLI and sentiment analysis, Han et al.
[28] used two complementary interpretation methods: gradient-based Saliency Map and influence
function, and proved the feasibility of Saliency Map in deep transformer-based model and lexicon-
driven sentiment analysis situation. However, the analysis using gradient-based Saliency Map on NLI
which is more complex cannot produce better results compared with the method of influence function.

2.2 Adversarial Attacks to NLP
The main purpose of adversarial attacks is to obtain the weakness of the model. In a sense,

it also operates as a test model to verify that the model is both robust and comprehensible. In
NLP, the strategy of applying perturbations to make the model generate improper output with high
confidence to expose deficiencies is not successful due to the discontinuity of word embedding.
Therefore, in NLP, adversarial attacks often use a synonym dictionary to replace a word in the sample
to expose the model’s weaknesses. There are five main types of adversarial attacks against natural
language text, including Model Access, Semantic Application, Target Type, Semantic Granularity and
Attacked DNNS.

The white-box attack in the Model Access classification is one of the most serious attacks
currently used on machine learning models. White-box adversarial examples are created by calculating
derivatives for some character editing operations. There are a variety of classifications under white-
box attacks. Direction based HotFlip [29] is a commonly used white-box attack method. It represents
swap, insert, delete and other character-level operations as vectors in the input space, and estimates
the loss changes of these vectors in the directional derivative. Ebrahimi et al. [30] extended the HotFlip
method on this basis. In addition to the above attacks, they added the method of controlled attacks.
This function is to modify the loss function so that the algorithm can delete specific words from the
output and a targeted attack, which is simply a method to replace specific words.

In addition, they also proposed three types of attacks that can be modified. In addition, Feng et
al. [31] used innovative character editing operations to delete, so that only high confidence words were
retained in the text, although the results generated by this cannot be understood by human beings. This
deletion method changes the method that generally finds large importance words by input perturbation
or gradient, but removes the smallest importance token to find the most important input feature.

3 Our Proposed Model: RWGNN

Our Proposed Model: RWGNN Recurrent Neural Networks (RNN) [32–34] have achieved
great successes on Chinese Named Entity Recognition (NER). However, such chain-like models are
inadequate to capture hierarchical and nested entities due to their poor structures. Because of lacking
structural information, the boundaries of entities are hard to be segmented. We propose a block-
level Randomly Wired Graph Neural Network (RWGNN) to use a multi-directional wired pattern to
extract contextual and structural information. Our experimental results on four NER datasets show
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that RWGNN outperforms state-of-the-art baseline models and the general structure of RWGNN
models we study is shown in Fig. 1.

Figure 1: (a): is the overview of RWGNN. (b): Randomly-wired LSTM. (c): The aggreation operation

Fig. 1a is the overview of RWGNN. The encoder ouputs a comprehensive word representation
vector h, which is served as the input to the randomly-wired LSTM, and its output is H. Then global
attention unit captures the global correlations and outputs g. g and H are two inputs of the gated unit.
At last, the CRF decoder generates labels L char-by-char according to the matrix Y . Our proposed
RWLSTM is modeling the wiring pattern of neural network, which use a multi-directional wired
pattern to extract and enhance contextual and structural information. Fig. 1b represents Randomly-
wired LSTM. The edges between nodes are randomly generated. We use the graph structure to
model the wiring pattern of the neural network. Take the three colored nodes, input and output
node as an example to explain the process of word representations. In the input node, the same word
representations are copied three times and passed to three neighbor nodes. Then, the ‘LSTM nodes’
(yellow node) perform the message exchange process based on the feature of the preceding neighboring
node (including two red nodes). Finally, the concatenation of all original output nodes creates
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the output of unique green node. Fig. 1c is the aggreation operation. The yellow node in T state is
the target node k, two red nodes in T state are neighbor nodes of node k. The yellow in T − 1 is
the preceding state of node k. We perform an aggregation operation to update the current feature of
node k.

We use biLSTM to produce word representations which also capture contextual feature informa-
tion [35]. The representations of pre-trained models have already processed by others. In the course
of processing, some information may be lost owing to various constraints, so the information is not
sufficient for our task.

However, the word representation generated by char-level features and lexicon is like raw infor-
mation. We can manipulate these raw data according to the characteristics of our target task while
dealing with them, and the information about boundaries and ambiguities will be more appropriate
and adequate.

We execute an attention mechanism on the representations (After being calculated by randomly-
wired LSTM) to find the global information. The attention mechanism in transformer model [36] is a
function that map the important and relevant words from the input sentence and assign higher weights
to these words [37]. The equation is as Eq. (1) shows:

Attention (Q , K , V) = softmax
(

QKT

√
dk

)
V (1)

where Q is a query of target elements, (K) is a set of Keys, and (V ) is the value pairs. Due to the
process of rwLSTM (enhancing the features), the features have become extremely rich (such as context
information and boundary information), but some useless information has also been enlarged, so we
use it to enhance the important features and reduce the redundancy.

For training, we minimize the sentence-level negative log-likelihood loss as Eq. (2) shows:

L (θ) = −
N∑

i=1

log (p (yi|si)) (2)

In contrast to previous works by using graph neural network, like LGN [38], etc., which model
text sequences to build a graph, Our RWGNN models the neural network’s wiring pattern. The key
of the RWGNN model is to use the Watts-Strogatz (WS) [39] model to generate a wired pattern
between nodes, which will form a directed acyclic graph (DAGs). Each node in the RWGNN will
contain a computable network block, which is the randomly-wired LSTM (RWLSTM) mapped by
DAG through the generator. To enhance the extraction and enhancement of context and structure
information RWLSTM uses a multidirectional connection mode. In RWGNN, the information
exchange between nodes is realized by efficient graphic message transmission architecture.

MSRA/OntoNotes/Resume/Weibo. Table 1 shows the results for the MSRA, Weibo, and Resume
datasets, respectively. Weibo, as well as the Resume dataset and the MSRA test set, lacked gold-
standard segmentation. For Chinese NER, the top conventional methods included rich handcrafted
features, embedding features, radical features, cross-domain features, and semi-supervised data;
nonetheless, our RWGNN model outperformed the prevalent techniques and the word-level and
character-level methods by a significant margin. On all three datasets, including MSRA, Resume and
Weibo, it outperformed all other baselines. The automatic segmentation on the OntoNotes caused
errors of word segmentation, resulting in a loss of performance on the downstream NER task. To
obviate the necessity for word segmentation, it was possible to use character-level algorithms. The
RWGNN model that we propose is a character-level model based on the WS model. In terms of the
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F1-score, it outperformed the LGN and lattice LSTM by over 2%, and the F1-score increased by 0.49
percent over the FLAT.

Table 1: Main results (F1) on MSRA/Weibo/Resume/OntoNotes

Models MSRA Weibo Resume OntoNotes

Word-level LSTM 86.65 47.33 93.58 -
-char-bichar 90.28 52.33 94.24 -
Char-level LSTM 88.81 52.77 93.48 64.30
-bichar-softword 91.87 56.75 94.41 71.89
Lattice LSTM 93.18 58.79 94.46 73.88
LGN 94.19 60.21 95.37 74.89
FLAT 94.12 60.32 95.45 76.45
ERNIE 2.0 large 95.00 - - -
RWGNN 95.29 62.32 96.33 76.94

4 Interpretability of RWGNN

As shown in Fig. 2, we propose a pipeline of our interpreting approach. The Part 1 shows the
brief general structure of the RWGNN model that we try to investigate. After training, we first build
saliency maps for different hidden spatial locations, where saliency scores reflect contributions to the
final decision. As the example shown in Part 2, the RWGNN model classifies the test sentence to class
c (shown in green). For the hidden layer, the saliency score is computed for each hidden states, and
three hidden states are selected (highlighted in red). The Part 3 is adversarial attack, we mask one or
more embedding of the word representation, then we observe the change of label predictions.

Figure 2: Illustration of the overall pipeline of our interpreting approach
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4.1 Saliency Map Visualizations
We look at three different ways for assessing saliency, including Vanilla Gradient [40], Integrated

Gradients [41] and SmoothGrad [42]. We utilize the model’s output in the loss calculation since our
goal is to understand why the model made its prediction (rather than the ground-truth response). By
using the L2 norm, we can reduce each token’s gradient (which is the same dimension as the token
embedding) to a single value for each technique.

• Vanilla Gradient [40]: This method depicts the loss gradient for each token.

• Integrated Gradients [41]: This method establishes a baseline, which is an information-free input
(we use a sequence of all zero embeddings). The gradient along the path from this baseline to
the original input is integrated to establish word symbolic importance [10].

• SmoothGrad [42]: This method takes the gradient of multiple noisy copies of the input and
averages it. Every embedding is given a small amount of Gaussian noise, and the average
gradient value is calculated.

4.2 Adversarial Attacks
We explore two adversarial attacks: word replacement to change the model’s prediction (HotFlip

[29]) and word removal to preserve the model’s prognosis (Input Reduction).

Untargeted & Targeted: To modify the model’s prediction, HotFlip [29] utilizes the gradient to
swap out words from the input. This provides a nearly counterfactual solution to the question of
which words should be switched to produce a given prediction. According to the goal of attacks, it
can usually be divided into two main modes, namely untarget attack and target attack. Target Attack
disturbs input x by adding a minimum amount of perturbation δ, thus forcing the model to misclassify
the disturbed samples into misclassification labels. In other words, for a multi-classification network,
the attacker will induce the network to classify the input samples into a specified class label. Untarget
Adversatial Attack will increase the disturbance δ on the input sample x, so that the model will produce
wrong classification. We can regard this attack mode as a special case of target attack, which only needs
to generate confrontation samples to deceive the original network.

Input Reduction: This strategy removes as many words from the input as possible without affecting
the model’s prediction [4]. Iteratively eliminating the word with the smallest gradient value is how input
reduction works. Fig. 3 displays four examples of NER input reduction, where we achieved using
AllenNLP interpret.

Figure 3: AllenNLP interpret was used to create an interpretation for Chinese NER
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5 Experiments

In this section, we will first describe our experimental datasets shown in Table 2. Then, we
experimentally show the interpretations of RWGNN by using four different angles. We also detail
the hyperparameter configuration of our proposed model RWGNN.

Table 2: The details of four datasets

Dataset Type Train Dev Test

MSRA Sent. 46.4 k - 4.4 k
Char. 2169.9 k - 172.6 k

OntoNotes Sent. 15.7 k 4.3 k 4.3 k
Char. 491.9 k 200.5 k 208.1 k

Resume Sent. 3.8 k 0.46 k 0.48 k
Char. 124.1 k 13.9 k 15.1 k

Weibo Sent. 1.4 k 0.27 k 0.27 k
Char. 73.8 k 14.5 k 14.8 k

5.1 Datasets
Four Chinese NER datasets were used in our paper. (1) OntoNotes 4.0 [43]: OntoNotes is

a multilingual News corpus which has been manually annotated and contains a variety of text
annotations, including Chinese named entity labels. Segmentation that satisfies technical standards
is provided. Only Chinese documents (about 16 k phrases) are used, and the data is analyzed in the
same way as Che et al. [44] (2) MSRA [45]: MSRA is a News dataset that includes three different
types of named entities: LOC, PER, and ORG. The training set has Chinese word segmentation, while
the test set does not. (3) Weibo NER [46]: It is a collection of annotated NER messages culled from
Sina Weibo, a Chinese blogging platform. For both named entity and nominal mention, the corpus
includes PER, ORG, GPE, and LOC. (4) Resume NER [21]: It is built out of Sina Finance resumes
which have been annotated with eight various categories of named entities. The gold-standard Chinese
segmentation is lacking from both the Weibo and Resume datasets. Table 2 shows the details of the
four datasets.

5.2 Hyper-Parameter Setting
With a learning rate of 2e − 5 for OntoNotes and MSRA, and 2e − 4 for the tiny datasets from

Weibo and Resume, we implemented Adam [47] as an optimizer. We preferred dropout at a rate of
0.5 for embeddings and 0.2 for aggregation module outputs to reduce overfitting. The embedding
and state sizes were both set at 50. The number of multi-head attention heads was adjusted to ten.
For minor datasets like Resume and Weibo, the head dimensions were set to 10, and for MSRA and
OntoNotes, they were set to 20. As performance indicators, the conventional Precision (P), F1-score
(F1), and Recall (R) were utilized.
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5.3 AllenNLP Interpret
Many research codebases bury high-level parameters under implementation details, are challeng-

ing to run and debug, and are difficult enough to extend that they are more likely to be rewritten.
AllenNLP1 [48] is a deep semantic natural language processing platform designed to address these
problems and to significantly lower barriers to high quality NLP research in 2018. Based on AllenNLP,
Wallace et al. [18] develop a extensive framework which is called “AllenNLP Interpret” to interpreting
NLP models in 2019. This toolkit includes interpretation primitives (such as input gradients) for
all NLP models and tasks, as well as a library of front-end visualization components. For BERT’s
masked language modeling purpose, we might utilize AllenNLP interpret to produce a saliency map
by utilizing Vanilla Gradient [40]. We use it to demonstrate RWGNN in our paper by using an input
reduction task, as shown in Fig. 3. The words “ ” or without any further words are adequate to
forecast Organization and Location tags under word-level and char-level labels, respectively, according
to input reduction. The results show that the model can capture as much word information as possible
in the training step, and make label predictions based on as little information as possible in the
inference step.

5.4 Visual Interpretation of Hidden States
In this work, we investigate the interpretation of RWGNN model for name entity recognition

tasks in NLP. The general structure of RWGNN models we study is shown in Fig. 1 and explained
in Section 3. Intuitively, we wish to investigate the hidden states of a GNN-based model so that we
can answer three questions; those are, which hidden states are more important to decisions? what
is detected by these hidden states from input sentences? and what is the meaning of the detected
information? However, there are two main challenges for answering these questions; those are, how to
explore what is detected by hidden states? and how to interpret the detected information? Existing
approaches in computer vision cannot be directly applied since word representations are discrete
from each other and cannot be abstracted as images. We combine the idea of saliency map and
optimization to answer the question of what is detected by hidden states. Based on the property of
word representations and graph neural network, we propose to approximately interpret the meaning
of detected information, which contains the word-boundary feature. Then we use regularization terms
to locate the word-boundary feature. Generally speaking, the interpretation procedure consists of three
main steps. First, we employ gradient-based approaches to estimate the contributions of different states
in a hidden layer. Based on the magnitude of contributions, the hidden states are sorted, and those
with high contribution are selected to be interpreted in the following steps. Second, to obtain what is
detected by different states, we iteratively update a randomly initialized input. Finally, the initialized
input is a sequence of numerical vectors but such abstract values are hard to interpret. Based on the
property of word representations that words with semantically similar meanings are embedded to
nearby points, we design regularization terms to encourage different vectors to be similar to each other.
Then we explore the word-boundary feature in term of cosine similarity to approximately represent
the meaning of the target hidden states.

We visualize three hidden states, which contains word-boundary features, as shown in Fig. 4. These

three hidden was processing same representation of text sequence“ ”

but the boundary information of the same Chinese sentence detected by these three hidden states are
not completely consistent. The dark blue and yellow hidden states believes that the boundary exists
between the character (province) and (governor), and the light blue indicate the boundary

1https://github.com/allenai/allennlp.

https://github.com/allenai/allennlp
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exists between the character (hai) and (zhang). Thus, the final and correct word boundary is
detected by dark blue and yellow hidden states.

Figure 4: Visual interpretation of hidden states for word ambiguity example

5.5 Saliency Maps for Hidden States
Since there are a large number of neurons in hidden layers, it is not possible to interpret each

neuron. Hence, we employ saliency map techniques to select hidden states with high contributions for
further interpretation. The saliency map acts like a heatmap, where saliency scores are estimated by
the first order derivatives and reflects the contribution of different neurons. While most of existing
approaches build saliency maps to explore the contribution of individual words or characters in input
sentences, we study the importance of different hidden states instead. Formally, for an input sentence
X , the model predicts that it belongs to label class c and produces a label class score Sc. Let ai j represents
the activation vector of the hidden state i of step j. Also let Aj denotes the activations of step j, which
is a matrix, where each column corresponds to one hidden state. The relationship between the score
Sc and Aj is highly non-linear due to the nonlinear functions in deep neural networks. Inspired by the
strategy in recent works [23,40], we compute the first-order Taylor expansion [49] as a linear function
to approximate the relationship as Eq. (3) shows:

Sc ≈ Tr
(

w
(
Aj

)T
Aj

)
+ b (3)

where Tr (·) denotes the trace of a matrix and w(Aj) is the gradient of class score Sc with respect to the
layer j. Such gradient can be obtained by using the first order derivative of Sc with respect to the layer
Aj as Eq. (5) shows:

w
(
Aj

) = ∂Sc

∂Aj

(4)

For the hidden state i in the step j, the gradient of Sc with respect to this hidden state is the ith

column of w(Aj), denoted as w(Aj)i. Then the saliency score of this location Scorec(X)i;j is calculated
using linear approximation as Eq. (5) shows:

Scorec(X)i,j = w
(
Aj

)
i
· aij (5)
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where · refers to the dot product of vectors. It is noteworthy that we do not directly use gradients as
saliency scores. The reason is that gradients only reflect the sensitivity of the class score when there is a
small change in the corresponding spatial location. The employed linear approximation incorporates
the activation values to measure how much one hidden state contributes to the final class score. In
addition, after training, the weights and parameters in the model are fixed so that the gradient of Sc

with respect to a specific spatial location is fixed and does not depend on the input. By using the linear
approximation, the saliency score becomes input-dependent.

As shown in Table 3, we use three different saliency methods, including Gradient, SmoothGrad
and Integrated Gradients, to visualize the tokens recognized by RWGNN. These tokens not only
contain entities but also words contained in dictionary information. The red token represents that
the current token is very important for the entire text, while the blue tokens represent relatively
low attribution. Compared with Gradient, SmoothGrad and Integrated Gradients have many more
restrictive regulations, so the number of tokens spotted by them is also less than that of Gradient
method.

Table 3: The two examples intrepreted by three different saliency methods, including gradient,
smoothgrad and integrated gradients. Color legend: Lower attribution, Higher attribution

5.6 Analysis of Adversarial Attacks
Researchers mainly uses black-box and white-box adversaries in the NLP field, Ebrahimi et al. [30]

demonstrate that white-box adversaries significantly outperform black-box adversaries especially in
targeted scenarios on character-level neural machine translation task. Thus, we follow this conclusion
and we use two type methods of white-box adversaries–targeted and untargeted attacks. We implement
these two adversarial attacks to test the robustness of RWGNN. We use these two attacks to manipulate
the word sequence by applying four different operations–Flip, Insert, Delete and Swap. Besides, we
use Cosine similarity to measure the similarity between original text and attacked text, which not
only include sentence but also the predicted entities. Table 4 shows Cosine similarity of original and
attacked text under the untargeted and targeted attacks. We randomly pick 100 text sequences from
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four datasets and the results are the average of them. If the value is closer to 0, it means that the
similarity of the two objects is higher, otherwise the similarity is lower. Unlike delete and swap, insert
and flip have the advantage of making changes to one-letter words, so we expect them to perform
better. We see this for the white-box attacks which can pick the best change to every word using the
gradients. Targeted attack is more challenging for not only mute a word and entity but also replace
it with another one. The evaluation metric for targeted attack is same to untargeted attack. targeted
attacks are relatively simple, since an adversary can perturb the input to move it to the other side of a
decision boundary.

Table 4: Cosine similarity of original and attacked text under the untargeted and targeted attacks

Attack Flip Insert Delete Swap

Targeted Untargeted Targeted Untargeted Targeted Untargeted Targeted Untargeted

ON 0.451 0.214 0.420 0.301 0.621 0.356 0.412 0.317
MSRA 0.376 0.247 0.353 0.317 0.541 0.435 0.395 0.294
Weibo 0.357 0.218 0.421 0.263 0.741 0.414 0.547 0.358
Resume 0.476 0.258 0.564 0.367 0.732 0.574 0.631 0.491

Under the targeted attack, the cosine similarity is higher than that of the untargeted attack, that is,
the attack on the targeted entity will make the original text and the attacked text have a more obvious
difference. It also proves that the entities recognized by RWGNN are extremely important for the
entire context. Specifically, the operation of deleting entities has the greatest impact on the similarity
between texts compared to the other three operations.

6 Conclusion

Investigating hidden states in graph neural networks are of great importance to understand their
working mechanisms. However, most current approaches focus on models for images tasks. It is
challenging to understand the meaning of hidden states in NLP models, since word representations are
discrete and cannot be abstracted. In this work, we propose a pipeline to interpret deep NLP models.
We combine the saliency map and adversarial attacks techniques to explore the information detected
by the most important hidden states in NLP models. It is also shown that our method helps explain
how the decision and why the decision is made.
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