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ABSTRACT

Fixed-time synchronization (FTS) of delayed memristor-based neural networks (MNNs) with discontinuous
activations is studied in this paper. Both continuous and discontinuous activations are considered for MNNs. And
the mixed delays which are closer to reality are taken into the system. Besides, two kinds of control schemes are
proposed, including feedback and adaptive control strategies. Based on some lemmas, mathematical inequalities
and the designed controllers, a few synchronization criteria are acquired. Moreover, the upper bound of settling
time (ST) which is independent of the initial values is given. Finally, the feasibility of our theory is attested by
simulation examples.
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1 Introduction

Memristor is nonlinear resistance having memory function, which represents relationship
between magnetic flux and charge. Based on the connections between circuits, Chua proposed the
existence of it in 1971 [1]. The first physical memristor is made by Hewlett-Packard Laboratory
in 2008 [2]. Unlike ordinary resistors, memristors retain data after a power failure. At present,
there are two main applications of memristors: data storage and class brain calculation. Due to
the characteristics of small size, low power consumption and fast operation, memristor can be
combined with artificial neural networks(NNs) to produce MNNs with more diverse functions and
more complex structures. Research on MNNs or NNs have been going on, such as stability [3,4],
H∞ synchronization [5], FTS [6], Mittag-Leffler synchronization [7] and so on.

Due to the chaotic characteristics of MNNs, it appeared in many fields, such as image
protection [8] and random number generation [9]. Therefore, the study about synchronization
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of MNNs is particularly important. Exponential synchronization of MNNs with impulsive and
perturbations were put forward by [10], and given a impulsive controller. Li et al. [11] proposed
synchronization within finite-time of BAM MNNs and provided a switching control scheme. FTS
of MNNs with fractional order was realized in [12] by using a fractional sliding mode control
scheme with no singular terms.

In engineering practice, people always expect the system to realize synchronization as soon
as possible. Finite time synchronization attracted people’s attention because of its fast error
convergence rate and robustness [13,14]. Finite-time synchronization can make the error go to
zero for a short time. So many of research on finite-time synchronization. Hua et al. [15] used
delay-independent controller to settle synchronization of MNNs with inertial item in finite time
without using variable transformation while studing from MNNs themselves. Shi et al. [16] put
forward finite-time synchronization of Cohen-Grossberg MNNs and divide error into two states.
What needs to be noted is that finite-time synchronization is connected with initial value but it is
difficult to acquire for large or complex systems. So this is very limited for applications of finite-
time synchronization. While, the limitation was solved by FTS which proposed by [17]. Different
from finite-time synchronization, the ST of FTS is not connected with initial values, which greatly
improves the application range of FTS in complex dynamical networks [18] and MNNs. So more
and more scholars began to study the FTS of MNNs or NNs in recent years. Based on a new
proposed lemma, Li et al. [19] realized the fixed time synchronization problem of coupled NNs,
and simultaneously the discontinuity and parameters mismatch of the system were considered.
And Ren et al. [20] put forward the FTS of stochastic NNs and got the synchronization criteria.
Besides, many achievements about FTS of complex-valued and quaternion-valued MNNs or NNs
had also been made in [21,22].

The connection weights of MNNs are switchable, so it belongs to a switching system, which
is of great significance to the research of switching systems [23]. Meanwhile, it is known that
valid control tactics can make the synchronization faster, more stable and easier to meet the
needs of practical production applications. Sliding mode control is an effective control method
to suppress interference and ensure the stable operation of the nonlinear system [24]. Under
the sliding model control method, Xiao et al. [25] realized the FTS of NNs. In addition, with
the aid of event-triggered algorithm, Bao et al. [26] studied the synchronization of MNNs.
Adaptive control is a resultful control schemes [27,28], it has good robustness and has effective
suppression of external interference. Especially when the system has unknown parameters and
external disturbance, the adaptive control algorithm can track them, so as to ensure the stable
operation of the system. Time delay is universal for nonlinear systems. Especially in engineering
practice, when the system signal transmission volume is large, it will lead to channel congestion,
resulting in discrete time delay, and when there are parallel channels in the signal transmission
path, it will lead to distributed time delay. Time delay will affect the stability of the system and
hinder the synchronization of the system. In addition, systems with time delay have complex
chaotic characteristics and show complex dynamic behaviors, which are very worthy of study.
While some previous literatures [6,12,20,25,26] only considered the constant delay or discrete
delay but ignored the distributed delay. For NNs, the activation function realizes the nonlinear
transformation of data and solves some problems that the linear model cannot solve. Activation
functions are mainly divided into continuous and discontinuous types, but discontinuous activation
functions are seldom considered by researchers due to the complexity of analysis.

From above discussion, we find that few people have studied FTS of MNNs, especially
the case with mixed delays and discontinuous activation functions. Hence, inspired by above
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conditions, the adaptive FTS of delayed MNNs with discontinuous activations are studied in this
study. And our contributions are enumerated in following aspects. (1) Complex MNNs model with
mixed delay and discontinuous activations is considered. (2) A feedback control scheme and an
adaptive control algorithm are proposed for continuous and discontinuous activations, respectively,
and the FTS criterion is obtained. Besides, the results are extended to finite-time synchronization.
(3) The ST is not affected by the initial value of system and can be adjusted by the controller
and system parameters.

2 Model Formulations and Preliminaries

The drive system of MNNs is

ẋi (t)=−zixi (t)+
n∑

j=1
kij (xi (t))fj

(
xj (t)

)+ n∑
j=1

lij (xi (t))gj
(
xj (t−�(t))

)
+

n∑
j=1

mij (xi (t))
∫ t

t−w(t) fj
(
xj (s)

)
ds+ Ii.

(1)

where x (t) = (x1 (t) , ..., xn (t))T ∈ Rn, zi > 0 means rate for ith neuron returns to its idle state
and i, j = 1, 2, ..., n. kij (·) , lij (·) , mij (·) are connection weights. fj (·) and gj (·) are activation func-
tions with or without time delay respectively. �(t) delegates discrete time delay and 0 ≤ �(t) ≤
�1, 0 ≤ �̇ (t) ≤ �2 < 1. w (t) is distributed time delay and 0 ≤ w (t) ≤ w1, where �1,�2, w1
are constants. Ii (t) is external input vector. The starting condition of (1) is xi (s) = ϕi (s) ∈
C ([−τ , 0] , Rn) , τ= max {�1, w1} . And kij (xi (t)) = Pij

Ci
× signij, lij (xi (t)) = P′

ij
Ci

× signij, mij (xi (t)) =
P′′

ij
Ci

× signij where signij = 1 when i = j , signij = −1 when i �= j, and Ci denotes capacitor which

voltage is xi (t). We define the the memristors between fj
(
xj (t)

)
and xi (t), gj

(
xj (t−�(t))

)
and

xi (t) ,
∫ t

t−w(t) fj
(
xj (s)

)
ds and xi (t) are Qij, Q′

ij, Q′′
ij severally and which resistances are Pij, P′

ij, P′′
ij,

respectively.

There exist constants k′
ij, k′′

ij, l′ij, l′′ij, m′
ij, m′′

ij, such that

kij (xi (t))=
{

k′
ij, |xi (t)| ≤ Lj,

k′′
ij,|xi (t)|> Lj,

lij (xi (t))=
{

l′ij, |xi (t)| ≤ Lj,
l′′ij,|xi (t)|> Lj,

mij (xi (t))=
{

m′
ij, |xi (t)| ≤ Lj,

m′′
ij,|xi (t)|> Lj,

where K [A] denotes the convex closure of the sets A, co [ε1, ε2] is the convex closure generated
by real numbers ε1 and ε2, Lj indicates switching threshold and Lj > 0. Due to the solutions to
MNNs are in the sense of Filippov, so set-valued mappings and differential inclusions [29] are
used to deal with the discontinuity of MNNs.

Recur to set-valued mappings, it acquires

K
[
kij (xi (t))

]=
⎧⎪⎨
⎪⎩

k′
ij, |xi (t)| ≤ Lj,

co
{

k̄ij, k∗
ij

}
,|xi (t)| = Lj,

k′′
ij, |xi (t)|> Lj,
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K
[
lij (xi (t))

]=
⎧⎪⎨
⎪⎩

l′ij, |xi (t)| ≤ Lj,

co
{

l̄ij, l∗ij
}

,|xi (t)| = Lj,

l′′ij, |xi (t)|> Lj,

K
[
mij (xi (t))

]=
⎧⎪⎨
⎪⎩

m̄ij, |xi (t)| ≤ Lj,

co
{

m̄ij, m∗
ij

}
,|xi (t)| = Lj,

m̃ij, |xi (t)|> Lj,

where co delegates convex closure, we set k̄ij = max
{
k′

ij, k′′
ij
}

, k∗
ij = min

{
k′

ij, k′′
ij
}

, k̄ij =
max

{∣∣k′
ij
∣∣ , ∣∣k′′

ij
∣∣} , l̄ij = max

{
l′ij, l′′ij

}
, l∗ij = min

{
l′ij, l′′

}
, l̄ij = max

{∣∣l′ij∣∣ , ∣∣l′′ij∣∣} , m̄ij = max
{
m′

ij, m′′
ij
}

,

m∗
ij = min

{
m′

ij, m′′
ij
}

, m̄ij = max
{∣∣m′

ij
∣∣ , ∣∣m′′

ij
∣∣} .

If the activation functions are continuous, one can obtain

ẋi (t) ∈−zixi (t)+
n∑

j=1
K
[
kij (xi (t))

]
fj
(
xj (t)

)+ n∑
j=1

K
[
lij (xi (t))

]
gj
(
xj (t−�(t))

)
+

n∑
j=1

K
[
mij (xi (t))

] ∫ t
t−w(t) fj

(
xj (s)

)
ds+ Ii,

(2)

then we set k̃ij (xi (t)) ∈ K
[
kij (xi (t))

]
, l̃ij (xi (t)) ∈ K

[
lij (xi (t))

]
,

m̃ij (xi (t)) ∈ K
[
mij (xi (t))

]
, so (2) is rewritten to

ẋi (t)=−zixi (t)+
n∑

j=1
k̃ij (xi (t))fj

(
xj (t)

)+ n∑
j=1

l̃ij (xi (t))gj
(
xj (t−�(t))

)
+

n∑
j=1

m̃ij (xi (t))
∫ t

t−w(t) fj
(
xj (s)

)
ds+ Ii.

(3)

There also exist k̂ij (yi (t)) ∈ K
[
kij (yi (t))

]
, l̂ij (yi (t)) ∈ K

[
lij (yi (t))

]
, m̂ij (yi (t)) ∈ K

[
mij (yi (t))

]
for response system, such that

ẏi (t)=−ziyi (t)+
n∑

j=1
k̂ij (yi (t))fj

(
yj (t)

)+ n∑
j=1

l̂ij (yi (t))gj
(
yj (t−�(t))

)
+

n∑
j=1

m̂ij (yi (t))
∫ t

t−w(t) fj
(
yj (s)

)
ds+ Ii + ui (t) .

(4)

where the ui (t) will be introduced below and starting value of (4) is yi (s)= φi (s) ∈ C ([−τ , 0] , Rn) .

The error is ei (t)= yi (t)− xi (t) , so we have

ėi (t)=−ziei (t)+
n∑

j=1

F̂ ij (t)+
n∑

j=1

Ĝij (t)+
n∑

j=1

F̃ ij (t), (5)

where F̂ ij (t)= k̂ij (yi (t)) fj
(
yj (t)

)− k̃ij (xi (t)) fj
(
xj (t)

)
, Ĝij (t)= l̂ij (yi (t))gj

(
yj (t−�(t))

)− l̃ij (xi (t))

gj
(
xj (t−�(t))

)
, F̃ ij (t)= m̂ij (yi (t))

∫ t
t−w(t) fj

(
yj (s)

)− m̃ij (xi (t))
∫ t

t−w(t) fj
(
xj (s)

)
.
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If activation functions are discontinuous, we set
�

f j
(
xj
) ∈ K

[
fj
(
xj
)]

,
�
gj
(
xj
) ∈ K

[
gj
(
xj
)]

,
�

f j
(
yj
) ∈

K
[
fj
(
yj
)]

,
�
gj
(
yj
) ∈ K

[
gj
(
yj
)]

.

The error is calculated as

ėi (t)=−ziei (t)+
n∑

j=1

F∗
ij (t)+

n∑
j=1

G∗
ij (t)+

n∑
j=1

F∗∗
ij (t), (6)

where F∗
ij (t) = k̂ij (yi (t))

�

f j
(
yj (t)

) − k̃ij (xi (t))
�

f j
(
xj (t)

)
, G∗

ij (t) = l̂ij (yi (t))
�
gj
(
yj (t−�(t))

) −
l̃ij (xi (t))
�
gj
(
xj (t−�(t))

)
, F∗∗

ij (t)= m̂ij (yi (t))
∫ t

t−w(t)

�

f j
(
yj (s)

)
ds− m̃ij (xi (t))

∫ t
t−w(t)

�

f j
(
xj (s)

)
ds.

Definition 1. [30] For any original value, the FTS of MNNs will be attained if the ST function
T (e0 (s)) satifies

lim
t→T(e0(s))

‖e (t)‖ = 0;‖e (t)‖ = 0,∀t ≥ T (e0 (s)) ;

T (e0 (s))≤ Tmax.

where Tmax is a constant.

Lemma 1. [31] (1) and (4) will attain FTS if a continuous radically unbounded function V (·):
Rn → R+ ∪ {0} satifies
(i)V (c)= 0 ⇔ c = 0,

(ii)V̇ (c (t))≤−d1Vr1 (c (t))− d2Vr2 (c (t)) for any solution c (t).
where d1 > 0, d2 > 0, 0 < r1 < 1, r2 > 1. And the ST is calculated as

T (c0)≤ Tmax = 1
d1 (1− r1)

+ 1
d2 (r2 − 1)

,∀c0 ∈ Rn.

Lemma 2. [32] There are some inequalities as follows:

n∑
i=1

pϑ1
i ≥

(
n∑

i=1

pi

)ϑ1

,
n∑

i=1

pϑ2
i ≥ n1−ϑ2

(
n∑

i=1

pi

)ϑ2

,

where pi > 0, 0 < ϑ1 ≤ 1,ϑ2 > 1.

3 Main Results

The FTS of MNNs with continuous and discontinuous activations will be studied in this
section.
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3.1 The Continuous Activations for FTS of MNNs

Lemma 3. [33] If ∀k̃ij (x) ∈ K
[
kij (x)

]
,∀l̃ij (x) ∈ K

[
lij (x)

]
, ∀k̂ij (y) ∈ K

[
kij (y)

]
,∀l̂ij (y) ∈

K
[
kij (y)

]
, the following inequalities are obtained∣∣∣k̂ij (y) fj (y)− k̃ij (x) fj (x)

∣∣∣≤←
kijhj |y− x| ,

∣∣∣l̂ij (y)gj (y (t−�(t)))− l̃ij (x)gj (x (t−�(t)))
∣∣∣≤←

l ijρj |y (t−�(t))− x (t−�(t))| .

where hj,ρj are constants.

To realize FTS, control algorithm is given as

ui (t)=−μ1iei (t)− sign (ei (t))

⎛
⎝μ2i +μ3i|ei (t)|α +μ4i|ei (t)|β +

n∑
j=1

μ5i
∣∣ej (t−�(t))

∣∣
⎞
⎠ , (7)

where μ1i to μ5i are constants, sign (·) is standard sign function and 0 < α < 1,β > 1.

Theorem 1. Under the above assumptions and control scheme (7), the FTS of (1) and (4) will
be carried out if the following conditions hold⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ1i≥
n∑

j=1

(←
k ij+

←
k ijh2

j
2

)
− zi,

μ2i≥ 2
n∑

j=1

←
mijw1f̄ j,

μ5i≥ max
1≤j≤n

(←
l ijρj

)
.

(8)

and it can obtain

T1 ≤ 2
q1 (1−α)

+ 2
(β − 1)q2

, (9)

where q1 = min
1≤i≤n

{μ3i}2
α+1

2 , q2 = min
1≤i≤n

{μ4i}n
1−β

2 2
β+1

2 .

Proof. Construct Lyapunov function as

V (t)= 1
2

n∑
i=1

eT (t) e (t). (10)

Along the error system (5), the derivative of (10) can be obtained as

V̇ (t)=
n∑

i=1
eT (t) [−zi ei (t)+

n∑
j=1

F̂ ij (t)+
n∑

j=1
Ĝij (t)+

n∑
j=1

F̃ ij (t)

−sign (ei (t)) (μ1i +μ2i |ei (t)| +μ3i|ei (t)|α +μ4i|ei (t)|β +
n∑

j=1
μ5i

∣∣ej (t−�(t))
∣∣)] (11)
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By means of Assumption 1 and Lemma 3, we yield

n∑
i=1

eT (t)
n∑

j=1
F̂ ij (t)≤

n∑
i=1

|ei (t)|
n∑

j=1

←
kijhj

∣∣ej (t)
∣∣

≤
n∑

i=1

n∑
j=1

←
k ij|ei(t)|2

2 +
n∑

i=1

n∑
j=1

←
k ijh2

j |ej(t)|2
2 ,

(12)

and
n∑

i=1
eT (t)

n∑
j=1

Ĝij (t)≤
n∑

i=1
|ei (t)|

n∑
j=1

←
l ijρj

∣∣ej (t−�(t))
∣∣

≤
n∑

i=1

n∑
j=1

←
l ijρj |ei (t)|

∣∣ej (t−�(t))
∣∣, (13)

One can also get

n∑
i=1

eT (t)
n∑

j=1

F̃ ij (t)≤ 2
n∑

i=1

n∑
j=1

←
mijw1f̄ j |ei (t)|. (14)

Substitute (12)–(14) into (11), we have

V̇ (t)≤
n∑

j=1
{[−zi +

n∑
j=1

←
k ij+

←
k ijh2

j
2 − μ1i] e2

i (t)

+ (2
n∑

j=1

←
mijw1f̄ j − μ2i) |ei (t)| +

n∑
j=1

(←
l ijρj −μ5i

)
|ei (t)|

∣∣ej (t−�(t))
∣∣

−μ3i|ei (t)|α+1 − μ4i|ei (t)|β+1} .

(15)

According to Throrem 1 and Lemma 2, it has

V̇ (t)≤−
n∑

i=1
μ3i|ei (t)|α+1 −

n∑
i=1

μ4i|ei (t)|β+1

≤− min
1≤i≤n

{μ3i}2
α+1

2 (V (t))
α+1

2 − min
1≤i≤n

{μ4i}2
β+1

2 n
1−β

2 (V (t))
β+1

2

=−q1(V (t))
α+1

2 − q2(V (t))
β+1

2 ,

(16)

where q1 = min
1≤i≤n

{μ3i}2
α+1

2 , q2 = min
1≤i≤n

{μ4i}n
1−β

2 2
β+1

2 , and it yields

T1 ≤ 2
q1 (1−α)

+ 2
(β − 1)q2

. (17)

Remark 1. Especially, when α = 1− 1
2δ

,β = 1+ 1
2δ

, the ST is expressed as

T2 ≤ Tmax = πδ√
q3q4n

1−β
2 2

α+β+2
2

, (18)

where q3 = min
1≤i≤n

{μ3i} , q4 = min
1≤i≤n

{μ4i} and δ > 1.
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Corollary 1. Under the below control algorithm, (1) and (4) can reach to finite-time synchro-
nization when Assumption 1 and following conditions hold:

ui (t)=−κ1iei (t)− sign (ei (t))

⎛
⎝κ2i + κ3i|ei (t)|α̃ +

n∑
j=1

κ4i
∣∣ej (t−�(t))

∣∣
⎞
⎠ , (19)

and⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

κ1i≥
n∑

j=1

(←
k ij+

←
k ijh2

j
2

)
− zi,

κ2i≥ 2
n∑

j=1

←
mijw1f̄ j,

κ4i≥ max
1≤j≤n

(←
l ijρj

)
,

(20)

where κ1i to κ4i are constants and 0 < α̃ < 1, and it can obtain

T3 = (V (0))
1−α̃

2

min
1≤i≤n

{κ3i}2
α̃+1

2 1−α̃
2

. (21)

Remark 2. Unlike the exponential or asymptotic [7–9,27,28] which time to synchronization is
long or infinite, the FTS has faster convergence. In addition, the finite-time synchronization[14,
26,30] has a fast convergence rate but relies on initial values of the system greatly. However, the
starting values of some large and complex systems are hard to know, but FTS overcomes this
problem and it can be used widely.

3.2 The Discontinuous Activations for FTS of MNNs

Assumption 1. fv, gv : R → R are continuous apart from a countable set of ioslate points {θε} .
The left limit fv

{
θ−ε
}

and right limit fv
{
θ+ε
}

of fv exists. Meanwhile, the left limit gv
{
θ−ε
}

and

right limit gv
{
θ+ε
}

of gv exists, and the discontinuous activations fv

(
λ̃
)

, gv

(
λ̃
)

saify

K
[
fv

(
λ̃
)]

=
[
min

{
fv

(
λ̃−
)

, fv

(
λ̃+
)}

, max
{

fv

(
λ̃−
)

, fv

(
λ̃+
)}]

,

K
[
gv

(
λ̃
)]

=
[
min

{
gv

(
λ̃−
)

, gv

(
λ̃+
)}

, max
{

gv

(
λ̃−
)

, gv

(
λ̃+
)}]

.

Assumption 2. There are constants γv,γ ′
v,ςv,ς ′

v, such that

sup
∣∣∣�f v (χ̃)−�

f v

(
λ̃
)∣∣∣≤ γv

∣∣∣χ̃ − λ̃

∣∣∣+ ςv,

sup
∣∣∣�gv (χ̃)−�

gv

(
λ̃
)∣∣∣≤ γ ′

v

∣∣∣χ̃ − λ̃

∣∣∣+ ς ′
v,

where
�

f v

(
λ̃
)
∈ K

[
fv

(
λ̃
)]

,
�

f v (χ̃) ∈ K [fv (χ̃)] ,
�
gv

(
λ̃
)
∈ K

[
gv

(
λ̃
)]

,
�
gv (χ̃) ∈ K [gv (χ̃)] .
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According to (6), one can get

ėi (t)=−ziei (t)+
n∑

j=1
k̂ij (yi (t))

[
�

f j
(
yj (t)

)−�

f j
(
xj (t)

)]

+
n∑

j=1

[
k̂ij (yi (t))− k̃ij (xi (t))

]
�

f j
(
xj (t)

)
+

n∑
j=1

l̂ij (yi (t))
[

�
gj
(
yj (t−�(t))

)−�
gj
(
xj (t−�(t))

)]

+
n∑

j=1

[
l̂ij (yi (t))− l̃ij (xi (t))

]
�
gj
(
xj (t−�(t))

)
+

n∑
j=1

[
m̂ij (yi (t))

∫ t
t−w(t)

�

f j
(
yj (s)

)
ds− m̃ij (xi (t))

∫ t
t−w(t)

�

f j
(
xj (s)

)
ds]+ ui (t) .

(22)

And the nether control adaptive algorithm is designed to ensure the FTS of MNNs.

ui (t)=−ξ1iei (t)− sign (ei (t))

⎛
⎝ξ2i + ξ3i|ei (t)|α + ξ4i|ei (t)|β +

n∑
j=1

ξ5i
∣∣ej (t−�(t))

∣∣+ ξ6i (t) |ei (t)|
⎞
⎠ ,

(23)

and adaptive law is

ξ̇6i (t)= eT
i (t) ei (t)− ξ3i(ξ6i (t)−�1)

α − ξ4i(ξ6i (t)−�1)
β , (24)

where ξ6i (t) is adaptive gain, ξ1i to ξ5i and �1 are constants.

Theorem 2. FTS with discontinuous activations will be attained under Assumptions 3 and 4
and control (24) if following conditions are met.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ1i ≥
n∑

j=1

(←
k ij+

←
k ijγ

2
j

2

)
− zi −�1,

ξ2i ≥
n∑

j=1

[←
kijςj +

(
k̄ij − k∗

ij

)
f̄ j +

←
l ijς

′
j +

(
l̄ij − l∗ij

)
ḡj + 2

←
mijw1 f̄ j

]
,

ξ5i ≥ max
1≤j≤n

(←
l ijγ

′
j

)
.

(25)

Proof. Choose Lyapunov function as

V (t)= 1
2

(
n∑

i=1

eT
i (t) ei (t)+

n∑
i=1

(ξ6i (t)−�1)
2

)
. (26)
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Take derivative of V (t) along (25), it acquires

V̇ (t)=
n∑

i=1
eT

i (t) ėi (t)+
n∑

i=1
(ξ6i (t)−�1) ξ̇6i (t)

=
n∑

i=1
eT

i (t) {−zi ei (t)+
n∑

j=1
k̂ij (yi (t))

[
�

f j
(
yj (t)

)−�

f j
(
xj (t)

)]

+
n∑

j=1

[
k̂ij (yi (t))− k̃ij (xi (t))

]
�

f j
(
xj (t)

)
+

n∑
j=1

l̂ij (yi (t))
[

�
gj
(
yj (t−�(t))

)−�
gj
(
xj (t−�(t))

)]

+
n∑

j=1

[
l̂ij (yi (t))− l̃ij (xi (t))

]
�
gj
(
xj (t−�(t))

)
+

n∑
j=1

[
m̂ij (yi (t))

∫ t
t−w(t)

�

f j
(
yj (s)

)
ds− m̃ij (xi (t))

∫ t
t−w(t)

�

f j
(
xj (s)

)
ds]

+ ui (t)}+
n∑

i=1
(ξ6i (t)−�1)

(
eT

i (t) ei (t)− ξ3i(ξ6i (t)−�1)
α − ξ4i(ξ6i (t)−�1)

β
)

(27)

With Assumption 3, it gets

n∑
i=1

eT
i (t)

n∑
j=1

k̂ij (yi (t))
[

�

f j
(
yj (t)

)−�

f j
(
xj (t)

)]

≤
n∑

i=1

n∑
j=1

←
kij
(
γj
∣∣ej (t)

∣∣+ ςj
) |ei (t)|

≤
n∑

i=1

n∑
j=1

(←
k ij |ei(t)|2+

←
k ijγ

2
j |ei(t)|2

2 +←
kijςj |ei (t)|

)
,

(28)

and
n∑

i=1
eT

i (t)
n∑

j=1
l̂ij (yi (t))

[
�
gj
(
yj (t−�(t))

)−�
gj
(
xj (t−�(t))

)]

≤
n∑

i=1

n∑
j=1

←
l ij
(
γ ′

j

∣∣ej (t−�(t))
∣∣+ ς ′

j
) |ei (t)|

=
n∑

i=1

n∑
j=1

(←
l ijγ

′
j |ei (t)|

∣∣ej (t−�(t))
∣∣+←

l ijς
′ |ei (t)|) .

(29)

Besides, one can obtain

n∑
i=1

eT
i (t)

n∑
j=1

[
k̂ij (yi (t))− k̃ij (xi (t))

]
�

f j
(
xj (t)

)
≤

n∑
i=1

n∑
j=1

[
k̄ij − k∗

ij

]
f̄ j |ei (t)|,

(30)
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n∑
i=1

eT
i (t)

n∑
j=1

[
l̂ij (yi (t))− l̃ij (xi (t))

]
�
gj
(
xj (t−�(t))

)
≤

n∑
i=1

n∑
j=1

[
l̄ij − l∗ij

]
ḡj |ei (t)|

(31)

and
n∑

i=1
eT

i (t)
n∑

j=1

[
m̂ij (yi (t))

∫ t
t−w(t) fj

(
yj (s)

)
ds− m̃ij (xi (t))

∫ t
t−w(t) fj

(
xj (s)

)
ds]

≤ 2
n∑

i=1

n∑
j=1

←
mijw1f̄ j |ei (t)|

(32)

So it yields

V̇ (t)≤
n∑

i=1

{[
n∑

j=1

(←
kijςj +

(
k̄ij − k∗

ij

)
f̄ j +

←
l ijς

′
j +

(
l̄ij − l∗ij

)
ḡj + 2

←
mijw1 f̄ j

)
− ξ2i] |ei (t)|

+ [−zi +
n∑

j=1

(←
k ij+

←
k ijγ

2
j

2

)
−�1 − ξ1i] |ei (t)|2

+
n∑

j=1

(←
l ijγ

′
j − ξ5i

)
|ei (t)|

∣∣ej (t−�(t))
∣∣− ξ3i|ei (t)|α+1 − ξ4i|ei (t)|β+1

−ξ6i (t) |ei (t)|2 +�1|ei (t)|2 − ξ3i(ξ6i (t)−�1)
α+1 − ξ4i(ξ6i (t)−�1)

β+1

+ (ξ6i (t)−�1) |ei (t)|2
}

(33)

According to Theorem 2, it has

V̇ (t)≤−
n∑

i=1
ξ3i|ei (t)|α+1 −

n∑
i=1

ξ4i|ei (t)|β+1

−
n∑

i=1
ξ3i(ξ6i (t)−�1)

α+1 −
n∑

i=1
ξ4i(ξ6i (t)−�1)

β+1

≤− min
1≤i≤n

{ξ3i}
(

n∑
i=1

|ei (t)|2 +
n∑

i=1
(ξ6i (t)−�1)

2
) α+1

2

− min
1≤i≤n

{ξ4i}n
1−β

2

(
n∑

i=1
|ei (t)|2 +

n∑
i=1

(ξ6i (t)−�1)
2
) β+1

2

=−q5(V (t))
α+1

2 − q6(V (t))
β+1

2

, (34)

where q5 = min
1≤i≤n

{ξ3i}2
α+1

2 , q6 = min
1≤i≤n

{ξ4i}n
1−β

2 2
β+1

2 , and we can get

T4 ≤ Tmax = 2
q5 (1−α)

+ 2
q6 (β − 1)

. (35)
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Remark 3. If α = 1− 1
2μ

,β = 1+ 1
2μ

, it acquires

T5 ≤ Tmax = πμ√
q7q8n

1−β
2 2

α+β+2
2

, (36)

where q7 = min
1≤i≤n

{ξ3i} , q8 = min
1≤i≤n

{ξ4i} and μ > 1.

Corollary 2. Under Assumptions 3 and 4, (1) and (4) attain finite-time synchronization with
control scheme (37) if following conditions hold

ui (t)=−b1iei (t)− sign (ei (t))

⎛
⎝b2i + b3i|ei (t)|α +

n∑
j=1

b4i
∣∣ej (t−�(t))

∣∣+ ξ6i (t) |ei (t)|
⎞
⎠ , (37)

and adaptive law is

ξ̇6i (t)= eT
i (t) ei (t)− b3i(ξ6i (t)−�1)

α, (38)

and⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1i ≥
n∑

j=1

(←
k ij+

←
k ijγ

2
j

2

)
− zi −�1,

b2i ≥
n∑

j=1

[←
kijςj +

(
k̄ij − k∗

ij

)
f̄ j +

←
l ijς

′
j +

(
l̄ij − l∗ij

)
ḡj + 2

←
mijw1 f̄ j

]
,

b4i ≥ max
1≤j≤n

(←
l ijγ

′
j

)
,

(39)

where b1i to b4i are positive constants and 0 < α < 1 and it acquires

T6 = (V (0))
1−α

2

min
1≤i≤n

{b3i}2
α+1

2 1−α
2

. (40)

Remark 4. Compared with continuous activation functions [20,25], our study considers the
more complicated discontinuous activation functions and mixed delays. Besides, it is known that
the gain of feedback control is always larger than the practical application, so the adaptive
control are used for FTS in this subjection. The adaptive control has robustness, anti-interference
and good suppression effect on external interference, even in the case of some unknown system
parameters can also achieve good control effect.

Remark 5. The synchronization criteria of FTS and the upper bound of ST are obtained in
our study. Besides, we also derive the relevant criteria for finite-time synchronization, which is
more comprehensive than the paper that only studies FTS or finite-time synchronization. From
(17) and (35), it’s pretty obvious that ST does not rely on starting values and can be adjusted by
changing controller paramaters: μ3i,μ4i and ξ3i, ξ4i.
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4 Numerical Examples

Examples are offered in this section verifing validity and superiority of above theoretical
derivation.

Example 1. This example to verify the FTS of MNNs with continuous activations.

Consider drive system of MNNs with two neurons as

ẋi (t)=−zixi (t)+
n∑

j=1
kij (xi (t))fj

(
xj (t)

)+ n∑
j=1

lij (xi (t))gj
(
xj (t−�(t))

)
+

n∑
j=1

mij (xi (t))
∫ t

t−w(t) fj
(
xj (s)

)
ds+ Ii.

(41)

The weighted matrices are

K1=
[

1.1 −0.4
0.8 −0.7

]
, K2=

[
1 −0.5
1 −0.6

]
,

L1=
[−0.5 0.3

0.9 −1.6

]
, L2=

[−0.8 0.4
0.7 −1.7

]
,

M1=
[−1.3 0.2
−0.6 0.5

]
, M2=

[−1.5 0.4
−0.4 0.8

]
.

ẏi (t)=−ziyi (t)+
n∑

j=1
kij (yi (t))fj

(
yj (t)

)+ n∑
j=1

lij (yi (t))gj
(
yj (t−�(t))

)
+

n∑
j=1

mij (yi (t))
∫ t

t−w(t) fj
(
yj (s)

)
ds+ Ii.

(42)

where i, j = 1, 2, the switching threshold Lj = 1. The delays are set as �(t)= sin (t) and w (t)= et

et+1 .

The starting values are select as xi (t)= [−4,−2]T , yi (t)= [3, 2]T . And the fj (·)= gj (.)= tanh (·) .

To attain FTS, the parameters are selected as ρ1 = ρ2 = 1, h1 = h2 = 1, z1 = z2 = 1,μ11 =
3.40,μ12 = 1.60,μ21 = 0.20,μ22 = 1.60,μ31 = 1.2,μ32 = 1,μ41 = 1.6,μ42 = 1.2,μ51 = 1.5,μ52 =
0.8,α = 0.5,β = 1.5, f̄ j = ḡj = 1, w1 = 1.

The chaotic trajectory with control is showen in Fig. 1. Under the action of the controller,
the chaotic orbits of the driving system y1 (t) , y2 (t) finally converge with those of the response
system x1 (t) , x2 (t), that is, the synchronization is realized. The curves of states and errors with
control algorithm are exhibited in Figs. 2 to 4. The synchronization curves of states x (t) and
y (t) are shown in Figs. 2 and 3. It can be seen from the figures that the synchronization of the
two states is realized within a finite-time under the action of the control scheme. Fig. 4 illustrates
that the errors e1 (t) and e2 (t) approach 0 under the action of the controller, i.e., finite-time
synchronization is achieved.
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Figure 1: The phase plot of (42) with control
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Figure 2: The state diagrams with control
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Figure 3: The state diagrams with control
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Figure 4: The error graphs with control

Example 2. This example to illustrate the FTS of MNNs with discontinuous activations.

The initial values are set as xi (t) = [−5,−3]T , yi (t) = [5, 4]T . And the fj (·) = gj (·) =
0.8 tanh (·) + 0.04sign (·) . The switching threshold and mixed delays are same to example 1.
If the controller are added into the error system and the relevant parameters are selected as
γ1 = γ2 = γ ′

1 = γ ′
2 = 0.9,ς1 = ς2 = ς ′

1 = ς ′
2 = 0.03,�1 = 2, ξ11 = 3.8670, ξ12 = 3.0690, ξ21 =

−1.4615, ξ22 =−1.4615, ξ31 = 1.5, ξ32 = 1.7, ξ41 = 2, ξ42 = 2.4, f̄ j = 0.84, and the system can achieve
synchronization. The corresponding synchronous plots are shown in Figs. 10 to 14.

Fig. 5 shows the chaotic trajectory of the driving system, and Fig. 6 shows the chaotic
trajectory of the response system without the action of the controller. It can be found that the
curves in the two pictures are different. The chaos diagram of the response system under the
action of the controller can be seen in Fig. 10. It can be found that Fig. 10 is consistent with
Fig. 5.



CMES, 2023, vol.134, no.1 235

−15 −10 −5 0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

x1(t)

x 2(t
)

Figure 5: The phase plot of MNNs (41)
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Figure 6: The phase plot of MNNs (42)
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Figure 7: The state graphs without control
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Figure 8: The state graphs without control
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Figure 9: The error graphs without control
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Figure 10: The phase plot of (42) with control
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Figs. 7 to 9 show the state curves and error curves without the action of the controller. It
can be found that the curves are not synchronized. Under the action of the adaptive control
algorithm, Figs. 11 and 12 show that the state trajectories of the drive and response system realize
finite-time synchronization, and Fig. 13 shows that the system errors eventually approache to zero.
In addition, the evolution curves of adaptive gains for the proposed adaptive control scheme are
shown in Fig. 14.
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Figure 11: The state graphs with control
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Figure 12: The state graphs with control
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Figure 13: The error graphs with control
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Figure 14: The evolutions of adaptive gain

5 Conclusions

The FTS of delayed MNNs with two kinds of activations are discussed. A feedback con-
trol algorithm is given for continuous activations and an adaptive control scheme is given for
discontinuous activations. Besides, the Filippov theory is used to solove the noncontinuity of
MNNs and obtain the synchronization criteria. In addition, through formula derivation, we also
draw the conclusion of finite-time synchronization under the same model, so our results are more
comprehensive. Finally, two simulation results to prove the feasibility of theoretical derivation.
Compared with integer-order MNNs, fractional-order MNNs have more complex dynamic behav-
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ior and show stronger chaos. Therefore, the synchronization of fractional-order MNNs are our
research direction in the future.
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