
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2022.020819

ARTICLE

An Efficient Differential Evolution for Truss Sizing Optimization Using
AdaBoost Classifier

Tran-Hieu Nguyen* and Anh-Tuan Vu

Hanoi University of Civil Engineering, Hanoi, 100000, Vietnam

*Corresponding Author: Tran-Hieu Nguyen. Email: hieunt2@huce.edu.vn

Received: 14 December 2021 Accepted: 25 February 2022

ABSTRACT

Design constraints verification is the most computationally expensive task in evolutionary structural optimization
due to a large number of structural analyses that must be conducted. Building a surrogate model to approximate the
behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem. However,
most existing surrogate models have been designed based on regression techniques. This paper proposes a novel
method, called CaDE, which adopts a machine learning classification technique for enhancing the performance
of the Differential Evolution (DE) optimization. The proposed method is separated into two stages. During the
first optimization stage, the original DE is implemented as usual, but all individuals produced in this phase are
stored as inputs of the training data. Based on design constraints verification, these individuals are labeled as
“safe” or “unsafe” and their labels are saved as outputs of the training data. When collecting enough data, an
AdaBoost model is trained to evaluate the safety state of structures. This model is then used in the second stage to
preliminarily assess new individuals, and unpromising ones are rejected without checking design constraints. This
method reduces unnecessary structural analyses, thereby shortens the optimization process. Five benchmark truss
sizing optimization problems are solved using the proposed method to demonstrate its effectiveness. The obtained
results show that the CaDE finds good optimal designs with less structural analyses in comparison with the original
DE and four other DE variants. The reduction rate of five examples ranges from 18 to over 50%. Moreover, the
proposed method is applied to a real-size transmission tower design problem to exhibit its applicability in practice.

KEYWORDS
Structural optimization; machine learning; surrogate model; differential evolution; AdaBoost classifier

1 Introduction

Nowadays, global competition has posed a big challenge for industrial companies to offer quality
products at lower prices. The situation is similar for the field of construction where the contractors
are frequently pressured to reduce costs while maintaining high standards. In this case, optimizing
the weight of structures is seen as an effective strategy to gain a competitive advantage. Traditionally,
the structure is often designed manually following the “trial-and-error” method. The final structural
solution received from this way is deeply influenced by the designers’ experience and intuition.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2022.020819
mailto:hieunt2@huce.edu.vn

430 CMES, 2023, vol.134, no.1

Therefore, in order to help the designers find the best solution, the optimization algorithms were
applied to the design process and have been constantly developed.

Generally, optimization algorithms are categorized into two groups: gradient-based group and
metaheuristic group. The gradient-based optimization finds the minimum by going in the direction
opposite sign of the derivative of the function. Hence, the speed of convergence is seriously influenced
by the starting point, and the gradient-based optimization may fall to the local minimum. Additionally,
the function is sometimes difficult or impossible to calculate the derivative. Contrary to gradient-based
methods, metaheuristics do not require the calculation of derivative value. Instead, these algorithms
use the randomization principle to find the optimum. By searching for a large set of solutions spreading
over the design space, metaheuristics can easily escape a local optimum and eventually reach a global
optimum. Because of their advantages like easy implementation as well as robustness, metaheuristics
are increasingly applied to civil engineering problems. Some outstanding algorithms that are widely
used in structural optimization can be listed here such as Genetic Algorithm (GA) [1,2], Evolution
Strategies (ES) [3,4], Differential Evolution (DE) [5,6], Particle Swarm Optimization (PSO) [7,8]. Some
recently proposed algorithms have shown competitive performance, for example, Artificial Bee Colony
(ABC) [9], Harmony Search (HS) [10,11], Teaching-Learning-Based Optimization (TLBO) [12,13],
Colliding Bodies Optimization (CBO) [14,15].

Despite many advantages, metaheuristics have one common drawback of requiring a large number
of fitness evaluations. It should be highlighted that for structural optimization problems, the objective
function can be quickly determined but the computation of constraints is very costly due to involving
the structural analysis. Conducting a high number of structural analyses is the most time-consuming
task when optimizing structures. Therefore, reducing the number of structural analyses becomes an
important goal. To overcome this challenge, many efforts have been made to improve the performance
of existing algorithms [16–19]. Besides, using surrogate models instead of computationally expensive
structural analyses is a potential solution [20–28]. In recent decades, due to the fast growth of Artificial
Intelligence (AI), especially Machine Learning (ML), the topic regarding ML-based surrogate-assisted
metaheuristic algorithms has attracted interest from researchers.

Based on the literature, there are several strategies for managing surrogate models. The most
straightforward way is to build surrogate models based on the data obtained from the original
fitness evaluations and the whole models will be used during the optimization process. Since 1997,
Papadrakakis et al. [20] employed feed-forward neural networks (NNs) to predict the response of
structures. These NNs were combined with the ES algorithm for optimizing shapes and sections of
structures. To cope with the error of NNs, a correction technique was proposed, in which the allowable
constraint values were adjusted proportionally to the maximum error for the testing dataset. The
research was then extended to large-scale 3D roof trusses [21]. Similarly, structural analyses were
replaced by NNs during the GA-based optimization process [22]. In more detail, three kinds of NN
including radial basis function (RBF) network, generalized regression (GR) network, and counter-
propagation (CP) network were used for optimizing 25-bar truss structure as well as 1300-bar dome
structure. The obtained results showed that the RBF networks outperformed the other two networks.
In 2019, Taheri et al. [23] combined the RBF neural networks and the ABC algorithm for solving the
size, shape, and topology optimization problems of steel lattice towers. Next, the adaptive fuzzy neural
inference system (ANFIS) network is used instead of structural analyses carried out by MSTOWER
software when optimizing transmission towers [24]. Nguyen et al. [25] utilized two deep NNs separately
to estimate the stresses and displacements when optimizing truss structures. Recently, Mai et al. [26]
also used deep NNs to reduce the computation cost of the design optimization of geometrically

CMES, 2023, vol.134, no.1 431

nonlinear trusses. This strategy has been proven to be time-effective but the designs were not the true
optimal designs due to the inaccuracy of surrogate models.

To avoid falling a false optimum, both the exact functions and the approximate functions are
used simultaneously. For example, in [27], the combination of NN and GA was adapted to optimize
transmission towers based on this strategy. The optimization process employed in this study comprises
two stages: in the first stage, the RBF networks were used as structural analyzers until the stopping
criterion and in the second stage, the exact structural analyses were conducted. Chen et al. [28]
proposed a hybrid approach, in which the near-optimal point was located by the ES algorithm with the
help of NN-based surrogate models, and the sequential quadratic programming algorithm was then
used to find the exact optimal point.

These existing studies have been used a similar approach, in which the surrogate models have been
constructed by regression techniques with the aim of predicting the degree of constraint violation of
candidates. While this approach is very intuitive and has been successfully applied in a lot of studies,
this is not the only one. An alternative approach is to use the classification technique to build surrogate
models. In the literature, the classification-based surrogate models have been successfully applied to
solve optimization problems. For instance, Kramer et al. [29] used a classification model for predicting
the feasibility of the solutions. However, a feasible solution can be classified as an infeasible solution
due to the poor quality model, leading to the rejection of potential solutions. Therefore, the constraint
boundary is shifted to the infeasible region by a small distance to limit this error. Another study [30]
proposed a probability which is called the influence coefficient to prevent the misclassification of the
surrogate model. In 2018, Wang et al. [31] introduced a technique in which the boundary is adjusted
to decrease the possibility of classifying feasible solutions to be infeasible.

Although classification techniques have been used previously, the proposed method in the present
work is different. Instead of using an additional parameter as in former works, this study employs
a classification surrogate model in conjunction with the direct comparison of the objective function
values. In detail, a classifier will be built to identify whether the structural solution satisfies the design
constraints or not. When optimizing the weight of trusses, if a new solution is predicted to violate the
design constraints and its weight is heavier than that of the parent solution, it will be discarded without
conducting structural analysis. In this way, some unnecessary structural analyses will be reduced and
consequently, the computational time will be shortened.

The classification technique used in this study is Adaptive Boosting (as known as AdaBoost)
developed by Freund et al. [32]. The AdaBoost classifier is combined with the DE algorithm to form
an efficient optimizer called CaDE. AdaBoost is selected because it has been proven as a powerful
algorithm for the task of classifying the structural safety of trusses [33]. In addition, the choice of
the DE algorithm is motivated by its simplicity and robustness. The proposed method CaDE is first
examined for the weight optimization of truss structures.

The remainder of this paper is arranged as follows. A brief introduction of the DE algorithm and
the AdaBoost classifier are given in Section 2. The truss sizing optimization is presented in Section 3.1.
Next, the detail of the proposed method CaDE is described in Section 3.2. Computational experiments
are conducted in Section 4, in which, six benchmark trusses are optimized according to the proposed
method to show its efficiency. In addition, a real-size transmission tower is also designed using the
proposed method to exhibit its applicability in practice. Finally, Section 5 concludes this paper.

432 CMES, 2023, vol.134, no.1

2 Background Information
2.1 Differential Evolution Algorithm

Differential Evolution is a metaheuristic algorithm that was firstly introduced by Storn et al. [34] in
1995. Thanks to its simplicity, this algorithm is widely applied to many fields such as communication,
transportation, aerospace, civil engineering, etc. Since the first introduction, DE has been taken
a top rank in many competitions relating to evolutionary computation [35,36]. Particularly, some
studies that compare the performance of metaheuristic algorithms in structural optimization have
been conducted [37]. The results show that DE outperforms the remaining algorithms.

DE is designed based on the natural evolutionary mechanism. According to the Darwinian theory,
the main driving forces of evolution are mutation and natural selection. Similarly, DE consists of four
basic steps as shown in Fig. 1, in which the initialization step is conducted one time at the first of the
optimization process while three remaining steps are repeated till a stopping criterion is satisfied.

Initialization Mutation Crossover Selection
Stopping
Criterion

N

StopY

Figure 1: Main steps of differential evolution

The optimization process begins with an initialization of a population pop0 containing NP
individuals. Each individual representing a candidate of the optimization problem is a D-dimensional
vector:

x(0)

i = {
x(0)

i,1 , x(0)

i,2 , . . . , x(0)

i,D

}
(1)

In order to find the global optimum, the initial population should be spread over the search space
as much as possible. The most widely used method for generating the initial population is to use the
uniform distribution. In detail, the jth component of the ith vector can be initialized based on this
formula:

x(0)

i,j = xmin
j + randi,j[0, 1]

(
xmax

j − xmin
j

)
(2)

where: xj
min and xj

max are the lower and upper bounds for the jth component of the ith vector; rand [0,
1] is a uniformly distributed random number in the range [0, 1].

Secondly, DE creates NP mutant vectors vi
(t) corresponding to NP target vector xi

(t) via the
mutation operator. The classical mutation operator is to add a scaled difference vector between two
random vectors to the third vector. It can be written in the mathematical form as follows:

v(t)
i = x(t)

r1 + F × (
x(t)

r2 − x(t)
r3

)
(3)

where: r1 �= r2 �= r3 �= i are three integers that are randomly chosen from the range [1, NP]; t is the
current generation number; F is the scaling factor.

The above mutation strategy is called “DE/rand/1” where the term “rand” means random and
the number “1” denotes that only one difference vector is added. Besides “DE/rand/1”, four mutation
strategies that were proposed by Storn et al. [34] are listed below:

CMES, 2023, vol.134, no.1 433

“DE/best/1”v(t)
i = x(t)

best + F × (
x(t)

r1 − x(t)
r2

)
(4)

“DE/target - to - best/1”v(t)
i = x(t)

i + F × (
x(t)

best − x(t)
i

) + F × (
x(t)

r1 − x(t)
r2

)
(5)

“DE/rand/2”v(t)
i = x(t)

r1 + F × (
x(t)

r2 − x(t)
r3

) + F × (
x(t)

r4 − x(t)
r5

)
(6)

“DE/best/2”v(t)
i = x(t)

best + F × (
x(t)

r1 − x(t)
r2

) + F × (
x(t)

r3 − x(t)
r4

)
(7)

in which: xbest
(t) is the best individual of the current population.

In the crossover step, a trial vector ui
(t) is constructed by taking some components from xi

(t) and
the rest from vi

(t). It can be expressed as:

u(t)
i,j =

{
v(t)

i,j if j = K or randi,j [0, 1] ≤ Cr
x(t)

i,j otherwise (8)

where: ui,j
(t), vi,j

(t) and xi,j
(t) are the jth component of ui

(t), vi
(t), and xi

(t), respectively; K is a random integer
in [1,D] to ensure that ui

(t) differs xi
(t) by getting at least one component from vi

(t); and Cr is called the
crossover rate.

Based on natural selection, only the fittest survive. For minimization problems, the fitness is
measured through the value of the objective function. Only the one having the lower value of the
objective function will be kept for the next generation. It can be described as follows:

x(t+1)

i =
{

u(t)
i if f

(
u(t)

i

) ≤ f
(
x(t)

i

)
x(t)

i otherwise
(9)

where: f (.) is the objective function that needs to be optimized.

2.2 AdaBoost Classifier
There exist many powerful machine learning classification models such as Support Vector

Machine or Neural Networks. The abovementioned algorithms are categorized into the single learning
group. However, there exists another group of algorithms, called ensemble methods, in which several
classifiers are combined with the aim of improving the accuracy. Ensemble methods have been proven
to be very effective for classification tasks. In this study, a boosting method, called AdaBoost, is
employed. The idea of this algorithm is to train iteratively several weak learners using the weighted
training data, and then incorporate them into the final classifier [32]. The weak learners can be any
single learning algorithm, however, the most commonly used one is the Decision Tree. In the following
section, the background theory of the AdaBoost classifier is presented.

Generally, AdaBoost produces several classifiers, called weak classifiers, each of them has a proper
weight based on its accuracy. The final prediction is the combination of the output of weak classifiers
using the weight majority voting technique. The more accurate classifier will contribute more impact
on the final prediction by assigning a higher weight. In addition, AdaBoost keeps a set of weights over
the training data. Initially, the weights of all samples are set equally. After an iteration, the weights
of samples that were misclassified by the previous weak classifier are increased. It ensures that those
samples will receive the attention of the weak classifier on the next iteration. The AdaBoost algorithm
is illustrated in Fig. 2.

434 CMES, 2023, vol.134, no.1

Initial uniform weight on
training samples

Weak
classifier 1

Weak
classifier 2

Weak
classifier 3

Misclassifications are re-
weighted more heavily

Misclassifications are re-
weighted more heavily

Strong
classifier

Figure 2: Illustration of the AdaBoost algorithm

Suppose the training dataset is DB = {(x1, y1), (x2, y2), . . . , (xn, yn)} in which xi, i = 1, 2, . . . , n is
a p-dimensional input vector containing p features; yi ∈{+1, −1} is the output; and n is the number of
samples in the training dataset.

AdaBoost begins by initializing sample weights uniformly as:

w1 = {
w1,1, w1,2, . . . , w1,n

}
; w1,i = 1

n
; i = 1, 2, . . . ,n (10)

where: w1,i is the initial weight of the sample (xi, yi).

Then a process of four basic steps is iteratively conducted for T times. On iteration t, the weak
classifier is ht, and the weight vector is wt = {wt,1, wt,2, . . . , wt,n}.

Step 1: the classifier ht is fit to the weighted training data:

ht (x) = DecisionTree (DB, wt) (11)

where: DecisionTree(.) indicates a single tree classifier.

Step 2: the error of the classifier on this iteration is calculated as follows:

et =
n∑

i=1

wt,i1 (ht (xi) �= yi) (12)

CMES, 2023, vol.134, no.1 435

where: 1(ht(xi) �= yi) is the function that returns 1 for correctly classified samples while 0 for
misclassified samples.

Step 3: The weight of the weak classifier ht can be determined based on its accuracy as follows:

αt = 1
2

ln
(

1 − et

et

)
(13)

Step 4: the weights of samples are updated according to the following rule:

w(t+1),i = wt,i exp (−αtyiht (x))
n∑

i=1

w(t+1),i

(14)

After T such iterations, T weak classifiers ht, t = 1, 2, . . . , T are obtained. The final output is the
weighted sum of the outputs of these weak classifiers:

H (x) = sign

{
T∑

t=1

αtht (x)

}
(15)

where: sign(x) is a function that returns −1 if x < 0, + 1 if x > 0, 0 if x = 0.

3 The Proposed Method CaDE
3.1 Truss Sizing Optimization Using DE

Optimizing a truss structure is a specific constrained optimization problem where the objective
function is frequently the weight of the truss structure and the constraints relate to the structural
behavior like stress, displacement, or vibration conditions. Three categories of truss optimization
problems include size, shape, and topology optimization, in which size optimization is widely used
in practical design. For size optimization, the member cross-sectional areas are considered as design
variables. The mathematical formulation of this type of optimization problem is expressed as follows:

Find A = {
A1, A2, . . . , Ang

}
to minimize W (A) = ρ

ng∑
i=1

Ai

nm(i)∑
j=1

Lj

subject to :
{

gk (A) ≤ 0, k = 1, 2, . . . , nc
Ai,min ≤ Ai ≤ Ai,max, i = 1, 2, . . . , ng

(16)

where: A is a vector containing ng design variables; W (A) is the objective function which is the weight
of the whole truss structure in this case; ρ is the density; Ai denotes a design variable which is the
cross-sectional area of members belong to the ith group; Lj is the length of the jth member; ng is the
number of groups; nm(i) is the number of members belong to the ith group; gk(A) is the kth constraint;
nc is the number of constraints; Ai,min and Ai,max are the lower and upper bounds of the design variable
Ai, respectively.

To apply metaheuristic algorithms which are originally designed for unconstrained optimization,
the most widely-used technique is to use the fitness function instead of the objective function:

436 CMES, 2023, vol.134, no.1

Fit (A) =
{

W (A) + P (A) ifcv (A) > 0
W (A) otherwise (17)

in which: Fit(A) is the fitness function; and P(A) is the penalty function which is added whenever
any constraint is violated; cv(A) is the degree of constraint violation that is defined as the sum of all
constraint violations:

cv (A) =
∑

max
k

(0, gk (A)) (18)

3.2 Accelerating DE with AdaBoost Classifier
The objective function of structural optimization problems, for example, the weight of structures,

can be easily calculated by multiplying the volume of all members with their material density. However,
the determination of the fitness function is very costly due to conducting a computationally expensive
structural analysis. As result, the computation time of metaheuristic optimization tasks that require
thousands or even millions of fitness function evaluations becomes prohibitively high.

Surrogate models have been frequently constructed to simulate the response of structures, and
they have been used to quickly evaluate the fitness of individuals instead of exact structural analyses.
Although the accuracy of surrogate modeling techniques has been greatly improved in recent years,
there is always an error between the predictions and the ground truth due to the complexity of the
structural response as well as the limitation of training data. Therefore, the direct replacement of exact
structural analysis with surrogate models may lead to a false optimum [20–25].

The proposed method employs surrogate models in a different manner. The idea behind the
proposed method is based on an observation that a trial vector that violates any constraint and
has a larger objective function value is largely worse than its target vector and it cannot survive the
selection. Detecting and eliminating these worse trial vectors during the optimizing process can save
many useless structural analyses. The objective function of structural optimization problems can be
quickly determined but the constraint verification is very costly due to performing a structural analysis.
It leads to the idea of constructing a surrogate model that can quickly evaluate the safety state of the
structure. Using regression models to estimate the degree of constraint violation for this task is not
necessary. Instead, a classification model that can distinguish whether or not the individual satisfies
constraints is sufficient.

The concept of the proposed method is the application of a machine learning classifier to identify
trial vectors that are most likely worse than these target vectors during the optimization process. In
this work, the AdaBoost algorithm is employed for that purpose and the proposed method is called
CaDE. The pseudo-code of the CaDE is described in Algorithm 1.

Algorithm 1. Pseudo-code of the CaDE
1: Set g = 0, DB = null, NP, F , Cr, n_iter1, max_iter
#Phase 1: Building model
2: Initialize a population pop0 = {xi

(0) | i = 1, 2, . . . , NP} using LHS technique
3: for each xi

(0) in pop0 do
4: Evaluate xi

(0)

5: Assign yi
(0) according to Eq. (19)

(Continued)

CMES, 2023, vol.134, no.1 437

Algorithm 1. (Continued)
6: Archive (xi

(0), yi
(0)) into DB

7: end for
8: while g < n_iter1 do
9: for each xi

(g) in popg do
10: ui

(g) = Mutation-Crossover(xi
(g)) using two parameters F , Cr

11: Evaluate ui
(g)

12: Assign yi
(g) according to Eq. (19)

13: Archive (ui
(g), yi

(g)) into DB
14: xi

(g + 1) = Selection(ui
(g), xi

(g))
15: popg + 1 = {xi

(g + 1) | i = 1, 2, . . . , NP}
16: end for
17: g = g + 1
18: end while
19: Built an AdaBoost classification model C based on DB
#Phase 2: Employing model
20: while g < max_iter do
21: for each xi

(g) in popg do
22: ui

(g) = Mutation-Crossover(xi
(g)) using two parameters F , Cr

23: ypred_i
(g) = C(ui

(g))
24: if ypred_i

(g) = −1 then
25: if W (ui

(g)) > W (xi
(g)) then

26: xi
(g + 1) = xi

(g) and Eliminate ui
(g)

27: else
28: Evaluate ui

(g)

29: xi
(g + 1) = Selection(ui

(g), xi
(g))

30: end if
31: else
32: Evaluate ui

(g)

33: xi
(g + 1) = Selection(ui

(g), xi
(g))

34: end if
35: popg + 1 = {xi

(g + 1) | i = 1, 2, . . . , NP}
36: end for
37: g = g + 1
38: end while
Note: where: g is the current iteration number; DB is the database for training model; NP is the size of the population; F is the scaling
factor; Cr is the crossover rate; n_iter1 is the numbers of iterations for the model building phase; max_iter is the number of iterations of the
whole optimization process; Mutation, Crossover, and Selection are three basic operators of the DE as described in Section 2.1; C(.) is the
AdaBoost classifier; W (.) is the objective function.

Generally, the CaDE has two phases: the model building phase and the model employing phase.
The CaDE algorithm begins by initializing a population of NP vectors pop0 = {xi

(0) | i = 1, 2, . . . ,
NP}. It is noted that the initial population is generated using the Latin Hypercube Sampling (LHS)

438 CMES, 2023, vol.134, no.1

technique because of its good space-filling capability. Each vector xi
(0) is checked design constraints,

and the label yi
(0) is assigned using the following formula:

yi =
{−1 ifcv (xi) > 0
+1 otherwise (19)

As a result, the initial dataset DB consists of NP data samples {(xi
(0), yi

(0)) | i = 1, 2, . . . , NP}. Next,
three operators (Mutation, Crossover, and Selection) are carried out sequentially as the original DE
algorithm. All trial vectors ui

(g) produced by the Mutation and Crossover operators are checked design
constraints and assigned a label yi

(g) according to Eq. (19). All obtained results (ui
(g), yi

(g)) are also saved
into the database DB. The loop is terminated after (n_iter1−1) iterations. The final dataset comprises
n_iter1 × NP data samples. At the end of this phase, an AdaBoost classification C model has been
trained by the dataset DB as presented in Section 2.2.

In the model employing phase, each trial vector ui
(g) is preliminarily evaluated using the classifi-

cation model C. At this time, two conditions are applied in determining which trial vectors to go to
the selection step or not. In more detail, a trial vector is rejected without exact evaluation when it has
two conditions simultaneously: (i) it is predicted to violate design constraints (ypred_i

(g) = −1), and (ii)
its objective function value is larger than that of the corresponding target vector (W (ui

(g)) > W (xi
(g))).

Otherwise, the constraint violation of the trial vector is evaluated using the structural analysis and the
Selection operator is then conducted as usual. The model employing phase lasts until the pre-defined
number of iteration max_iter reaches.

4 Numerical Experiments

Numerical experiments are performed on a personal computer with CPU Intel Core i5 2.5 GHz,
8 Gb RAM, and Windows 10 64 bit OS. The DE algorithm and the CaDE algorithm are developed
by the authors using the Python programming language, meanwhile, the AdaBoost classifier is built
using the open-source library scikit-learn [38]. The Python in-house codes for finite element analysis
of truss structures are developed based on the direct stiffness method described in [39].

4.1 Illustrative Example
A three-bar truss example is carried out to illustrate the application of the CaDE algorithm to

structural optimization. Although this structure is simple and the constraints can be directly evaluated,
the stresses of the members are still determined through the finite element analyses in this experiment.
This problem is used as an illustrative example because it has only two variables and it can be easily
visualized.

The geometry, loading, and boundary conditions of the structure are presented in Fig. 3. The
objective of this example is to find the cross-sectional areas A1 and A2 to minimize the weight of the
truss while satisfying the condition that the stresses in all bars do not exceed the allowable stress. This
problem is stated as follows:

Find x=A = {0.1 ≤ A1, A2 ≤ 1}
to minimize W (A) =

(
2
√

2A1 + A2

)
L

subject to gk (A) = σk − [σ] ≤ 0, k = 1, 2, 3

(20)

in which: the applied force P = 2 kN; L = 100 cm; σ k is the stress in the kth member; and the allowable
stress [σ]=2 kN/cm2.

CMES, 2023, vol.134, no.1 439

L

L L

P

A1 A2 A1

Figure 3: Three-bar truss structure

As mentioned above, the objective function W (A) should be transformed into the fitness function.
In this example, the fitness function is defined as Fit(A) = W (A)(1 + cv(A)) and it is plotted in Fig. 4.

(a) 3-D contour plot (b) 2-D contour plot

Figure 4: Visualization of the fitness function of the three-bar truss structure

The DE algorithm starts by initializing an initial population pop0 of NP individuals. In this
example, the number of individuals of a population is set to NP = 20. The initial individuals are
represented together with the 2-D contour plot of the fitness function as shown in Fig. 5a. Then,
three operators including mutation, crossover, and selection are sequentially performed to produce a
population pop1 for the next iteration with two optimization parameters as follows: F = 0.8, Cr =
0.9. The manner in which the mutant vector vi

(0) and the trial vector ui
(0) are produced from the target

vector xi
(0) is shown in Fig. 5b. If the fitness function value of the trial vector ui

(0) is smaller than that of
the target vector xi

(0), the trial vector ui
(0) is selected to be the target vector xi

(1) of the next population.
Otherwise, the trial vector ui

(0) is discarded and the target vector xi
(0) is kept for the next iteration.

440 CMES, 2023, vol.134, no.1

(a) Initial population pop0 (b) Mutation operator and Crossover operator

Figure 5: Visualization of three first operators of the DE algorithm

The above process is repeated until the stopping condition is reached. In this example, the stopping
condition is set to be after 100 iterations. The populations at several iterations are shown in Fig. 6. It
can be seen that all individuals of the population tend to move closer to the global optimal position
during the optimization process. At the final iteration, almost all individuals are concentrated at the
global optimal position. The optimal design found by the DE algorithm is as follows: A1 =0.789 cm2

and A2 =0.408 cm2. The number of structural analyses that must be conducted is nSA = 2000 times.

The optimization parameters F , Cr, max_iter of the CaDE are kept the same as in the DE. The
number of iterations for the first phase is set to n_iter1 = 5, meaning the number of samples in the
dataset DB is equal to n_iter1 × NP = 5 × 20 = 100. Fig. 7 presents all samples collected in the first
phase, where vectors that are labeled +1 are represented as white dots while vectors that are labeled
−1 are represented as red dots. Based on the obtained dataset, an AdaBoost classifier is built as the
green dashed curve shown in Fig. 7.

In the second phase, the decision of performing exact structural analyses depends on the prediction
of the AdaBoost classifier. Fig. 8 illustrates the optimization process of the proposed method at
the 5th iteration, in which all white dots represent the target vectors xi

(5) of the current population
After conducting two operators including mutation and crossover, the machine learning classifier is
employed to predict the label of the trial vector ui

(5). At this time, one of three possible cases can occur
as follows:

CMES, 2023, vol.134, no.1 441

Figure 6: Improvement of the population during the DE optimization process

Figure 7: Building an AdaBoost classifier based on historical constraint evaluations

442 CMES, 2023, vol.134, no.1

Case 1: If the predicted label ypred_i
(5) = +1, the trial individual ui

(5) is then checked design constraints
using exact structural analysis. These individuals are represented as blue dots in Fig. 8;

Case 2: If the predicted label ypred_i
(5) = −1 and the objective function of the trial vector W (ui

(5)) is smaller
than or equal to that of the target vector W (xi

(5)), it is also checked design constraints using
exact structural analysis. These individuals are represented as yellow dots in Fig. 8;

Case 3: If the predicted label ypred_i
(5) = −1 and W (ui

(5)) > W (xi
(5)), it is eliminated without performing

the exact structural analysis. These individuals are marked as magenta dots in Fig. 8.

Figure 8: Illustration of the implementation of the proposed method CaDE

After reaching the stopping condition, the optimal cross-sectional areas of truss members found
by the CaDE are A1 =0.789 cm2 and A2 =0.408 cm2 which are similar to the results found by the
original DE. However, by applying the AdaBoost classifier, the number of exact structural analyses is
greatly reduced. The optimization is independently performed 30 times and the statistical results show
that the proposed method CaDE requires an average of 1770 structural analyses while the original DE
algorithm needs 2000 structural analyses.

4.2 Five Benchmark Truss Problems
4.2.1 Description of the Problems

Five well-known truss sizing optimization problems collected from the literature including the
10-bar planar truss, the 17-bar planar truss, the 25-bar spatial truss, the 72-bar spatial truss, and the
200-bar planar truss are carried out in this section.

The first example considers a simple truss containing 10 members as illustrated in Fig. 9. This
structure is made of the material having the modulus of elasticity E = 10,000 ksi and the density ρ =
0.1 lb/in3. This problem has 10 design variables A = {Ai, i = 1, 2, . . . , 10} where 0.1 in2 ≤ Ai ≤ 33.5 in2

is the cross-sectional areas of ith member. Two vertical loads acting at node (2) and node (4) have the
same magnitude P = 100 kips. Stresses inside members must be lower than 25 ksi for both compression
and tension. Displacements of nodes (1), (2), (3), (4) are limited within ± 2 in.

CMES, 2023, vol.134, no.1 443

P=100 kips P=100 kips

(1)(3)(5)

(2)(4)(6)

1 2

3 4

5 6

7 9

8 10

360 in 360 in

360 in

Y

X

Figure 9: Layout of the 10-bar truss

The second example considers a 17-bar planar truss as presented in Fig. 10. This structure is
fabricated from a material that has the modulus of elasticity E = 30,000 ksi and the material density ρ

= 0.268 lb/in3. Each member in this structure has its own cross-sectional areas and there are 17 design
variables in total A = {0.1 in2 ≤ Ai ≤ 33.5 in2, i = 1, 2, . . . , 17}. A vertical force of 100 kips acts at
node (9) of the truss. The allowable stresses in both tension and compression are σ allow =50 ksi and the
allowable displacements along the X and Y directions are δallow =2 in.

P

14

13

(8)

(7)

9

11

12

10

17

(6)(4)(2)

(5)(3)(1)

1 5

3 7

4 8

2 6

15 16

L L

Y

X

L L

L

(9)

Figure 10: Layout of the 17-bar truss

In the third example, a spatial truss containing 25 members as presented in Fig. 11 is considered.
This structure is made of the same material as the 10-bar truss (E = 10,000 ksi and ρ=0.1 lb/in3).
Members of this structure are classified into 8 groups where members belonging to the same group
are assigned the same cross-sectional area that varies between 0.01 in2 to 3.5 in2. This structure is
optimized according to both stress constraint and displacement constraint. The allowable stresses are
presented in Table 1 and the permissible displacement of all nodes is ±0.35 in. The loading data are
shown in Table 2.

444 CMES, 2023, vol.134, no.1

(1)

(2)

(3)

(10)

(8)

(7)

3
2

4

5
8

9 67

13

14

10 12

(9)

11

17

18
15 19

20

21

16

22 23
24

25

100"
100"

Z

X

Y

(4)

(5)

(6)

1

Figure 11: Layout of the 25-bar truss

Table 1: Member groups and the corresponding allowable stress values for the 25-bar truss

Group Member Allowable compressive stress
(ksi)

Allowable tensile stress
(ksi)

1 1 35.092 40.0
2 2, 3, 4, 5 11.590 40.0
3 6, 7, 8, 9 17.305 40.0
4 10, 11 35.092 40.0
5 12, 13 35.092 40.0
6 14, 15, 16, 17 6.759 40.0
7 18, 19, 20, 21 6.959 40.0
8 22, 23, 24, 25 11.082 40.0

Table 2: Loading data for the 25-bar truss (kips)

Node Load Case 1 Load Case 2

FX FY FZ FX FY FZ

1 – 20.0 −5.0 1.0 10.0 −5.0
2 – −20.0 −5.0 – 10.0 −5.0
3 – – – 0.5 – –
6 – – – 0.5 – –

The layout of the 72-bar spatial truss investigated in the fourth example is displayed in Fig. 12.
Members are classified into 16 groups as described in Table 3. The minimum and maximum areas of

CMES, 2023, vol.134, no.1 445

all members are 0.01 in2 and 4.0 in2
. Two load cases acting on this structure are as follows: (LC1)

two horizontal forces of 5 kips along the X-axis and Y-axis and a vertical force of 5 kips along the
opposite direction of the Z-axis act at node (17); (LC2) four vertical forces of 5 kips along the opposite
direction of the Z-axis act at four nodes (17), (18), (19), (20), respectively. The design constraints of this
problem include stress constraint and displacement constraint. The allowable stresses of all members
are ± 25 ksi while the allowable displacements along the X and Y directions are ± 0.25 in.

(20)

60 in

Z

X

(19)

(18)

(17)

(16)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

1

2

3

4

19

20

21
22

37

38

39
40

5
6 7

8

9

10

11
12

13 14

1516
17

18
23

24

25
26

27

28

29 30

31 32

3334
35

36
41

42

43
44

45

46

47

48

49 50

5152
53

54

55

56

57
58

59

60

61
62

63
64

65
66

67 68

69
70

71
72

Y

60 in

60 in

60 in

Figure 12: Layout of the 72-bar truss

The last problem is a 200-bar planar truss which is schematized in Fig. 13. The modulus of
elasticity E of the material used in this structure equals 30,000 ksi while the material density ρ equals
0.283 lb/in3. There are three independent load cases as follows:

446 CMES, 2023, vol.134, no.1

Table 3: Member groups for the 72-bar truss

Group Member Group Member Group Member Group Member

1 1–4 5 19–22 9 37–40 13 55–58
2 5–12 6 23–30 10 41–48 14 59–66
3 13–16 7 31–34 11 49–52 15 67–70
4 17, 18 8 35, 36 12 53, 54 16 71, 72

(LC1): 1.0 kips acting along the positive x-direction at nodes (1), (6), (15), (20), (29), (34), (43),
(48), (57), (62), and (71) (green arrows in Fig. 13);

(LC2): 10 kips acting along the negative y-direction at nodes (1)–(6), (8), (10), (12), (14), (16)–
(20), (22), (24), (26), (28)–(34), (36),(38),(40), (42)–(48), (50), (52), (54), (56)–(62), (64), (66), (68), and
(70)–(75) (orange arrows in Fig. 13);

(LC3): both (LC1) and (LC2) acting together.

There is no limitation of displacement in this problem. Stresses inside all members must be lower
than ± 10 ksi. This structure has 29 groups of members as indicated in Table 4. It means this problem
has 29 design variables A = {Ai, i = 1, 2, . . . , 29} in which Ai represents the cross-sectional area of
members belonging the ith group. Ai is limited in the range of [0.1, 15] in2.

4.2.2 Parameter Studies

Obviously, the training dataset size and the number of weak classifiers strongly influence the
accuracy of the AdaBoost model, thereby affecting the performance of the proposed method CaDE. In
this section, a parametric study is carried out to investigate the influences of these parameters. The 25-
bar truss structure described in Section 4.2.1 is taken as the optimization problem for the parametric
study.

Firstly, five cases are carried out in which the amount of training samples is set to 100, 500, 1000,
1500, and 2000, respectively. In all cases, the number of weak classifiers used in the AdaBoost model is
fixed as T = 100. In the second, four more cases are conducted in which the number of weak classifiers
is set to 10, 25, 50, and 200, respectively while the number of training samples is fixed as 1000 data
points. There are a total of 9 cases. Other parameters are the same for all cases as follows: the mutation
strategy “DE/target-to-best/1”; F = 0.8; Cr = 0.9; NP = 50; and max_iter = 500. Each case is executed
30 times and the results are reported in Table 5.

It can be found that all cases achieve high convergence when the optimal weights found in 30
independent runs are almost the same. However, there is an influence of the parameters on the number
of structural analyses that must be conducted during the optimization process. When the training
dataset size is fixed to 1000, the case of 10 weak classifiers requires the largest number of structural
analyses. When the number of weak classifiers varies from 10 to 100, the number of structural analyses
decreases linearly but from 100 to 200, the value of nSA does not change much. When the number of
weak classifiers is fixed to 100, the case of 1000 data samples has the fastest convergence speed.

Overall, it is recognized that the pair of parameters: the number of weak classifier T = 100 and
the number of training samples = 1000 is a proper selection. This set of parameters is then applied to
all further experiments.

CMES, 2023, vol.134, no.1 447

1 2 3 4

144 in

Y

X

1 2 3 4 5

6 8 10 12 146 9 11 13

15 16 17 18 19

20 22 24 26 2821 23 25 27

29 30 31 32 33

34 36 38 40 4235 37 39 41

43 44 45 46 47

48 50 52 54 5649 51 53 55

57 58 59 60 61

62 64 66 68 7063 65 67 69

71 72 73 74 75

76 77

144 in

144 in

144 in

144 in

144 in

144 in

144 in

144 in

144 in

360 in

240 in 240 in 240 in 240 in

5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38

39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76

77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93

94 95 96 97 98 99 100 101

102 103 104 105 106 107 108 109 110 111 112 113 114

115 116 117 118

119 120 121 123 124 126 127 129 130
122 125 128 131

132 133 134 135 136 137 138 139

140 141 142 143 144 145 146 147 148 149 150 151 152

153 154 155 156

157 158 159 161 162 164 165 167 168
160 163 166 169

170 171 172 173 174 175 176 177

178 179 180 181 182 183 184 185 186 187 188 189 190

195 196 197 198 199 200

191 192 193 194

Figure 13: Layout of the 200-bar truss

448 CMES, 2023, vol.134, no.1

Table 4: Member groups for the 200-bar truss

Group Member Group Member

1 1–4 16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104,
106, 107, 109, 110, 112, 113

2 5, 8, 11, 14, 17 17 115–118
3 19–24 18 119, 122, 125, 128, 131
4 18, 25, 56, 63, 94, 101, 132, 139, 170,

177
19 133–138

5 26, 29, 32, 35, 38 20 140, 143, 146, 149, 152
6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31,

33, 34, 36, 37
21 120, 121, 123, 124, 126, 127, 129, 130,

141, 142, 144, 145, 147, 148, 150, 151
7 39–42 22 153–156
8 43, 46, 49, 52, 55 23 157, 160, 163, 166, 169
9 57–62 24 171–176
10 64, 67, 70, 73, 76 25 178, 181, 184, 187, 190
11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68,

69, 71, 72, 74, 75
26 158, 159, 161, 162, 164, 165, 167, 168,

179, 180, 182, 183, 185, 186, 188, 189
12 77–80 27 191–194
13 81, 84, 87, 90, 93 28 195, 197, 198, 200
14 95–100 29 196, 199
15 102, 105, 108, 111, 114

Table 5: Influence of the parameters of the AdaBoost model on the performance of the CaDE

No. of training
samples

100 500 1000 1500 2000 1000 1000 1000 1000

No. of weak
classifiers

100 100 100 100 100 10 25 50 200

Weight (lb) Mean 545.16 545.16 545.16 545.16 545.16 545.16 545.16 545.16 545.16
SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nSA (times) 19,033 18,994 17,599 17,683 18,436 21,888 20,481 18,291 17,474

4.2.3 Comparison with Regression-Based Surrogate Model

As described in the ‘Introduction’ section, many previous studies have used regression techniques
for surrogate modeling. In this section, a comparison is conducted to exhibit the advantage of the
classification-based surrogate models. The performances of three optimization methods are evaluated
including the original DE method (called the DE), the AdaBoost classifier-assisted DE method (called
the CaDE), and the AdaBoost regression-assisted DE method (called the RaDE).

The details of the DE and the CaDE are already introduced in Section 2.1 and Section 3.2. The
RaDE has also two phases: the model building phase and the model employing phase. In the model

CMES, 2023, vol.134, no.1 449

building phase, the original DE algorithm is employed as usual and all solutions are exactly evaluated
through structural analyses and the degree of constraint violation of each solution is saved in the
database. After n_iter1 iterations, an AdaBoost regression model is trained with the obtained dataset
with the aim of predicting the constraint violation degree of a new solution. Then, the trained model
is employed instead of the constraint verification in the second stage.

Five optimization problems mentioned in Section 4.2.1 are solved using three methods DE, CaDE,
RaDE, respectively. The setting parameters for these methods are summarized in Table 6. Each
problem is solved 30 independent times, and the statistical results including best, mean, worst, and
standard deviation (SD) are reported in Table 7. The average number of structural analyses conducted
during the optimization process (nSA) as well as the degree of constraint violation (cv) are also
presented.

Table 6: Parameters of the DE, CaDE and RaDE

10-bar truss 17-bar truss 25-bar truss 72-bar truss 200-bar truss

DE F 0.8 0.8 0.8 0.8 0.8
Cr 0.9 0.9 0.9 0.9 0.9
NP 50 50 50 50 50
max_iter 500 500 500 500 1000

CaDE F 0.8 0.8 0.8 0.8 0.8
Cr 0.9 0.9 0.9 0.9 0.9
NP 50 50 50 50 50
max_iter 500 500 500 500 1000
n_iter1 20 20 20 20 20

RaDE F 0.8 0.8 0.8 0.8 0.8
Cr 0.9 0.9 0.9 0.9 0.9
NP 50 50 50 50 50
max_iter 500 500 500 500 1000
n_iter1 20 20 20 20 20

Based on the results in Table 7, some observations can be pointed out as follows. First of all, it can
be seen that the optimal designs found by the CaDE are very similar to the DE but the CaDE needs
fewer structural analyses than the DE. For the four first problems, the DE requires 25000 structural
analyses and for the last problem, the DE requires 50000 structural analyses. However, the required
number of structural analyses of the CaDE for five problems are 17311 times, 16299 times, 17599 times,
18144 times, and 40683 times, respectively.

Secondly, the required numbers of structural analyses of the RaDE for all problems are very
small compared to the DE and the CaDE. This method conducts only 1000 times of exact structural
analyses to generate the training data. However, due to the error between the structural analyses and
the surrogate modeling, the optimal designs found by the RaDE are not good. Although these designs
do not violate design constraints, the weights of these designs are much greater than the optimal designs
found by the DE and the CaDE.

450 CMES, 2023, vol.134, no.1

Table 7: Comparison of optimal results of the DE, CaDE, and RaDE

Problem DE CaDE RaDE

10-bar truss best (lb) 5060.854 5060.854 5202.081
mean (lb) 5061.908 5061.910 5468.830
worst (lb) 5076.669 5076.669 6637.640
SD (lb) 3.945 3.945 310.515
cv 0.000 0.000 0.000
nSA 25,000 17,311 1,000

17-bar truss best (lb) 2581.911 2581.901 4166.500
mean (lb) 2581.979 2582.015 5205.044
worst (lb) 2582.115 2582.217 6304.125
SD (lb) 0.051 0.087 529.577
cv 0.000 0.000 0.000
nSA 25,000 16,299 1,000

25-bar truss best (lb) 545.163 545.163 551.821
mean (lb) 545.163 545.163 568.117
worst (lb) 545.163 545.163 595.473
SD (lb) 0.000 0.000 10.091
cv 0.000 0.000 0.000
nSA 25,000 17,599 1,000

72-bar truss best (lb) 363.826 363.826 543.706
mean (lb) 363.838 363.844 694.867
worst (lb) 363.871 363.920 865.005
SD (lb) 0.012 0.020 75.948
cv 0.000 0.000 0.000
nSA 25,000 18,144 1,000

200-bar truss best (lb) 25507.236 25490.653 58318.473
mean (lb) 25671.221 25626.837 67122.934
worst (lb) 26210.114 26018.725 79739.574
SD (lb) 161.133 111.277 5780.261
cv 0.000 0.000 0.000
nSA 50,000 40,683 1,000

In general, using the regression-based surrogate modeling significantly reduces the number of
structural analyses during the optimization process but the obtained results are not the global optimal.
Otherwise, the classification-based surrogate modeling only reduces the number of structural analyses
by about 25%, but the advantage of this method is that it retains the search performance of the original
DE method.

CMES, 2023, vol.134, no.1 451

4.2.4 Comparison with Other DE Variants

Furthermore, the results of these problems found by other DE variants are introduced for com-
parison. Four DE variants collected in the literature [40] include the composite differential evolution
(CoDE), the self-adaptive control parameters differential evolution (JDE), the adaptive differential
evolution with optimal external archive (JADE), and the self-adaptive differential evolution (SADE).
The statistical results are introduced in Table 8.

Table 8: Comparison of optimal results of the CaDE and other DE variants [40]

Problem CaDE CoDE JDE JADE SADE

10-bar truss best (lb) 5060.854 5060.854 5060.858 5060.854 5060.887
mean (lb) 5061.910 5060.854 5061.444 5060.886 5064.092
worst (lb) 5076.669 5060.854 5076.674 5061.372 5079.279
SD (lb) 3.945 0.000 2.877 0.102 6.151
nSA 17,311 100,000 100,000 100,000 100,000

17-bar truss best (lb) 2581.901 2581.890 2581.895 2581.890 2582.578
mean (lb) 2582.015 2581.893 2581.925 2581.909 2605.089
worst (lb) 2582.217 2581.898 2582.033 2582.048 2670.458
SD (lb) 0.087 0.002 0.030 0.030 21.226
nSA 16,299 100,000 100,000 100,000 100,000

25-bar truss best (lb) 545.163 545.555 545.555 545.555 545.555
mean (lb) 545.163 545.555 545.559 545.555 545.613
worst (lb) 545.163 545.555 545.606 546.555 546.143
SD (lb) 0.000 0.000 0.010 0.000 0.122
nSA 17,599 100,000 100,000 100,000 100,000

72-bar truss best (lb) 363.826 363.824 363.826 363.826 363.862
mean (lb) 363.838 363.826 363.845 363.859 364.145
worst (lb) 363.871 363.835 363.908 364.026 365.665
SD (lb) 0.012 0.003 0.019 0.051 0.378
nSA 25,000 100,000 100,000 100,000 100,000

200-bar truss best (lb) 25490.653 25523.011 25579.000 25659.736 25734.695
mean (lb) 25626.837 25716.826 25867.595 26175.928 26556.821
worst (lb) 26018.725 25919.182 26541.229 26813.984 27636.608
SD (lb) 111.277 120.334 191.068 301.066 518.116
nSA 40,683 100,000 100,000 100,000 100,000

For the 10-bar truss, the optimal design of the CaDE is similar to the CoDE and JADE and better
than the JDE and the SADE. For the 17-bar truss, the optimal weight found by the CaDE is very
similar to those of the DE variants. For the third problem of the 25-bar truss, the minimum weight of
the CaDE (545.163 lb) is lower than those of other DE variants (545.555 lb). For the fourth problem of

452 CMES, 2023, vol.134, no.1

the 72-bar truss, the optimal weights found by the CaDE, the JDE, the JADE are the same (363.826 lb)
and this value is slightly larger than the optimal weight obtained by the CoDE (363.824 lb). For the last
problem, the weight of the 200-bar truss received from the CaDE is the smallest value (25490.653 lb),
followed by the CoDE (25523.011 lb), the JDE (25579.000 lb), the JADE (25659.736 lb), and the SADE
(25734.695 lb). Moreover, the smaller value of the standard deviation of the CaDE (111.277 lb) in
comparison with the remaining algorithms (120.334 lb for the CoDE, 191.068 lb for the JDE, 301.116
for the JADE, and 518.116 lb for the SADE) indicates the reliability of the proposed method.

In terms of the convergence speed, the CaDE exhibits its superior. The CaDE requires from 16299
to 40683 structural analyses while the remaining methods conduct 100000 structural analyses for
finding the optimal results. It is apparent that the CaDE is more speedy than the CoDE, the JDE,
the JADE, and the SADE.

4.3 A Real-Size Transmission Tower
In this section, the CaDE is employed to optimize the weight of a real-size transmission tower

for showing its applicability in the practical design. This tower consists of 244 members which are
classified into 32 groups as presented in Fig. 14. Members belonging to the same group have the same
cross-section which is chosen from 64 equal angle profiles from L35 × 3 to L200 × 25. It means this
problem is a discrete optimization. The steel material used in this structure has mechanical properties
as follows: the weight density ρ = 7850 kg/m3; the modulus of elasticity E = 210,000 N/mm2; the yield
strength Fy = 233.3 N/mm2. This structure is designed according to the AISC-ASD specification in
which the tensile stress constraint is as follows:

σt ≤ [σ]t = 0.6Fy (21)

where: σ t is the tensile stress of the member; [σ]t is the allowable tensile stress; Fy is the yield strength.

The buckling stress constraint is as follows:

σc ≤ [σ]b =

⎧⎪⎨
⎪⎩

(
Fy

(
1 − λ

2C2
c

))/ (
5
3

+ 3λ

8Cc

− λ3

8Cc

)
ifλ < Cc

12π 2E
23λ2

ifλ ≥ Cc

(22)

where: σ c is the compressive stress of the member; [σ]b is the allowable buckling stress; λ=KL/r is the
maximum slenderness ratio of the member; K is the effective length factor which equals 1 in this case;
L is the length of the member; and r is the radius of gyration of the member’s cross-section; Cc is
the slenderness ratio dividing the elastic and inelastic buckling regions which is determined using the
following formula:

Cc =
√

2π 2E
Fy

(23)

Additionally, the maximum slenderness ratio λ is limited to 200 for compression members while
300 for tension members. The tower is subjected to two independent load cases. Table 9 presents the
force magnitudes of two applied load cases and the corresponding displacement limitation.

CMES, 2023, vol.134, no.1 453

Z

0002

17

Y

X

24

25

2
1

0002
0002

0002
0002

0002
0002

0002
0002

(1)

(2)

(2)

(3)
(4)

(5)

(6)

(7)

(8)

(10)

(11)

(9)
(13)

(15)

(17)

(12)

(14)

(16)

(18)

(19)

(20)
(21)

(22)

(28)

(28)
(27)

(29)(29) (30)

(30)

(24)

(25)

(23)

(26)

(31)
(32)

Figure 14: Layout of the transmission tower

Table 9: Load cases and the displacement limitations for the transmission tower

Load
condition

Joint
number

Load (kN) Displacement limitations (mm)
X Z X Z

(LC1) 1 10 −30 45 15
2 10 −30 45 15
17 35 −90 30 15
24 175 −45 30 15
25 175 −45 30 15

(LC2) 1 − −360 45 15
2 − −360 45 15
17 − −180 30 15
24 − −90 30 15
25 − −90 30 15

454 CMES, 2023, vol.134, no.1

This structure is optimized according to both the DE and the CaDE with the same parameters
as follows: NP = 50; F = 0.8; Cr = 0.9; max_iter = 1000. The number of iterations for the first phase
is set to n_iter1 = 300 which means 15000 samples have been collected for the training dataset. The
statistical results obtained by the DE and the CaDE are presented in Table 10. The minimum weight
of the tower found by the DE and the CaDE are the same (6420.652 kg) but other statistical results of
the CaDE including mean, worst, and SD are smaller than those of the DE, indicating the stability
of the proposed method. The number of structural analyses of the CaDE is only 24865 times, which
is about 50% of the number of structural analyses performed by the DE. In other words, the CaDE
omits about half of useless structural analyses. This is clearly shown in Fig. 15.

Table 10: Statistical results of the optimal designs found by the DE and the CaDE

DE CaDE

Weight (kg) best 6420.652 6420.652
mean 7558.171 7453.521
worst 9804.104 8524.672
SD 858.690 610.226

cv 0.000 0.000
nSA 50,000 24,865

6000.000

7000.000

8000.000

9000.000

10000.000

11000.000

12000.000

0 10000 20000 30000 40000 50000

W
ei

gh
t (

kg
)

Number of structural analyses

DE (mean)

CaDE (mean)

Saving structural analyses by
using AdaBoost classifier

Figure 15: Comparison of the DE and the CaDE for the transmission tower problem

4.4 Evaluation of the Effectiveness of the Proposed Method CaDE
The average numbers of structural analyses (nSA) conducted in the six investigated examples as

well as the reduction rates when using the AdaBoost classifier are listed in Table 11. Furthermore, the
computing times of the DE and the CaDE are also reported.

It is clearly seen that the application of the AdaBoost classifier into the optimization process
helps to reduce the number of structural analyses. Specifically, the CaDE has reduced the number of
structural analyses by up to 50.3% for the transmission tower problem. The minimum reduction rate
is 18.6% for the 200-bar truss problem.

CMES, 2023, vol.134, no.1 455

Table 11: Average number of reduced structural analyses by using Adaboost classifier

Problems Number of
variables

nSA (times) Reduction
rate

Computing time (s)

DE CaDE DE CaDE

10-bar truss 10 25,000 17,311 30.7% 21 250
17-bar truss 17 25,000 16,299 34.8% 40 271
25-bar truss 8 25,000 17,599 29.6% 68 269
72-bar truss 16 25,000 18,144 27.4% 220 411
200-bar truss 29 50,000 40,683 18.6% 966 1320
Transmission
tower

32 50,000 24,865 50.3% 2306 1870

In contrast, the CaDE is slower than the DE in five benchmark truss problems when compared in
terms of time. The CaDE is only faster than the DE in the transmission tower problem. This is because
integrating the AdaBoost classifier into the DE increases the complexity of the algorithm. Moreover,
the CaDE requires additional time for training and employing the AdaBoost model. However, for the
transmission tower, this additional time is small in comparison with the computational time of fitness
evaluation where involving structural analysis. Therefore the total computing time of the CaDE is
lower than that of the DE in this case. In general, it can be concluded that the proposed method is
effective with large-scale structures.

5 Conclusions

In this paper, the AdaBoost classifier-assisted Differential Evolution method, called CaDE, is
proposed for optimizing the weight of truss structures. By integrating the AdaBoost classification
technique into the DE algorithm, the unnecessary structural analyses are significantly reduced. More
specifically, in the early generations, the original Differential Evolution algorithm is deployed but the
data generated in this phase is collected to train an AdaBoost model with the aim of classifying the
safety state of structures. In later generations, this model is used to detect and eliminate unpromising
individuals.

Through five optimization problems of truss structures, the CaDE method is proved to be a robust
and reliable algorithm. In most cases, the CaDE method accomplishes the optimal results as good
as or better than those of other algorithms in the literature but the numbers of structural analyses
performed by the CaDE method are lower than those performed by the original DE algorithm.
Besides advantages, the proposed method has also some drawbacks. Firstly, it is more complex than
the original DE algorithm. Moreover, the proposed method requires more computational time for
training and employing the machine learning model. Therefore, it is suitable for large-scale structures
in which the structural analysis task is very time-consuming.

In the future, the application of the CaDE method can be extended for other types of structures.
Furthermore, using machine learning models to improve the performance of other optimization
algorithms also forms an interesting research topic.

456 CMES, 2023, vol.134, no.1

Acknowledgement: The authors gratefully acknowledge the financial support provided by HUCE.
Besides, the first author T. H. N. would also like to thank VINIF for the support.

Funding Statement: This research is funded by Hanoi University of Civil Engineering (HUCE) in
Project Code 35-2021/KHXD-TÐ.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Jenkins, W. M. (1991). Towards structural optimization via the genetic algorithm. Computers & Structures,

40(5), 1321–1327. DOI 10.1016/0045-7949(91)90402-8.
2. Rajeev, S., Krishnamoorthy, C. S. (1992). Discrete optimization of structures using genetic algorithms.

Journal of Structural Engineering, 118(5), 1233–1250. DOI 10.1061/(ASCE)0733-9445(1992)118:5(1233).
3. Cai, J., Thierauf, G. (1996). Evolution strategies for solving discrete optimization problems. Advances in

Engineering Software, 25(2–3), 177–183. DOI 10.1016/0965-9978(95)00104-2.
4. Papadrakakis, M., Lagaros, N. D., Thierauf, G., Cai, J. (1998). Advanced solution methods in

structural optimization based on evolution strategies. Engineering Computations, 15(1), 12–34. DOI
10.1108/02644409810200668.

5. Wang, Z., Tang, H., Li, P. (2009). Optimum design of truss structures based on differential evolution strategy.
2009 International Conference on Information Engineering and Computer Science, Wuhan, China, IEEE.

6. Wu, C. Y., Tseng, K. Y. (2010). Truss structure optimization using adaptive multi-population differential
evolution. Structural and Multidisciplinary Optimization, 42(4), 575–590. DOI 10.1007/s00158-010-0507-9.

7. Camp, C. V., Meyer, B. J., Palazolo, P. J. (2004). Particle swarm optimization for the design of trusses.
Structures 2004: Building on the Past, Securing the Future, Structure Congress 2004, Nashville, Tennessee,
USA, ASCE.

8. Perez, R. L., Behdinan, K. (2007). Particle swarm approach for structural design optimization. Computers
& Structures, 85(19–20), 1579–1588. DOI 10.1016/j.compstruc.2006.10.013.

9. Sonmez, M. (2011). Artificial Bee colony algorithm for optimization of truss structures. Applied Soft
Computing, 11(2), 2406–2418. DOI 10.1016/j.asoc.2010.09.003.

10. Lee, K. S., Geem, Z. W. (2004). A new structural optimization method based on the harmony search
algorithm. Computers & Structures, 82(9–10), 781–798. DOI 10.1016/j.compstruc.2004.01.002.

11. Lee, K. S., Han, S. W., Geem, Z. W. (2011). Discrete size and discrete-continuous configuration optimization
methods for truss structures using the harmony search algorithm. Iran University of Science & Technology,
1(1), 107–126.

12. Degertekin, S. O., Hayalioglu, M. S. (2013). Sizing truss structures using teaching-learning-based optimiza-
tion. Computers & Structures, 119, 177–188. DOI 10.1016/j.compstruc.2012.12.011.

13. Camp, C. V., Farshchin, M. (2014). Design of space trusses using modified teaching–learning based
optimization. Engineering Structures, 62, 87–97. DOI 10.1016/j.engstruct.2014.01.020.

14. Kaveh, A., Mahdavi, V. R. (2014). Colliding bodies optimization method for optimum design
of truss structures with continuous variables. Advances in Engineering Software, 70, 1–12. DOI
10.1016/j.advengsoft.2014.01.002.

15. Kaveh, A., Mahdavi, V. R. (2014). Colliding bodies optimization method for optimum discrete design of
truss structures. Computers & Structures, 139, 43–53. DOI 10.1016/j.compstruc.2014.04.006.

16. Degertekin, S. O. (2012). Improved harmony search algorithms for sizing optimization of truss structures.
Computers & Structures, 92, 229–241. DOI 10.1016/j.compstruc.2011.10.022.

https://doi.org/10.1016/0045-7949(91)90402-8
https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
https://doi.org/10.1016/0965-9978(95)00104-2
https://doi.org/10.1108/02644409810200668
https://doi.org/10.1007/s00158-010-0507-9
https://doi.org/10.1016/j.compstruc.2006.10.013
https://doi.org/10.1016/j.asoc.2010.09.003
https://doi.org/10.1016/j.compstruc.2004.01.002
https://doi.org/10.1016/j.compstruc.2012.12.011
https://doi.org/10.1016/j.engstruct.2014.01.020
https://doi.org/10.1016/j.advengsoft.2014.01.002
https://doi.org/10.1016/j.compstruc.2014.04.006
https://doi.org/10.1016/j.compstruc.2011.10.022

CMES, 2023, vol.134, no.1 457

17. Bureerat, S., Pholdee, N. (2016). Optimal truss sizing using an adaptive differential evolution algorithm.
Journal of Computing in Civil Engineering, 30(2), 04015019. DOI 10.1061/(ASCE)CP.1943-5487.0000487.

18. Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., Nguyen-Trang, T. (2016). An adaptive elitist differential
evolution for optimization of truss structures with discrete design variables. Computers & Structures, 165,
59–75. DOI 10.1016/j.compstruc.2015.11.014.

19. Pham, H. A. (2016). Truss optimization with frequency constraints using enhanced differential evolution
based on adaptive directional mutation and nearest neighbor comparison. Advances in Engineering Software,
102, 142–154. DOI 10.1016/j.advengsoft.2016.10.004.

20. Papadrakakis, M., Lagaros, N. D., Tsompanakis, Y. (1998). Structural optimization using evolution
strategies and neural networks. Computer Methods in Applied Mechanics and Engineering, 156(1–4), 309–
333. DOI 10.1016/S0045-7825(97)00215-6.

21. Papadrakakis, M., Lagaros, N. D., Tsompanakis, Y. (1999). Optimization of large-scale 3-D trusses using
evolution strategies and neural networks. International Journal of Space Structures, 14(3), 211–223. DOI
10.1260/0266351991494830.

22. Salajegheh, E., Gholizadeh, S. (2005). Optimum design of structures by an improved genetic
algorithm using neural networks. Advances in Engineering Software, 36(11–12), 757–767. DOI
10.1016/j.advengsoft.2005.03.022.

23. Taheri, F., Ghasemi, M. R., Dizangian, B. (2020). Practical optimization of power transmission tow-
ers using the RBF-based ABC algorithm. Structural Engineering and Mechanics, 73(4), 463–479. DOI
10.12989/sem.2020.73.4.463.

24. Hosseini, N., Ghasemi, M. R., Dizangian, B. (2022). ANFIS-based optimum design of real power transmis-
sion towers with size, shape and panel variables using BBO algorithm. IEEE Transactions on Power Delivery,
37(1), 29–39. DOI 10.1109/TPWRD.2021.3052595.

25. Nguyen, T. H., Vu, A. T. (2020). Using neural networks as surrogate models in differential evolution opti-
mization of truss structures. International Conference on Computational Collective Intelligence, Switzerland,
Springer.

26. Mai, H. T., Kang, J., Lee, J. (2021). A machine learning-based surrogate model for optimization of truss
structures with geometrically nonlinear behavior. Finite Elements in Analysis and Design, 196, 103572. DOI
10.1016/j.finel.2021.103572.

27. Kaveh, A., Gholipour, Y., Rahami, H. (2008). Optimal design of transmission towers using
genetic algorithm and neural networks. International Journal of Space Structures, 23(1), 1–19. DOI
10.1260/026635108785342073.

28. Chen, T. Y., Cheng, Y. L. (2010). Data-mining assisted structural optimization using the evolutionary algo-
rithm and neural network. Engineering Optimization, 42(3), 205–222. DOI 10.1080/03052150903110942.

29. Kramer, O., Barthelmes, A., Rudolph, G. (2009). Surrogate constraint functions for CMA evolution
strategies. Annual Conference on Artificial Intelligence, Germany, Springer.

30. Poloczek, J., Kramer, O. (2013). Local SVM constraint surrogate models for self-adaptive evolution
strategies. Annual Conference on Artificial Intelligence, Germany, Springer.

31. Wang, H., Jin, Y. (2018). A random forest-assisted evolutionary algorithm for data-driven constrained
multiobjective combinatorial optimization of trauma systems. IEEE Transactions on Cybernetics, 50(2),
536–549. DOI 10.1109/TCYB.6221036.

32. Freund, Y., Schapire, R. E. (1997). A Decision-theoretic generalization of on-line learning and an applica-
tion to boosting. Journal of Computer and System Sciences, 55(1), 119–139. DOI 10.1006/jcss.1997.1504.

33. Nguyen, T. H., Vu, A. T. (2021). Evaluating structural safety of trusses using machine learning. Frattura ed
Integrità Strutturale, 15(58), 308–318. DOI 10.3221/IGF-ESIS.58.23.

34. Storn, R., Price, K. (1997). Differential evolution–A simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization, 11(4), 341–359. DOI 10.1023/A:1008202821328.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000487
https://doi.org/10.1016/j.compstruc.2015.11.014
https://doi.org/10.1016/j.advengsoft.2016.10.004
https://doi.org/10.1016/S0045-7825(97)00215-6
https://doi.org/10.1260/0266351991494830
https://doi.org/10.1016/j.advengsoft.2005.03.022
https://doi.org/10.12989/sem.2020.73.4.463
https://doi.org/10.1109/TPWRD.2021.3052595
https://doi.org/10.1016/j.finel.2021.103572
https://doi.org/10.1260/026635108785342073
https://doi.org/10.1080/03052150903110942
https://doi.org/10.1109/TCYB.6221036
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.3221/IGF-ESIS.58.23
https://doi.org/10.1023/A:1008202821328

458 CMES, 2023, vol.134, no.1

35. Das, S., Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-art. IEEE Transactions
on Evolutionary Computation, 15(1), 4–31. DOI 10.1109/TEVC.2010.2059031.

36. Das, S., Mullick, S. S., Suganthan, P. N. (2016). Recent advances in differential evolution–An updated
survey. Swarm and Evolutionary Computation, 27, 1–30. DOI 10.1016/j.swevo.2016.01.004.

37. Charalampakis, A. E., Tsiatas, G. C. (2019). Critical evaluation of metaheuristic algorithms for weight
minimization of truss structures. Frontiers in Built Environment, 5. DOI 10.3389/fbuil.2019.00113.

38. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., et al. (2011). Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.

39. Ferreira, A. J. (2009). MATLAB codes for finite element analysis. Netherlands: Springer.
40. Georgioudakis, M., Plevris, V. (2020). A comparative study of differential evolution variants in constrained

structural optimization. Frontiers in Built Environment, 6. DOI 10.3389/fbuil.2020.00102.

https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.3389/fbuil.2019.00113
https://doi.org/10.3389/fbuil.2020.00102

	An Efficient Differential Evolution for Truss Sizing Optimization Using AdaBoost Classifier
	1 Introduction
	2 Background Information
	3 The Proposed Method CaDE
	4 Numerical Experiments
	5 Conclusions

