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ABSTRACT

The Earth observation remote sensing images can display ground activities and status intuitively, which plays an
important role in civil and military fields. However, the information obtained from the research only from the
perspective of images is limited, so in this paper we conduct research from the perspective of video. At present, the
main problems faced when using a computer to identify remote sensing images are: They are difficult to build a
fixed regular model of the target due to their weak moving regularity. Additionally, the number of pixels occupied
by the target is not enough for accurate detection. However, the number of moving targets is large at the same time.
In this case, the main targets cannot be recognized completely. This paper studies from the perspective of Gestalt
vision, transforms the problem of moving target detection into the problem of salient region probability, and forms
a Saliency map algorithm to extract moving targets. On this basis, a convolutional neural network with global
information is constructed to identify and label the target. And the experimental results show that the algorithm
can extract moving targets and realize moving target recognition under many complex conditions such as target’s
long-term stay and small-amplitude movement.
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1 Introduction

Remote sensing images can intuitively display wide view scene information, and are widely applied
in the fields. It can be applied to multi-target recognition and tracking scenes such as battlefield
reconnaissance, border patrol, post-disaster rescue, public transportation and more [1]. However, it is
difficult to obtain spaceborne remote sensing images, which limits the in-depth research [2]. In recent
years, with the development and popularization of UAV technology, UAV technology presents the
characteristics of high efficiency, flexibility and low cost, and the imaging equipment carried tends to
be mature. It has been widely used in battlefield reconnaissance, border patrol, post disaster rescue,
public transportation, etc. [3,4], which makes the aerial photography data present a blowout situation.
In the face of so many aerial remote sensing data, how we can obtain useful information from aerial
video is an important direction in the field of computer vision [5].
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Target detection is the basis of tracking, recognition and image interpretation [6]. There are multi-
ple moving targets in the video, just because the video field angle captured by UAV monitoring system
is large. Thus, it is difficult to detect moving targets quickly and accurately. Xiao et al. [7] proposed a
low frame rate aerial video vehicle detection and tracking method based on joint probability relation
graph according to probability relation. Andriluka et al. [8] applied UAV technology to rescue and
search. Cheng et al. [9] established a dynamic Bayesian network from the perspective of pixels to realize
vehicle detection. Gaszczak et al. [10] established a model from the perspective of thermal imaging
to detect pedestrians and vehicles in aerial images. Lin et al. [11] improved the traditional Hough
transform to realize road detection. Rodríguez-Canosa et al. [12] established a model to solve the
problem of aerial image jitter to a certain extent. Zheng et al. [13] established GIS vector map to realize
vehicle detection. Liang et al. [14] guided target detection according to background information.
Prokaj et al. [15] built a dual tracker to realize the construction of background and prospect. Teutsch
et al. [16] established a model under the condition of low contrast to realize vehicle detection in aerial
monitoring images. Chen et al. [17] optimized the tracking window to realize multi-target detection.
Jiang et al. [18] introduced the prediction module to realize target tracking in order to enhance the
stability of tracking. Poostchi et al. [19] established semantic depth map fusion for moving vehicle
detection. Tang et al. [20] established single revolutionary neural networks to predict vehicle direction.
Aguilar et al. [21] used cascade classifiers with mean shift to realize pedestrian detection. Xu et al.
[22] established a prediction and feature point selection model to find moving targets in multi-scale on
infrared aerial images. Hamsa et al. [23] established a cascaded support vector machine and Gaussian
mixture model to realize vehicle detection (SVM + GMM). Ma et al. [24] established the rotation
invariant cascaded forest (RICF) to meet the target detection in complex background. Mandal et al.
[25] established simple short and shallow network to realize rapid target detection. Song et al. [26]
built a model according to the time and space relationship of the target, and then built the regulated
AdaBoost recognition model to realize target recognition. Qiu et al. [27] built a deep learning network
to track moving targets. Feng et al. [28] used mean shift algorithm to track high-speed targets. Wan et
al. [29] used Keystone Transform and Modified Second-Order Keystone Transform to achieve moving
target tracking. Lin et al. [30] used multiple drones to achieve multi-target tracking.

The above algorithms have achieved certain results in target detection, but there are still defi-
ciencies: The model considers the limited interference of noise, tree disturbance and other factors,
which leads to the inaccurate extraction of moving targets. Insufficient mining target attributes lead to
inaccurate recognition. The innovation of our algorithm shown as following aspects: firstly, from the
perspective of Gestalt vision, we propose a target motion extraction algorithm based on the saliency
graph theory; secondly, in order to achieve fast and accurate target recognition, we constructed the
convolutional neural network structure with global information, especially take global information
into consideration.

2 Algorithm

Gestalt visual school believes that the reason why things are perceived is the result of the public
action of eyes and brain. Firstly, the image is obtained through the eyes, and then the objects are
combined according to some rules to form an easy to understand unity. If it cannot be combined, it
will appear in a disordered state, resulting in incorrect cognition. Based on this principle, a multi-target
recognition process in accordance with the Gestalt vision principle is established, as shown in Fig. 1.
Firstly, the salient graph mechanism is established to extract moving targets, and then the convolution
neural network structure based on global information is used to realize target recognition.
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Figure 1: Algorithm pipeline

2.1 Moving Target Extraction Based on Salient Gragh
In the video scene, a large amount of short-term motion information is included between

consecutive image frames, and ignores the information that does not move temporarily. A video with
long time contains a lot of long-time motion information, so the conditional motion salient graph
includes the motion saliency of the target and the motion saliency of the background. In addition, the
interference of noise makes it difficult to distinguish the significance.

A time series group containing short-term motion information and long-term motion information
is constructed on the time scale. By calculating the motion significance probability, the significance of
the moving target is highlighted and the background significance is suppressed, as shown in Fig. 2.

Figure 2: Pipeline of moving target extraction algorithm based on salient graph

Temporal Fourier transform (TFT) is a motion saliency detection algorithm based on time
information which uses pixels at the same position in consecutive frames to integrate in time to form
a time series. The waveform is reconstructed by Fourier transform and inverse Fourier transform, and
the maximum point is marked on the salient graph. The significant values indicate the probability that
the target belongs to the foreground. Let the time series be

Di
x,y (t) = {

Ix,y (t) , Ix,y (t + 1) , . . . Ix,y (t + i)
}

(1)

Its corresponding Fourier transform is obtained as

f i
x,y (t) = F

(
Di

x,y (t)
)

(2)

pi
x,y (t) = angle

(
f i

x,y (t)
)

(3)

where F represents Fourier transform and pi
x,y (t) represents the phase spectrum of f i

x,y (t).

I i
x,y (t) = g (t) ∗ F−1

(
pi

x,y (t)
)

(4)

where F−1 represents inverse Fourier transform, and g(t) is Gaussian filter. The larger the amplitude
of I i

x,y change, the larger the time scale change. Thus, the motion significance of the time series is
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constructed as

ϕ i
x,y = max

(∥∥I i
x,y (t)

∥∥)
(5)

where ϕ i
x,y represents the significant value of the pixel (x, y) in the i-th viewing angle sequence,

| | is F2 norm.

Conditional motion saliency probability refers to the probability that pixels belong to the
foreground in the time series. To unify the scale, ϕ i

x,y is normalized as

PF

(
Ix,y (t) |Di

x,y (t)
) = ϕ i

x,y − min (ϕ i)

max (ϕ i) − min (ϕ i)
(6)

where PF

(
Ix,y (t) |Di

x,y (t)
)

represents the normalized value of ϕ i
x,y, and ϕ i is the time series significant

image composed of the current frame at time t and the i-th time slice. The motion saliency value is
positively correlated with the probability that the corresponding point belongs to the foreground.

The motion saliency probability represents the probability that the pixel belongs to the foreground
by the motion saliency of the pixel. Under the guidance of the full probability formula, it can be
calculated as follows:

PF

(
Ix,y (t)

) =
l∑

i=1

PF

(
Ix,y (t) |Di

x,y (t)
)

P
(
Di

x,y (t)
)

(7)

The motion saliency probability graph uses the long-term and short-term motion information
to enhance the saliency of the moving target in the current frame and suppress the motion saliency
of the background and historical frame. Due to the background interference, there is false detection
in the detection results, which makes the local significance high and difficult to remove by traditional
methods. We use the correlation between adjacent pixels to construct a histogram algorithm to segment
the saliency graph, then model the spatial information, and use the spatial information modeling to
calculate the displacement probability, which has achieved the purpose of eliminating interference.

The histogram based threshold method is used to segment the motion saliency probability graph
to obtain the candidate pixels,

S =
{

1 PF

(
Ix,y (t)

) ≥ T
0 other

(8)

where T is obtained by the traditional Ostu algorithm. When S = 1, it indicates foreground candidate
pixels. When S = 0, it indicates background candidate pixels. When the background, i.e., trees, moves,
there is a risk of detection as the target. However, its inter frame motion amplitude is limited. We
construct the function:

PN

(
Ix,y (t)

) = max
(x,y)∈N(x,y)

(
PB

(
Ix,y (t)

))
PB

(
Ix,y (t)

) = 1 − PF

(
Ix,y (t)

) (9)

where PB

(
Ix,y (t)

)
is the probability that the pixel (x, y) belongs to the background. The above algorithm

can suppress the background, but it will also eliminate the real moving target pixels. We limit the
detected connected region and measure it by considering the neighborhood position of the whole
foreground target. Define the component displacement probability as the probability of a detected



CMES, 2023, vol.134, no.1 589

connected component:

Pc

(
Ix,y (t)

) =
∏

(x,y)∈C

PN

(
Ix,y (t)

)
(10)

For the connected component of the real target, the probability of the component displacement
from the background is very small, and the threshold th is set to distinguish:

Sc (x, y) =
{

1 Pc (x, y) ≤ th

0 Pc (x, y) > th
(11)

where Sc(x, y) = 1 represents the foreground and Sc(x, y) = 0 represents the background.

2.2 Convolution Neural Network Based on Global Information
Convolutional neural network (CNN) is a kind of feedforward neural network, whose neurons

carry out corresponding control on the units within the coverage. It has excellent performance in
the field of large-scale image processing. Therefore, we process remote sensing images based on
traditional CNN.

The basic structure of CNN includes feature extraction layer and feature mapping layer. Feature
extraction layer: The input of each neuron is connected to the local acceptance domain of the previous
layer, and the local features are extracted. When the local feature is extracted, the position relationship
between it and other features is also determined. Feature mapping layer: Each computing layer of the
network is composed of multiple feature maps. Each feature mapping can be regarded as a plane,
and the weights of all neurons on the plane are equal. Because the feature detection layer of CNN
learns from the training data, it avoids explicit feature extraction and implicitly learns from the training
data. Because the weights of neurons on the same feature mapping surface are the same, the network
can learn in parallel. Subsequent scholars have carried out a lot of research on the basis of CNN:
Bayar et al. [31] constrained the convolution layer to meet the image target detection. Li et al. [32]
used a double-layer CNN structure to detect targets. The above algorithms have improved CNN from
different aspects and achieved certain results.

According to the particularity of remote sensing video, traditional CNN cannot be directly
applied to multi-target tracking based on remote sensing video, which is not enough to capture global
information. Therefore, a new convolution neural network framework based on global information is
proposed by effectively combining global average pool and Atrous convolution, as shown in Fig. 3.

The image sequence is convoluted and pooled to reduce the size of the image and increase the
receiving domain. The merged image is restored by up sampling to the original size prediction of the
image. The information in the original image is lost while zooming out and adjusting. To solve this
problem, Atrous Convolution is applied, as shown in Fig. 4. Atrus revolution is a convolution idea
proposed to solve the problem of image semantic segmentation in which down sampling will reduce
image resolution and lose information. The advantages are: on the condition of loss information
without pooling and the same calculation conditions, the receptive field is increased so that each
convolution output contains a large range.

Global information plays a key role in image classification or target detection. In order to obtain
more global context information, the global average pool is combined with the atrus revolution. Fig. 5
shows the main structure of the network.
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Figure 3: Convolutional neural network graph based on global information

Figure 4: Atrous convolution

Figure 5: The network structure
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When extracting global features for feature fusion, due to different data scales at different levels,
it is necessary to regularize the feature data.

y = X
‖X‖2

(12)

We use L2-normalize to normalize the input feature x, where y represents the normalized output
vector. ||• | is L2 norm.

Because the value distribution of the eigenvector is uneven, the scale parameter is introduced as

z = αy (13)

In the training process, L2 norm propagation is used to calculate the scale parameters through
the chain method:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂l
∂yi

= ∂l
zi

α

∂l
∂α

= ∑
j

∂l
∂zj

yj

∂yi

xi

= ‖x‖2
2 − x2

i

‖x‖3
2

(14)

where l is the objective function. L2 norm normalizes the extracted features and the added global
features.

The median frequency balance strategy is used, and the cross entropy loss function is

l (p, p∗) = −1
n

∑
i

p∗ log pi , pi = Ai∑
c

Ac
i

(15)

as the objective function in the network training process. It is to determine the distance between the
actual output P and the desired output p∗, where c is the class of the tag.

Because the number of pixels in each category in the training data varies greatly, different weights
are required according to the actual category. In order to obtain better results, the median frequency
balance is proposed, and Eq. (4) is rewritten as follows:⎧⎪⎪⎨
⎪⎪⎩

l (p, p∗) = −1
n

∑
i

p∗ log (pi)wc

wc = M (f (c) |c ∈ C)

f (c)

(16)

where wc is the adjustment weight, f (c) is the proportion of pixel value c to the total number of pixels.
Through the different loss weights of real classes in the data to balance the categories, we can achieve
better classification results.

In the process of deep neural network training, dropout is used in the full connection layer of
convolutional network to prevent network over fitting [33]. However, in FCN, dropout layer cannot
improve the network generalization ability. To solve this problem, dropblock is introduced

γ = 1 − kp
bs2

f s2

(fs − bs + 1)
2 (17)

where γ is used to control the number of channels removed from each convolution result. bs is used
to control the block size to 0. kp is the dropout parameter. fs is the dimension of the characteristic
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diagram. dropblock makes the training network learn more robust features and greatly improves the
generalization ability of the network.

3 Experiment and Result Analysis

The algorithm proposed in this paper is programmed and applied in the window system, VS2010
platform. Window 7, Intel® Core i5-6500 CPU, 3.20 GHZ, 16.0 GB and uses the deep network to
extract features. We normalized the image to 512 × 512. At present, the average processing time of
a single frame image is 1.2 s, which temporarily cannot meet the needs of real-time computing, and
further research will be conducted in the future.

3.1 Database
3 datasets: The UA-DETRAC [34] dataset is a 10 h video shot by Canon EOS 550D camera

at 24 different locations with a frame frequency of 25 fps and a resolution of 960 × 540 pixels. The
UAV-DATA [35] dataset contains scenes such as trees and highways, including the characteristics of
large-scale and multiple moving targets. The total video is 4.89 GB, and the minimum and maximum
image resolution are 1920 × 1080 and 3840 × 2160, respectively. The minimum and maximum frame
rate is 4 fps and 25 fps, respectively. The campus environment database is the shooting data over the
playground, which contains a large number of small targets, as shown in Fig. 6.

Figure 6: Data display

3.2 Detection Accuracy
To measure the effectiveness of the algorithm, AOM and ROC curves are introduced

AOM(γ , ν) = S(γ ∩ ν)

S(γ ∪ ν)
× 100% (18)
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where γ represents the result of manual annotation and ν represents the detection result of the
algorithm.

Based on the dataset described above, we have divided the data into Data 1: The first frame is a
pure background image, and the target is moving all the time. Data 2: Small moving targets. Data 3:
It remains stationary for a long time after the target moves.

As shown in Table 1 and Fig. 7, with the complexity of the environment, the performance of the
algorithm shows a downward trend. SVM + GMM algorithm uses GMM model to extract motion
region, and SVM is used to judge whether the region is foreground. RICF detects the target according
to the rotation invariance of the target. Time space [26] extracts the moving region according to the
relationship between time and space, and establishes AdaBoost model to realize multi-scale target
recognition. Under the guidance of gestalt vision, the proposed algorithm establishes a saliency graph
mechanism to extract moving targets, and then realizes target recognition based on the convolution
neural network structure of global information. Although the operation speed is slightly lower than
SVM + GMM, AOM is the highest.

Figure 7: Region of interest curves
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Table 1: AOM and operation time

Algorithm Data 1 Data 2 Data 3 The average time (S/frame)

SVM+GMM 80.1 76.2 72.5 0.03
RICF 81.8 78.5 74.8 0.08
Time-Space 82.5 79.2 75.6 0.09
OURs 83.1 80.3 78.1 0.05

3.3 Effect of Target Extraction
In order to intuitively show the effect of our algorithm, some detection results are selected, as

shown in Fig. 8. The proposed algorithm can effectively detect the target, and has good detection
effect in the face of complex background, unstable target motion and small targets.

Figure 8: Detection results images
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4 Conclusion

Remote sensing images can obtain ground and target’s information intuitively so as to provide
accurate basis for decision-making. To solve the problem that it is difficult to accurately extract moving
objects under complex conditions such as long-term stay and small-amplitude motion of moving
objects in remote sensing videos, so we proposed a multi-moving object recognition algorithm based on
remote sensing videos. Firstly, the problem of moving target detection is transformed into the problem
of salient region probability, and the saliency map is constructed to extract moving targets. Secondly, by
analyzing the global and local information of multiple targets, a convolutional neural network with
global information is constructed to identify the target. Experiments show that the research results
have a better effect on multi-target extraction in complex environments, and provide a new method
for multi-target tracking in remote sensing images. So, on this basis, follow-up research on ground
feature analysis can be carried out accordingly.
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