
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2022.021394

REVIEW

A Review of the Current Task Offloading Algorithms, Strategies and Approach
in Edge Computing Systems

Abednego Acheampong1, Yiwen Zhang1,*, Xiaolong Xu2 and Daniel Appiah Kumah2

1School of Computer Science and Technology, Anhui University, Hefei, 230039, China
2School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China

*Corresponding Author: Yiwen Zhang. Email: zhangyiwen@ahu.edu.cn

Received: 12 January 2022 Accepted: 18 March 2022

ABSTRACT

Task offloading is an important concept for edge computing and the Internet of Things (IoT) because computation-
intensive tasks must be offloaded to more resource-powerful remote devices. Task offloading has several advantages,
including increased battery life, lower latency, and better application performance. A task offloading method
determines whether sections of the full application should be run locally or offloaded for execution remotely. The
offloading choice problem is influenced by several factors, including application properties, network conditions,
hardware features, and mobility, influencing the offloading system’s operational environment. This study provides
a thorough examination of current task offloading and resource allocation in edge computing, covering offloading
strategies, algorithms, and factors that influence offloading. Full offloading and partial offloading strategies are the
two types of offloading strategies. The algorithms for task offloading and resource allocation are then categorized
into two parts: machine learning algorithms and non-machine learning algorithms. We examine and elaborate on
algorithms like Supervised Learning, Unsupervised Learning, and Reinforcement Learning (RL) under machine
learning. Under the non-machine learning algorithm, we elaborate on algorithms like non(convex) optimization,
Lyapunov optimization, Game theory, Heuristic Algorithm, Dynamic Voltage Scaling, Gibbs Sampling, and
Generalized Benders Decomposition (GBD). Finally, we highlight and discuss some research challenges and issues
in edge computing.

KEYWORDS
Task offloading; machine learning; algorithm; game theory; dynamic voltage scaling

1 Introduction

The pervasiveness of the smart Internet of Things (IoT) [1] enables many electric sensors and
devices to be connected and generates a large amount of data flow [2]. IoT applications, such as
smart homes, disease prevention and control, and telecommunication are affecting and transforming
our lives with the introduction of the IoT. These applications are time-sensitive and take a lot of
energy, memory, and computational resources. Although IoT devices are increasingly becoming more
powerful, the battery, CPU, and memory are still insufficient when running large apps on a single

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2022.021394
mailto:zhangyiwen@ahu.edu.cn


36 CMES, 2023, vol.134, no.1

device. Computational offloading is one of the remedies to the difficulties mentioned above, in which
the computation workloads are transferred to another system for execution [3].

Meanwhile, with robust data center architectures, the cloud is a well-tested and used option
that may enhance the resource capabilities of end devices. Furthermore, the cloud is well-equipped
with the essential automation tools and features to provide the required transparency to end devices
while concealing this resource extensions’ difficulty and logistical intricacies [4]. Consequently, the
practice of offloading computation-intensive tasks of resource-intensive applications from the end
devices to centralized Cloud infrastructure is a well-explored solution [4–6]. Nevertheless, applications
such as media processing, online gaming, Augmented Reality (AR), Virtual Reality (VR), self-driving
automotive applications, and recommendation systems [7–9] run on a wide range of mobile devices.
When the focus of new applications shifted to high throughput and low latency communications,
the cloud began to expose its significant drawbacks resulting from the resource constraints of these
ubiquitous mobile devices. Running such resource-hungry applications requires fast response time
data rates [10].

The need for alternative solutions arose due to the long distance between end devices and Cloud
infrastructure, an unreliable, intermittent transport network, the cost of traversing the backhaul net-
work, and the increased security surface throughout this long communication path [4]. Edge computing
is a new computing paradigm that employs edge servers close to users. As alternative paradigms of edge
computing, three related notions (technologies) are proposed: Open Edge Computing cloudlets [3],
Multi-access Edge Computing (MEC) of European Telecommunications Standards Institute (ETSI)
(2016), and Fog computing of OpenFog Consortium (2016) [11]. This novel infrastructure component,
which establishes an extra resource layer between consumer devices and the cloud, can reduce rising
bandwidth usage in backhaul, transport, and Cloud networks and communication latency and support
real-time applications. Moreover, there is some research on AI’s optimization of edge performance
[12]. End devices, for example, can now offload resource-intensive operations to a nearby Edge
device, reducing total execution time while avoiding the need for additional communication routes
to a distant Cloud infrastructure. This method, also known as task offloading or computation
offloading, improves the user’s experience by reducing latency and improving energy efficiency for
battery-powered devices [4]. Computation offloading entails dividing power-hungry mobile apps to
use cloud resources from afar. Parts of code profiled as computation and energy heavy are identified
for execution on cloud servers (partial offloading). Alternatively, the offloading method is used to
decide whether to offload all tasks to a cloudlet or execute all tasks locally (Full offloading). Several
research publications have highlighted the benefits of offloading to save energy and minimize system
latency on mobile devices.

A distant or local execution technique, a transmission approach, and a result send-back procedure
are all part of task offloading and resource allocation. The major components of the offloading
scheme are as follows. (A) Job partitioning: If a task can be partitioned, we must divide it optimally
before offloading it. If not, the entire task should be offloaded to an edge server or run locally.
(B) Offloading decision: whether to offload to edge server(s) for execution or perform task locally.
(C) Allocation of resources: determining the number of resources required. These resources include
computing, communication, and energy, allocated for the tasks or components [11]. Fig. 1 shows a
typical offloading process.

This study provides a thorough examination of task offloading in edge computing, including
offloading strategies (full or partial), algorithms, and factors that influence offloading. The following
are the contributions of this article:



CMES, 2023, vol.134, no.1 37

1. A comprehensive survey of the current task offloading and resource allocation in edge comput-
ing, including offloading strategies, offloading algorithms, and factors affecting offloading, is
presented.

2. We present the partitioning of offloading strategies into either full or partial offloading and
present some comprehensive surveys.

3. We group several recent tasks offloading and resource allocation algorithms into two main
categories. (i) machine learning algorithms and (ii) non-machine learning algorithms.

4. We elaborate on the factors affecting offloading and discuss some research challenges and
issues.

The following is how the rest of the paper is structured: We examine related work to this article, an
overview of offloading, and our paper selection criteria in Section 2. Offloading performance metrics
and factors affecting offloading are presented in Section 3. Classification of offloading algorithms
into two groups, machine learning, and non-machine learning algorithm and offloading strategies,
are discussed in Section 4. Section 5 presents an open discussion and analysis of the various metrics,
algorithms, systems, and utilized tools. A comparison of the major utilized offloading algorithms and
some research challenges are presented in Section 6. Finally, a conclusion is presented in Section 7.

2 Related Work

The authors of [7] studied offloading modeling in edge computing. The article discussed some
major edge computing architectures and classified past computation offloading research into different
groups. Furthermore, the authors explored various basic models proposed in offloading modeling,
such as the channel, computation and communication, and energy harvesting models. The authors
also go over several offloading modeling techniques, including (non-) convex optimization, Markov
decision processes, game theory, Lyapunov optimization, and machine learning. In Mobile Cloud
Computing, Ahmed et al. [13] investigated mobile application frameworks and analyzed optimization
methodologies affecting design, deployment, and offloading performance. The review paper featured
an appropriate classification as a benefit.

Saeik et al. [4] explored how the edge and cloud can be coupled to help with task offloading. They
focused on mathematical, artificial intelligence, and control theory optimization processes that can be
used to satisfy dynamic requirements in an end-to-end application execution strategy.

Shakarami et al. [10] proposed a survey paper on stochastic-based offloading approaches in
various computation environments, including Mobile Cloud Computing (MCC), Mobile Edge Com-
puting (MEC), and Fog Computing (FC), in which a classical taxonomy is presented to identify new
mechanisms. Markov chain, Markov process, and Hidden Markov Models are the three core fields of
the proposed taxonomy.

Shakarami et al. [14] proposed ML-based computation offloading strategies in the MEC envi-
ronment in the form of classical taxonomy. Reinforcement learning-based mechanisms, supervised
learning-based mechanisms, and unsupervised learning-based mechanisms are the three primary cat-
egories in the proposed taxonomy. These classes are then compared based on essential characteristics
such as performance measures, case studies, strategies used, evaluation tools, and their benefits and
drawbacks.

Zheng et al. [3] provided a complete overview of computation offloading in edge computing,
covering scenarios, influencing variables, and offloading methodologies. Authors specifically covered



38 CMES, 2023, vol.134, no.1

crucial problems during the offloading process, such as whether to offload, where to offload, and
what to offload.

Bhattacharya et al. [15] looked into the adaption techniques of offloading systems. By defining
the variable characteristics in the offloading ecosystem, presenting offloading solutions that adapt to
these parameters, and highlighting the accompanying gains in user Quality of Experience, a monocular
picture of the task offloading challenge was presented.

Carvalho et al. [16] surveyed computation offloading in edge computing using artificial intel-
ligence and non-artificial intelligence techniques. Under AI techniques, they considered machine
learning-based techniques that provide promising results in overcoming the shortcomings of current
approaches for computing offloading and categorized them into classes for better analysis. They went
on to discuss a vehicular edge computing environment offloading use case. Guevara et al. [17] looked at
the primary issues with QoS constraints for applications running in traditional computing paradigms
like fog and cloud. After that, they demonstrated a typical machine learning classification method.
The paper’s key benefit is that it professionally focuses on machine learning. Shan et al. [18] classified
offloading methods into distinct purposes, such as minimizing execution delay, minimizing energy
consumption, and minimizing the tradeoff between energy consumption and execution latency

However, the above surveys have several flaws, including a lack of paper selection criteria and
consideration for other non-machine learning algorithms. The majority of the papers focused only on
the machine learning aspect, ignoring the powerful algorithms that are not machine learning-based.
Furthermore, several studies do not clearly distinguish between full and partial offloading. These are
some of the areas we hope to address in our study. First, we want to look at both machine learning
and non-machine learning algorithms, provide a clear definition of full and partial offloading and
examine some of the recent research that has been done using both techniques.

2.1 Overview of Offloading
With the prevalence of smart devices and cloud computing, the amount of data generated by

Internet of Things devices has exploded. Furthermore, emerging IoT applications such as Virtual
Reality (VR), Augmented Reality (AR), intelligent transportation systems, smart homes, smart health,
smart factories. And other IoT applications require ultra-low latency for data communication and
processing, which the cloud computing paradigm does not provide [19]. Mobile Edge Computing
(MEC) is an efficient technique to bring user and edge servers closer by offloading a computation-
intensive task on deployed computation servers at the user side and minimizing backhaul traffic
created by apps to a remote cloud data center. MEC decreases the time it takes to complete calculation
operations for delay-sensitive cloud computing applications and saves energy. The offloading process
usually entails two important decisions: what tasks should be offloaded and where they should be
offloaded to, or where the offloading should be done. The latter is particularly important because it
directly influences the system’s quality of service and performance. Several researchers have proposed
novel approaches to enhance offloading. Some approaches are MDP based, RL based and even
link-prediction based. Zhang et al. [20] used the link-prediction approach in their offloading model;
similarly, Liu et al. [21] adopted link-prediction in a recommendation system, making link-prediction
a versatile approach. Unfortunately, there is not much research on link-prediction-based offloading
currently. Offloading can take place between the device to device, a device to edge server, edge server
to edge server, edge server to the cloud, cloud to the edge server, and device to cloud. Fig. 2 shows
a typical MEC architecture and shows the various places offloading can occur. As illustrated, this
structure has six divisions classified into three main layers.



CMES, 2023, vol.134, no.1 39

Figure 1: A typical offloading process

• At the device layer (Device to device), IoT gadgets have become an integral part of our daily
lives in recent years. They are both data producers and data consumers. Mobile devices can
provide a limited number of computing resources, and most of these resources are idle most of
the time. When a mobile device’s compute capabilities are exceeded, it can split the application
into smaller tasks and offload to adjacent mobile devices with idle processing resources. It can
help reduce single device resource scarcity and increase overall resource consumption.

• At the edge layer (Device to edge server), most IoT devices cannot do sophisticated calculation
tasks due to their low resources. A single device with limited resources (e.g., a smartphone) will
not complete the tasks promptly. IoT devices can transfer compute activities to nearby edge
servers, such as Cloudlets [22], or MEC servers [23], where they will be processed and evaluated,
as shown in Fig. 1. It successfully lowers the cost and delay. It can help lessen the burden on
embedded devices when running machine learning algorithms and enhance app performance.

• At the edge layer (edge server to edge server), edge computing can help IoT devices at the edge
because of their computational capacity and quick response time. However, because a single
edge server’s processing capacity is limited, numerous edge nodes must be combined to maintain
load balance and share data to provide cooperative services, such as collaborative edge.

• At the cloud layer (edge server to Cloud server), edge servers (e.g., MEC, Cloudlet, and
Fog) have the processing and storage capability to complete most operations at the edge
layer. However, they still require cloud services to store access data in many instances. Smart
Healthcare uses fog to cloud offload to keep patient records for a long time. Due to the
widespread distribution of resources, the edge server and cloud service must collaborate to
complete a task. Fog computing requires the original spatial information provided by the cloud
during rescue missions to direct rescuers to do on-site search and rescue activities. The fog and
cloud give jobs to each other in this fashion and work together to provide service.



40 CMES, 2023, vol.134, no.1

• At the cloud layer (Device to Cloud server), IoT devices may need to offload tasks to a
remote cloud server for data storage or processing in some instances. Heavy tasks can be
offloaded to powerful distant centralized clouds (e.g., Amazon EC2 [24], Microsoft Azure
[25], and Google), and enormous volumes of data can be stored on Cloud storage. Mobile
Cloud Computing (MCC) [26] benefits mobile consumers by prolonging battery life, enabling
advanced applications, and increasing data storage capacities. Mobile games can offload
computationally heavy operations, such as graphics rendering, to the cloud and display the
results on the screen to interact with consumers. It can improve the gaming experience while
conserving battery life on mobile devices.

• At the device layer (Edge server to device), IoT devices may need to receive external data for
calculations in some cases, such as temperature, humidity, and other environmental parameters.
Due to its restricted function and resources, it is difficult for an IoT device to measure and retain
this information in significant amounts. As a result, IoT devices can connect to edge servers such
as Cloudlet or MEC, located near IoTs. Edge servers have the computing power and may gather
data from various sources. It can effectively lower the cost of connecting to the cloud and the
load on equipment and transmission latency.

• Task offloading can also be divided into full offloading and partial offloading. Full offloading,
also known as binary or coarse-grained or total offloading, occurs when the entire task is
migrated to the edge cloud or edge for execution or when the entire task is executed locally.
In contrast, partial offloading, also known as fine-grained offloading or dynamic offloading,
occurs when the entire task is dynamically transmitted as little code as possible and offloads
only the computation-intensive parts of the application (more details on offloading categories
in Section 4). Fig. 3 shows the roadmap of this paper.

Figure 2: MEC architecture



CMES, 2023, vol.134, no.1 41

Figure 3: Roadmap of this paper

2.2 Paper Selection Criteria
A research approach for good papers in the MEC Offloading scenario is described in this part.

Exploring and researching relevant papers is needed to build a more knowledge-rich survey.

2.2.1 Question Formulation

This survey intends to look at the essential features and techniques used in papers over time
and the main concerns and obstacles in offloading, such as factors affecting offloading. Because an
important goal of the current survey is to cover the entire study of MEC offloading and highlight
relevant outstanding issues, specific key research questions must be answered to handle corresponding
concerns.

Q1. What technique or algorithm is utilized in ML and Non-ML based offloading approaches?
See Subsections 4.1 and 4.2.

Q2. What performance metrics are usually utilized in ML and Non-ML based offloading
approaches? See Section 3.

Q3. What factors affect both ML and Non-ML based offloading approaches? See Subsection 3.1.

Q4. What evaluation tools are utilized for assessing the ML and Non-ML based approaches? See
Subsection 5.4.

Q5. What utilized systems are considered in both ML and Non-ML based approaches?
See Subsection 5.3.



42 CMES, 2023, vol.134, no.1

Q6. What are the future research directions and open perspectives of ML and Non-ML based
offloading approaches? See Subsection 6.1 .

Sections 3 to 6 try to elaborate more on the mentioned technical questions.

2.2.2 Article Selection

Suitable papers in the MEC have been explored in the academic databases. The principles of
selecting articles in the process of exploring are summarized as follows:

1. Published papers between 2015 and 2021,

2. Published papers in the MEC,

3. Technical quality selection to choose appropriate papers in the MEC.

In the exploration process, appropriate keywords such as “mobile”, “edge”, “computing”,
“offloading”, “MEC”, “unsupervised learning”, “deep learning”, “reinforcement learning”, “deep
Q-networks”, “game theory”, “Lyapunov optimization”, “supervised learning”, “machine learning”,
“convex optimization”, “heuristic”, “Markov-decision process”, and “resource allocation” were used.
By narrowing the time limitations between 2015 and 2021, the exploration took place in April 2021.
The outcome of the exploration was extraordinarily high in numbers since the issue of offloading spans
many models in the literature, including stochastic and non-stochastic models with comprehensive
techniques such as game theory, machine learning, and many more. As a result, 1147 articles were
found due to the search. For the first step, 900 irrelevant papers were discarded by analyzing several
essential components, such as the title, abstract, contributions, and conclusion. Following that, 152
papers were discarded as low quality after examining the organization of the remaining papers. As
a result, the MEC approved 94 of the remaining articles. After removing 20 duplicate papers and 4
books, the remaining 71 papers related to ML and Non-ML are included in the current study, as
shown in Fig. 4.

Figure 4: Paper selection

3 Offloading Metrics

The following technical question is addressed in this section:

Q2: What performance metrics are usually utilized in ML and Non-ML based offloading
approaches

Researchers in the task offloading domain consider several offloading metrics; these metrics are
either considered jointly as a multi-objective problem or individually. This paper will briefly explain



CMES, 2023, vol.134, no.1 43

these offloading metrics in the task offloading domain. When solving the task offloading problem,
several different objectives may be applied. An objective function helps to formulate these goals
and guide the offloading solution formally and mathematically. The objectives come in the form
of offloading metrics. The offloading metrics covered include latency, energy, cost, bandwidth, and
response time.

A. Energy

The overall energy required by offloading comprises the energy consumed to send the task from
the device to the server, the energy consumed to execute the task in the edge server, and the energy
consumed to return the results to the device [23,27]. Because mobile and IoT devices are typically
battery-powered, maximizing the battery’s lifetime through lowering the device’s energy usage is a big
concern. Inevitably, it is logical to expect that the most significant energy savings can be achieved
by using a full offloading technique. Several other energy suppliers must be considered even when a
total offloading strategy is used. From a complete, network-wide perspective, it is easy to see how the
problem is moved to the Edge or Cloud infrastructures. As a result, energy consumption minimization
must be followed at all tiers of an end-to-end communication paradigm. A variety of measures can
be used to assess this goal; the most frequent is the average power consumption, which is calculated
by summing the power consumption of the hardware equipment. Energy consumption, presented
as power use over time, is another option. Typically, reducing power use leads to reducing energy
consumption as well.

B. Latency

The total time it takes to transmit the work to the edge servers, the time it takes to execute the task
on the servers, and the time it takes to return the results to the device are all factors in the offloading
requirement [28]. There are a lot of various delay components that contribute to this. The first delay
source is task processing, which can occur when a task is performed locally on the device, at the edge,
or in the cloud [29,30]. When offloading a task to a remote edge or cloud location, the transmission
and propagation delays at the various infrastructure tiers must be considered. Furthermore, processing
and queuing delays at various processing and forwarding devices must be considered. Finally, during
the task offloading decision, appropriately splitting the task can be an additional delay factor [31].
The delay goal can be described as either minimizing the average delay of each activity or minimizing
the overall delay of all the mobile application’s related tasks. This goal is equitable to the resources
available and the network circumstances.

C. Cost

Different academics use different methods to calculate the cost of MEC offloading. The costs
involved by delivering the tasks via the transmission media, executing them on the server, and receiving
an acceptable answer from the request source are referred to as the cost. These costs are determined
by the task’s location, reaction time, task demand, and task energy consumption. Since consumed
energy and delay are the essential components in computing total cost, making a trade-off among
these two relevant metrics is critical. As a result, overall execution costs are regarded similarly to the
two previously described measures, which comprise local and remote execution costs, as well as the
processing and buffering delays.

D. Bandwidth

A crucial constraint is the available bandwidth at the access network and how different users might
share it to offload workloads. Nevertheless, its significant impact on task offloading performance can
also be regarded as a goal. Proper spectrum allocation becomes critical because available bandwidth is



44 CMES, 2023, vol.134, no.1

limited, particularly in IoT and congested cellular networks. Spectrum allocation is frequently linked
to each end user’s transmission rate and power level and the duration of each device’s transmission to
distribute bandwidth utilization better. When attempting to deploy spectrum utilization effectively, a
useful statistic is to analyze spectrum usage regarding the number of offloaded jobs, power transfer,
and bandwidth consumption [32]. In light of the dynamic wireless settings, the best bandwidth
scheduling must consider the time-varying channel condition and the task average response time.

E. Response Time

The overall time it takes for a user to receive a response is called response time. Changes in a
system’s processing time and latency, which occur due to changes in hardware resources or utilization,
can impact it. In the MEC scenario, response time is defined as the time between offloading tasks
from local devices to remote servers and obtaining the appropriate response in the specified devices
as a measure of performance. There are discrepancies between the system’s response time and latency.
The overall time between initiating a request and receiving an appropriate response is called response
time. Latency, on the other hand, is defined as the time it takes for a transmitted request to arrive at
its destination and be processed.

3.1 Factors Affecting Offloading
The following technical question is addressed in this section:

Q3: What factors affect both ML and Non-ML based offloading approaches

1) Wireless Channel

When it comes to computing offloading, the state of the wireless network is a critical aspect
that has a considerable impact on offloading decisions. Wireless is the most common method of
communication between edge devices and servers. Wireless channels have reflection, refraction, and
multipath fading, which are not present in wired channels [11]. The fluctuations in channel strength
across time and frequency are a defining feature of the wireless channel. The variants can be divided
into two groups: (I) Fading on a large scale occurs when the mobile moves a distance on the magnitude
of the cell size. It is typically frequency-independent due to shadowing by massive objects like buildings
and hills and distance due to signal path loss. (II) Small-scale fading is caused by constructive and
destructive interference between the transmitter and receiver’s many signal channels; it occurs at the
spatial scale of the carrier wavelength and is frequency dependent [33]. A typical channel’s accessibility
pattern can be classified as stochastic or deterministic. The former is only available sometimes, but the
latter is expected to be available at all times [10].

2) Bandwidth and Network Interference

The data send rate is determined by the bandwidth between the IoT device and the server, and
the data transmit time is affected. In some circumstances, the data transmission time between the
device and the server may outweigh the offloading delay, resulting in too long latency to meet the
time constraint. Furthermore, network interference is difficult to anticipate, influenced by device
mobility, bandwidth variance, network congestion, and the distance between devices and servers.
Network interference significantly impacts the offloading system’s ability to fulfill latency-constrained
applications [34].



CMES, 2023, vol.134, no.1 45

3) End Device

Mobile devices, sensors, and IoT devices are just a few examples of edge devices. Their hardware
architectures, processing capabilities, storage capacity, and operating systems are distinct. As a result,
device heterogeneity will impact offloading effects such as execution time and energy usage. Moreover,
device mobility significantly impacts offloading; if mobile users are continually moving around, this
may generate interference amongst users. Furthermore, in the case of an IoV or a UAV, if the device,
whether it is an automobile or a UAV, departs from the offloading range before the results obtained
are provided, the device will most likely need to find other offloading sources, which will increase delay
and waste device energy [35].

4) Near-End Device

The effect of computation offloading is mostly determined by the servers that provide processing
task functionality. Before making an offloading decision, end devices should examine the computation
capabilities of servers, available resources, distance, and access technologies. Computing capability
refers to the rate with which data is processed at a server; it is one of the most critical, but not the only,
considerations for deciding whether or not to offload. The response time is also affected by a lack
of resources. When a task is offloaded to a server, but the CPU is overcrowded or occupied by other
tasks, the task is paused and waits for the CPU, increasing response time and affecting offloading [36].

4 Offloading Algorithms

The following technical question is addressed in this section:

Q1. What technique or algorithm is utilized in ML and Non-ML based offloading approaches?

In this paper, we will group the offloading techniques adopted in mobile edge computing into two
categories, (1) machine learning offloading algorithms, illustrated in Table 1, (2) non-machine learning
offloading algorithms, illustrated in Table 2. First of all, most of the existing offloading reviews focus
on machine learning methods, and provide very detailed classification methods [14]. Second, few
reviews focus on non-machine learning methods. Therefore, this paper considers offloading methods
into machine learning and non-machine learning, which can include all offloading comprehensively.
Finally, dividing offloading into machine learning and non-machine learning can give us a better
understanding of the development of offloading.

4.1 Machine Learning Offloading Algorithms
Here we will introduce several machine learning algorithms that have been adopted and invented

by researchers to tackle problems with edge computing offloading. See Table 1 for more details.

4.1.1 What is Machine Learning?

According to IBM, machine learning is a branch of artificial intelligence (AI) and computer
science that focuses on using data and algorithms to imitate the way that humans learn, gradually
improving its accuracy [37]. Generally, we will define machine learning as an application of artificial
intelligence (AI) that allows systems to learn and improve from experience without being explicitly
programmed automatically. Machine learning focuses on developing computer programs that can
access data and use it to learn for themselves [38]. Machine learning can be grouped into three
categories.



46 CMES, 2023, vol.134, no.1

Machine learning algorithms under supervised algorithms can use labeled data to apply what they
have learned to new data and anticipate future events. The supervised learning algorithm creates
an inferred function to generate predictions about the output values based on examining a known
training dataset. After enough training, the algorithm can provide targets for any new instance.
The supervised learning algorithm can also evaluate its output to the correct, expected result and
detect failures, allowing the model to be modified as needed. Supervised learning is commonly
utilized in bioinformatics, object identification, speech recognition, pattern recognition, handwriting
recognition, and spam detection.

On the other hand, unsupervised machine learning algorithms are utilized when the trained data is
not classed or annotated. Unsupervised learning investigates how machines might deduce a function
from unlabeled data to determine underlying patterns. The algorithm does not sort out the proper
output, but it examines the data and can deduce hidden patterns from unlabeled data using datasets.
Liao et al. [39] utilized an unsupervised machine learning algorithm called clustering in their paper,
Coronavirus Pandemic Analysis Through Tripartite Graph Clustering in Online Social Networks.

Reinforcement learning algorithms are machine learning algorithms that interact with their
environment by creating actions and recognizing failures or rewards. Trial and error search and
rewards are the most crucial aspects of reinforcement learning. This technology allows machines and
software agents to dynamically select the appropriate behavior in a given environment to improve
their efficiency. A primary reward feedback signal, called the reinforcement signal, is required for
the agent to learn which behavior is superior. Model-based and model-free approaches are the two
types of reinforcement learning methods in general. Model-based learning, which includes online and
deep learning, is commonly used as a transition function, trial-and-error, and planning algorithms.
Q-Learning (RL), Deep Q-Learning (DRL), are examples of model-free, which usually act as an
erroneous model.

In this paper, the machine learning offloading algorithms that will be considered include; Support
Vector Machine (SVM), Deep Neural Networks, Decision Tree (DT), Instance-Based Learning (IBL),
Analytic Hierarchy Process (AHP), Markov Model (MM), Q-Learning, Deep Q-Learning, (or Deep
Reinforcement Learning) and Actor-Critic Learning, example Deep Deterministic Policy Gradient
(DDPG).

A) Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a standard Supervised Learning technique that may
solve classification and regression issues. However, it is primarily utilized in Machine Learning for
Classification difficulties. Because the Support Vector Machine (SVM) can handle classification issues
quickly [40,41], it may also be used to make offloading decisions by transforming decision problems
into classification problems. It allows for more accurate and speedy offloading progress.

Wu et al. [42] used an SVM for a vehicular edge computing scenario. The authors proposed
an efficient offloading algorithm based on SVM to satisfy the fast-offloading demand in vehicular
networks. Majeed et al. [43] Investigated the accuracy of offloading decisions to a cloud server and its
impacts on overall performance. They then proposed an accurate decision-making system for mobile
systems’ adaptive and dynamic nature by utilizing SVM learning techniques for making offloading
decisions locally or remotely. According to the authors, the proposed scheme can achieve up to 92%
accuracy in decision-making and reduce energy consumption. Wang et al. [44] investigated the problem
of energy minimization consumption for task computation and transmission in cellular networks.
They formulated an optimization problem to minimize the energy consumption for task computation
and transmission. They then proposed a Support Vector Machine (SVM)-based federated learning



CMES, 2023, vol.134, no.1 47

algorithm to determine the user association proactively. With the user association given, edge servers
or BS can collect information related to the computational task of its associated users, using which
the transmit power and task allocation of each user will be optimized, and the energy consumption of
each user is minimized.

B) Deep Learning

DNN is a multi-layered ANN (Artificial Neural Network) commonly used for prediction,
anomaly detection [45], and optimization issues to identify the best solution from under-trained input
by modifying mathematics suitably. It is worth noting DNN itself can be vulnerable to attacks like
adversarial samples [46]. While using the DNN technique, various parameters like the number of lay-
ers, initial weight, and learning rate must be carefully evaluated to avoid overfitting and computation
time. These problems necessitate much computational power, in contrast to the offloading ecosystem’s
time-and resource-intensive entities. There are several use cases of a neural network; Hou et al. [47]
used an encoder-decoder module to solve a time series problem. Moreover, Zhang et al. [48] utilized a
Multilayered Perceptron (MLP) and LSTM modules to build a recommendation system for predicting
live streaming services. Moreover, Wang et al. [45] used a deep residual Convolutional Neural Network
(CNN) for anomaly detection in Industrial Control Systems (ICS) based on transfer learning.

Ali et al. [49] proposed a novel energy-efficient offloading algorithm based on deep learning.
To train an intelligent decision-making algorithm that selects an optimal set of application compo-
nents based on users’ remaining energy, energy consumption by application components, network
conditions, computational load, amount of data transfer, and delays in communication. Yu et al.
[50] considered a small cell-based mobile edge cloud network and proposed a partial computation
offloading framework (Deep supervised learning). The algorithm considers the varying wireless
network state and the availability of resources to minimize the offloading cost for the MEC network.
Huang et al. [28] aimed to solve the energy consumption problem and improve the quality of service, so
they proposed a distributed deep learning-based offloading algorithm (DDLO) for MEC networks,
where multiple parallel DNNs are used to generate offloading decisions. Zhao et al. [51] used the
ARIMA-BP model to estimate the edge cloud’s computation capacity to optimize energy for delay
restrictions in the MEC environment through selective offloading. They proposed ABSO (ARIMA-
BP-based Selective Offloading). To acquire the offloading policy, they devised a selective offloading
algorithm.

C) Decision Tree (DT)

The decision tree is a machine learning model that may achieve high accuracy in various tasks
while also being very easy to understand. What distinguishes decision trees from other ML models
is their clarity of information representation. After being trained, a decision tree’s “knowledge” is
immediately articulated into a hierarchical structure. This structure organizes and presents informa-
tion so that even non-experts can understand it. Offloading decision trees is useful because they set
out the problem so that all choices may be evaluated and allow researchers to analyze the possible
consequences of a decision comprehensively.

Rego et al. [26] proposed a scheme that involves using decision trees and software-defined
networking to tackle general offloading challenges, specifically, the challenge of when to offload,
where to offload, and what metrics to monitor. The proposed scheme further handles the offloading
decision-making process and supports user mobility. Likewise, in [52], they proposed a scheme
that utilized a decision tree for the offloading decision-making process and proposed an adaptive
monitoring scheme to keep track of the metrics relevant to the offloading decision.



48 CMES, 2023, vol.134, no.1

D) Instance Base Learning (IBL) (K-Nearest Neighbor (KNN))

K-Nearest neighbor is a regression and a classification machine learning algorithm or technique.
However, in industry, it is mainly used to tackle classification and prediction problems. K-Nearest
Neighbor assesses the labels of a set of data points surrounding a target data point to provide
a prediction about the data point’s class. Because it delivers highly precise predictions, the KNN
algorithm can compete with the most accurate model. As a result, the KNN algorithm can be used
for applications that need high precision, such as computation and task offloading.

Crutcher et al. [53] took a new approach with their proposed model, integrating the k-Nearest
Neighbor method (kNN). They used aspects from Knowledge-Defined Networking (KDN) to create
realistic estimates for historical data offloading costs. A predicted metric exists for each dimension of
the high-dimensional feature space. After assessing the costs of computation offloading, input features
for a hyper-profile and position node are computed. An ML-based query, the kNN, is executed within
this hyper-profile.

E) Analytic Hierarchy Process (AHP)

AHP is a simple and effective hierarchical strategy for analyzing and organizing multi-objective
decisions based on mathematics and psychology. It consists of three parts: the ultimate aim or problem,
all feasible solutions (referred to as alternatives), and the criteria to evaluate the alternatives. By
quantifying its criteria and alternative possibilities and tying those parts to the broader purpose,
AHP gives a coherent foundation for a needed conclusion. This method may suit decision issues in
computation offloading contexts because it may prepare the decision-making process with the most
relevant solutions and evaluate alternative options.

Sheng et al. [54] proposed a compute offloading approach that considers the performance of
devices and the resources available on servers. Offloading decision-making, server selection, and task
scheduling are the three primary stages of their system. The first stage used job sizes, computational
requirements, the server’s computing capability, and network bandwidth. In the second stage, appro-
priate servers are chosen by executing the AHP and thoroughly analyzing candidate servers using
multi-objective decision-making. They proposed a task scheduling model for an enhanced auction
process in the third stage, taking time constraints and compute performance into account.

F) Q-Learning

Q-Learning is a model-free, off-policy reinforcement learning that will determine the best course
of action given the state. The goal of Q-Learning is to learn a policy that will tell an agent what action
to take in which situation. Q-Learning can handle problems with stochastic transitions and rewards
without the need for adaptation. For any finite MDP, Q-Learning is the policy of maximizing the
anticipated value. It can also help solve optimization decision-making problems by determining the
best action-state selection policy. Hence Q-Learning is suitable for use to tackle offloading problems.

To deal with the uncertainty of MEC environments, Kiran et al. [55] presented an online
learning mobility management (Q-Learning) system. Their proposed solution learns the best mobility
management scheme from the environment through trial and error to reduce service delay. UEs use
the highest Q-values in the current state to decide when to hand over. These Q-values will be adjusted
regularly to maintain the system’s dynamic nature. To solve the fundamental objective, the decision-
making constraint, Hossain et al. [56] suggested a standard RL method, especially Q-Learning. The
decision-making process in an edge computing scenario is based on whether data will be offloaded to
edge devices or handled locally. They used a cost function with latency and power consumption effect
to achieve their goal.



CMES, 2023, vol.134, no.1 49

G) Deep Q-Network (DQN)

Deep reinforcement learning blends artificial neural networks with reinforcement learning to
allow agents to learn the optimum actions in a virtual environment to achieve their objectives. Deep
Q-Learning is one type of deep reinforcement learning that combines function approximation and
target optimization, matching state-action pairs to future rewards. Deep Q-Learning, also known as
Deep Q Network, is a method for approximating the Q-value of a reinforcement learning architecture
(Q-Learning), Q (s, a), using Deep Neural Networks (DQN). The state is given as an input, and the
output is the Q-value of all potential actions.

In the MEC context, Huang et al. [32] presented a Deep Q-Network (DQN)-based multiple tasks
offloading and resource allocation algorithm. They converted mixed-integer nonlinear programming
into an RL problem, which discovers the best solution in this way. To reduce overall costs, they
developed collaboratively offloading decision-making and allocating bandwidth. In their model, Chen
et al. [57] used a finite-state discrete-time Markov chain to define the Markov Decision Process (MDP).
They also employed a deep neural network-based solution (DQN) for the optimal task computation
offloading in a dynamically Ultra-Dense Network (UDN) of MEC environment with enabled wireless
charging mobile devices in the high dimensionality state space of MDP. Zhao et al. [58] proposed a
deep reinforcement learning algorithm, DQN, to learn the offloading decision to optimize system
performance. At the same time, the neural network is trained to predict offloading actions, and a
multi-user MEC was considered where computational tasks are assisted by multiple Computational
Access Points (CAP) by offloading the computationally intensive task to the CAP.

Furthermore, multiple bandwidth allocation algorithms to optimize the wireless spectrum for
links between users and CAPs were developed. Tong et al. [59] generated tasks using a Poisson
distribution and then suggested a novel DRL-based online algorithm (DTORA), which employs a
deep reinforcement learning method called DQN to evaluate if the job should be offloaded and
distributes computer resources or not. The mobility of users between base stations was studied to make
the system more practical. Xu et al. [60] aimed to minimize power consumption by improving resource
allocation in cloud radio access networks (CloudRANs). The authors expressed the resource allocation
problem as a convex optimization problem and proposed a novel DRL-based framework based on
DQN. In the proposed algorithm, deep Q-Learning is adopted for the online dynamic control based
on the offline-built DNN. Shan et al. [61] introduced a hybrid of DRL and federated learning (FL) by
proposing an intelligent resource allocation model, “DRL + FL.”In this model, an intelligent resource
allocation algorithm DDQN-RA based on DDQN is proposed to allocate network and computing
resources adaptively.

In contrast, the model integrates the FL framework with the mobile edge system to train the DRL
agent in a distributed way. Ho et al. [62] defined a binary offloading model where the computation task
is either executed locally or offloaded for MEC server execution. Which should be adaptive to the time-
varying network conditions. Hence, a deep reinforcement learning-based approach was proposed to
tackle the formulated nonconvex problem of minimizing computation cost in terms of system latency.
Since the conventional RL method is not suitable for an ample action space, a DQN was considered in
the proposed work. Chen et al. [63] investigated the situation where MEC is unavailable or cannot meet
demand. They considered the surrounding vehicles a resource pool (RP) and split the complex task
into smaller sub-task. They formulated the execution time for a complex task as a min-max problem.
They then proposed a distributed computation offloading strategy based on DQN, that is, to find
the best offloading policy to minimize the execution time of a complex task. Lin et al. [64] aimed to
jointly optimize the offloading failure rate and the energy consumption of the offloading process. They



50 CMES, 2023, vol.134, no.1

established a computation offloading model based on MDP and later proposed an algorithm based
on DQN and Simulated Annealing (SA-DQN). Alam et al. [65] studied the near-end network solution
of computation offloading for mobile edge due to the problem of higher latency and network delay in
the far-end network solution. Mobile devices’ mobility, heterogeneity, and geographical distribution
introduce several challenges in computation offloading in the mobile edge. They modeled the problem
as an MDP and proposed a code offloading algorithm based on Deep Q-Learning to minimize the
execution time, latency, and energy. Chen et al. [66] investigated a stochastic computation offloading
policy for mobile users in an ultra-dense sliced radio access network (UDS-RAN). They formulated
the problem of stochastic computation offloading as an MDP, for which they proposed two DQN
based online offloading algorithms, DARLING and Deep-SARL. They used an RL-based framework
double DQN (DDQN) for computation offloading in a high dimensionality state space of MDP for
a dynamically UDS-RAN of a MEC environment. They aimed to achieve a better long-term utility
performance.

H) Actor-Critic Methods

Actor-Critics aims to combine the benefits of both value-based and policy-based approaches while
removing all of their disadvantages. The actor receives the state as input and produces the best action.
It effectively directs the agent’s behavior by learning the best policy (policy-based). On the other hand,
the critic calculates the value function (value-based) or tells the actor how excellent or awful their
actions are. The weights are updated in the form of a TD error. This scalar signal is the critic’s sole
output and is responsible for all learning in both the actor and the critic. Actor-Critic methods can
realize offloading computing without knowing the transition probabilities among different network
states.

Ke et al. [67], in a heterogeneous vehicular network, proposed an offloading model known
as ACORL. An adaptive computation offloading method based on DRL, specifically DDPG, can
address continuous action space in vehicular networks. The proposed algorithm considered multiple
stochastic tasks, wireless channels, and bandwidth. Moreover, the authors combined the Ornstein-
Uhlenbeck (OU) noise vector to the action space. Huang et al. [68] considered a multi-user single
server system, where multiple Wireless Devices (WDs) are connected to a single Access Point (AP)
responsible for both transferring Radio Frequency (RF) energy and receiving computation offloading
from WDs. They proposed a DRL Online Offloading (DROO) to implement a binary offloading
decision-making strategy generated by a DNN, maximizing the weighted sum of computing rates of
all wireless devices and decreasing computation time significantly. The proposed algorithm learns from
previous experience to eliminate complex mix integer problems and improve the offloading decisions.
To attain a minimum average task latency and energy consumption, Liu et al. [69] reduced the average
latency and energy’s weighted sum by optimizing the task offloading decision-making. They proposed
an optimization framework based on actor-critic and RL learning approaches to tackle computation
offloading. Unlike the above methods, Wang et al. [70] considered a UAV-assisted MEC system,
where the UAV provides computing resources to nearby users. The authors aimed to minimize the
maximum processing delays in the entire period by optimizing user scheduling, task offloading ratio,
UAV flight angle, and speed. They then formulated a nonconvex optimization problem and proposed
a computation offloading algorithm based on DDPG. Chen et al. [71] considered a MEC-enabled
MIMO system with stochastic wireless channels and task arrivals and proposed a dynamic offloading
algorithm based on DDPG. They aimed to reduce the long-term average computation cost in terms
of power consumption and to buffer delay at each user.



CMES, 2023, vol.134, no.1 51

I) Markov Decision Process (MDP)

The Markov Decision Process (MDP) is a discrete-time stochastic control mechanism that can
handle various problems. The result is partly random and partly under the control of the decision-
makers. MDPs can be used to look at optimization problems solved by dynamic programming. MDP
is highly suited for offloading optimization in cases requiring dynamic decision-making due to varying
and changing environmental elements such as wireless channel characteristics and computational load.
An MDP system is often made up of five tuples (E, S, A, P, R), where E stands for decision epochs, S
for states, A for actions, P for state transition probability, and R for rewards. The five-tuple must be
defined according to the offloading technique in this model. After that, we can develop the following:
Bellman’s formula.

V π∗ (s) = max
a

{
R (s, a) + γ

∑
s′

P (s′|s, a) V π∗ (s′)

}

where γ is a discount factor, and V π∗ is the value function for the optimal policy, a ∈ A and R are the
immediate reward, P is the state transition probability. Then using a classical solution such as value
iteration algorithm or policy iteration algorithm, we can make an optimal offloading decision, such
as whether to run tasks locally or offload them and which edge server should handle the offloaded
tasks. The fixed decision epochs are defined in the majority of MDP models. As a result, it is expected
that computing tasks are requested at the start of each period or that incoming requests are gathered
in a queue throughout a period. A decision is taken at the start of the following period. MDP with a
set period makes modeling easier. However, it often adds latency owing to accumulated waiting time.
This modeling eliminates the waiting time if a choice is taken soon after receiving a task. However, the
unpredictable time gap necessitates anticipating the length of the following epoch, making the MDP
model less reliable or accurate. However, most MDP research assumes that the decision epoch is long
enough to complete a task; modeling becomes extremely difficult.

Zhang et al. [22] investigated mobile offloading in a system of intermittently linked cloudlets,
looking at user mobility patterns and cloudlet admission control. Then, to establish an appropriate
offloading policy for a mobile user in an infrequently connected cloudlet system, a Markov decision
process (MDP) based approach was presented. The policy decides offloading or local execution
activities based on the condition of the mobile user to achieve a minimum cost. Ko et al. [72] considered
an edge-cloud enabled heterogenous network with diverse radio access networks and proposed ST-
CODA (a spatial-temporal computation offloading decision algorithm). In their model, a mobile
device decides where and when to process MDP tasks. They took into account energy consumption,
processing time, and transmission cost. Then, the classic MDP algorithm, namely, the value iteration
algorithm, is used to solve the formulated model. In Wei et al. [73], they demonstrated a single-user,
single-server system before emphasizing the importance of data prioritization. Following that, the
authors established distinct data priority levels. The system handles the data based on its priority
level, with higher priority data contributing more to rewards.

Meanwhile, the authors assume that all connected probability distributions are unknown, which
means that traditional MDP methods like the value iteration or policy iteration cannot be utilized.
They instead employ the Q-Learning method. Zhang et al. [74] considered the movement of vehicles
in a vehicular edge computing (VEC) scenario and then proposed a time-aware MDP-based offloading
algorithm (TMDP) and a robust time-aware MDP-based offloading algorithm under certain and
uncertain transition probabilities, respectively.



52 CMES, 2023, vol.134, no.1

Table 1: Machine learning algorithms

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[67] ACORL
based on
DDPG

Energy,
Latency,
bandwidth

TensorFlow
1.10, Python
3.5

Multi-user
Single-server

Partial
offloading

To tackle the
trade-off
between
energy con-
sumption,
bandwidth
allocation,
and delay

Hyper-
parameter
sensitivity

[58] Offloading
algorithm
based on
DQN

Latency,
Energy

Null Multi-user
Multi-server

Partial
offloading

To minimize
energy and
latency

Low con-
vergence in
high
mobility

[28] DDLO
algorithm
based on
DNN

Energy,
Latency

TensorFlow
Python

Multi-user
Single-server

Full
offloading

Reduce the
total cost of
energy and
latency

Not
applicable
in real-time
offloading

[59] DTORA
based on
DQN

Response
time, Energy,
QoE

TensorFlow
Python

Multi-user
Multi-server

Full
offloading

To minimize
response
time and
improve
system utility

High
complexity

[61] Offloading
algorithm
based on
DDQN-RA

Energy,
Latency, QoS,
Load
balancing

Null Multi-user
Multi-server

Full
offloading

To reduce
the average
delay and
energy

Under per-
formance

[49] EEDOS
based on
DNN

Energy, Cost MATLAB Single-user
Single-server

Partial
offloading

To minimize
system cost
and energy

Single-user.
Not
applicable
in real-time
offloading

[60] Offloading
DRL
framework
based on
DQN

Power TensorFlow Multi-user
Multi-server

Partial
offloading

To minimize
power
consumption

Unable to
perform in
a high
action
space

[56] Offloading
algorithm
based on
Q-Learning

Latency,
Energy

MATLAB Multi-user
Single-server

Full
offloading

To reduce
energy
consumption
and overall
system cost

It cannot be
utilized in a
complex
network

(Continued)



CMES, 2023, vol.134, no.1 53

Table 1 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[50] Deep
Supervised
Learning
(DSL)

Cost Null Single-user
Single-server

Partial
offloading

To minimize
the overall
execution
cost

Single-user
Single-
server

[32] Offloading
algorithm
based on
DQN

Energy,
Latency, Cost

TensorFlow
Python

Multi-user
Multi-server

Full
offloading

To reduce
the overall
cost of
energy
computation
and delay

Centralized
algorithm.
Not
applicable
to higher
users

[62] Offloading
algorithm
based on
DQN

Latency TensorFlow Multi-user
Multi-server

Full
offloading

To reduce
the
computation
cost of delay

Not
applicable
to higher
users and
task

[68] DROO base
on DRL and
DNN

throughput TensorFlow
Python

Multi-user
Single-server

Full
offloading

To maximize
offloading
task

Low con-
vergence in
high
mobility

[75] Offloading
algo based
on instance-
based
learning

Computation
cost

OpenCL
framework

Single-user
Single-server

Full
offloading

To tackle the
adaptive
scheduling
problem in
offloading
framework

Single-user
single-
server

[44] Offloading
algorithm
based on
SVM and
federated
learning
(FL)

Energy Null Multi-user
Multi-server

Partial
offloading

To minimize
total energy
consumption

High
complexity

[42] Offloading
algorithm
based on
SVM

Latency Null Multi-user
Multi-server

Partial
offloading

To satisfy the
fast-
offloading
demand in
vehicular
networks

High man-
agement
overhead

[76] Offloading
algo based
on DQN

Latency,
Energy, Load
balancing

iFogSim,
Google
cluster tree

Multi-user
Multi-server

Partial
offloading

To improve
system
performance
in terms of
energy, load
balancing,
latency

High
complexity

(Continued)



54 CMES, 2023, vol.134, no.1

Table 1 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[52] Offloading
decision-
making algo
based on
decision tree

Make-
offloading
decision

Java Single-user
Single-server

Partial
offloading

To handle
offloading
decisions
and monitor
offloading
metrics

Single-user
single
server. Not
scalable

[77] Low
complexity
algo base on
LR and
DDLO algo
base on
DNN

Latency,
Energy, QoS

Python Multi-user
Multi-server

Full
offloading

To guarantee
QoS and to
minimize
energy
consumption

Not
applicable
in real-time
offloading

[26] Offloading
algo based
on decision
tree and
SDN

Energy Java Single-user
Single-server

Full
offloading

To minimize
energy
consumption

Single-user
single-
server. High
overhead

[78] Machine-
learning
techniques

Latency CloudSim Multi-user
Multi-server

Full
offloading

To improve
response
time

Not
suitable to
implement

[43] SVM Energy,
Latency

Null Single-user
Single-server

Full
offloading

To reduce
response
time and
energy

Long
training
time

[79] Offloading
algorithm
based on
game theory
and RL

Latency,
Energy

MATLAB Multi-user
Single-server

Full
offloading

To tackle
multiple IoT
devices
computation
offloading
problems in
MEC

Stationary
model

[69] Optimization
framework
based on
actor-critic

Latency,
Energy

Null Single-user
Multi-server

Full
offloading

To attain a
lower
average task
latency and
energy
consumption

May fail in
a real-time
environ-
ment

[63] A distributed
offloading
algorithm
base on
DQN

Latency, QoE Null Multi-user
Multi-server

Partial
offloading

To reduce
the task
execution
time

Lack of
adaptation
to a general
scene

(Continued)



CMES, 2023, vol.134, no.1 55

Table 1 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[64] Offloading
algorithm
based on
SA-DQN

Energy,
offloading
failure

TensorFlow
Python

Single-user
Multi-server

Partial
offloading

To minimize
the rate of
offloading
failure and
energy
consumption

Not
applicable
in a
stochastic
environ-
ment and a
high action
space

[70] Offloading
algorithm
based on
DDPG

Latency Null Multi-user
Single-server

Partial
offloading

To minimize
the
maximum
processing
delay

Low con-
vergence in
high
mobility

[65] Code
offloading
algorithm
based on
deep
Q-Learning

Latency,
Energy

MATLAB Multi-user
Multi-server

Partial
offloading

To minimize
the latency
of service
computing

High
complexity
in real-time
implemen-
tation

[71] Offloading
algorithm
based on
DDPG

Computation
cost,
Power-delay
tradeoff

Null Multi-user
Single-user

Full
offloading

To minimize
average
computation
cost in terms
of power
consumption
and
buffering
delay.

High
complexity

[57] Computation
offloading
algo based
on DDQN

Throughput TensorFlow Single-user
Multi-server

Full
offloading

To maximize
long-term
utility
performance

The
unspecified
prioritized
queue for
real-time
tasks

[51] ABSO base
on
ARIMA-BP

Energy Null Multi-user
Single-server

Full
offloading

To minimize
the energy
consumption
of mobile
devices

Lack of
handover
coverage.
High
complexity

[66] Offloading
algorithm
based on
DQN

Delay, Energy Null Single-user
Multi-server

Full
offloading

To minimize
the
long-term
cost

Extensive
data
require-
ment

(Continued)



56 CMES, 2023, vol.134, no.1

Table 1 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[54] Offloading
algorithm
based on
AHP

Latency, QoE,
Energy

MATLAB Multi-user
Multi-server

Full
offloading

To minimize
latency and
improve
quality of
experience

High
complexity

[73] An RL
offloading
algo base on
MDP

Latency Null Single-user
Single-server

Full
offloading

To design an
effective
offloading
scheme for
energy
harvest
MEC system

Single-user
single-
server.
High
Complexity.
Not
applicable
in a high
state-action
space

[72] ST-CODA
based on
MDP

Energy,
Latency, Cost

Null Single-user
Multi-server

Full
offloading

To minimize
energy con-
sumption,
latency, and
transmission
cost

May
experience
curse of
dimension-
ality
problem

[74] RTMDP
based on
MDP

Latency Null Single-user
Multi-server

Partial
offloading

To minimize
systems,
delay

High
complexity

[22] Offloading
algorithm
based on
MDP

Computation
cost

Null Multi-user
Single-server

Full
offloading

To minimize
computation
cost

May
experience
curse of
dimension-
ality
problem

4.2 Non-Machine Learning Offloading Algorithms

Here we will introduce several non-machine learning algorithms that have been adopted and used
in both academia and industry to tackle problems with edge computing offloading. As illustrated in
Table 2.

A) Lyapunov Optimization

The use of the Lyapunov function to regulate a dynamical system optimally is referred to as
Lyapunov optimization. In control theory, Lyapunov functions are frequently utilized to ensure
various types of system stability. A multi-dimensional vector is frequently used to describe the status
of a system at a given point in time. A nonnegative scalar measure of this multi-dimensional state is
a Lyapunov function. When the system approaches undesired states, the function is typically defined
to get huge. Control measures that cause the Lyapunov function to drift in the negative direction



CMES, 2023, vol.134, no.1 57

towards zero create system stability. The drift-plus-penalty approach for combined network stability
and penalty minimization is obtained by adding a weighted penalty term to the Lyapunov drift and
reducing the sum. The goal is to reduce both the drift and the penalty simultaneously. It is crucial to
define the drift and penalty when utilizing Lyapunov optimization in offloading design. The drift in an
offloading context could be the energy queue drift or the task queue drift. At the same time, the penalty
is often the offloading goal, such as task dropping reduction or execution latency reduction. The ideal
offloading decision and other parameters might then be found by reducing the drift-plus-penalty
expression for each time slot. Because the drift-plus-penalty expression is usually a deterministic
problem, the Lyapunov optimization has a substantially lower computational complexity than (non-)
convex optimization. Furthermore, unlike MDP, it does not necessitate the probability distribution of
the random event process.

In [80], MEC systems with multiple devices were considered. They formulated a power consump-
tion minimization problem with task buffer stability constraint to investigate the tradeoff between
computation task execution delay and mobile devices’ power consumption. Then proposed an online
algorithm that decides the local execution and computation offloading policy based on Lyapunov
optimization. Huang et al. [30] aimed to provide a low-latency energy-saving user interaction algorithm
under different wireless conditions. So they proposed an adaptive offloading algorithm that can
offload part of an application’s computation to a server dynamically according to the wireless
environment changes based on Lyapunov optimization. The authors used the concept of call graphs
to represent the relationship between individual components A compute, and transmission power
minimization problem with delay and reliability constraints was formulated by Liu et al. [81]. The
authors employ results from extreme value theory [82] to put a probabilistic constraint on user task
queue lengths and characterize the occurrence of low probability events in terms of queue length or
delay violation. Finally, the optimization problem was solved using Lyapunov optimization tools.

B) Game Theory

For constructing distributed methods, game theory is a valuable tool. It can be utilized in a multi-
user offloading scenario where every other end device chooses a suitable technique locally to obtain
a mutually acceptable offloading solution. Every end device makes an offloading decision, receives
incentives (utility), and then updates the decision in this model. This approach is repeated until the
rewards are no longer improved, i.e., until Nash equilibrium is reached. An iterative technique is
commonly utilized to identify the Nash equilibrium. It is fundamentally an optimization problem
for each end device, i.e., maximization of its utility. As a result, the Nash equilibrium can be obtained
using a traditional optimization solution, such as the Karush-Kuhn-Tucker conditions.

Chen et al. [83] studied the multiuser computation offloading problem in multi-channel wireless
interference and contention environments. Authors showed that it is NP-hard to compute a centralized
optimal solution for mobile-edge cloud computing, so they adopted a game theory approach to
achieve efficient computation offloading in a distributed way. The distributed computation offloading
decision-making problem among mobile users was formulated as a computation offloading game and
then proposed a distributed offloading algorithm to achieve a Nash equilibrium. Zhou et al. [84]
investigated the partial computation offloading problem for multiuser in mobile in MEC environment
with multiple wireless channels. The authors modeled a game theory approach for the computation
overhead and then proved the existence of Nash equilibrium. The paper aims to minimize the
computation overhead. Cui et al. [79] proposed an offloading algorithm based on evolutionary game
theory and RL. Multiuser computation offloading under a dynamic environment was investigated;



58 CMES, 2023, vol.134, no.1

the authors then formulated the problem as a game model and proved that multiuser computation
offloading has a unique Evolutionary Stability Strategy (ESS).

Also, Alioua et al. [85] proposed using game theory for computation offloading but instead in the
context of an Un-man Aerial Vehicle (UAV) to assist in road traffic monitoring. They modeled the
offloading decision-making problem as a sequential game, proved a Nash equilibrium, and proposed
an algorithm to attain the Nash equilibrium. They aimed to improve the overall system utility by
minimizing computation delay while optimizing the energy overhead and the computation cost. Liu
et al. [86] studied fog to cloud offloading. They formulated the interaction between the fog and the
cloud as a Stackelberg game to maximize the utilities of cloud service operators and edge owners
by obtaining the optimal payment and computation offloading strategies and proved that the game is
guaranteed to reach a Nash equilibrium. They then proposed two offloading algorithms to achieve low
delay and reduced complexity, respectively. Anbalangan et al. [87] studied accumulated data at Macro
base Stations (MBS). The MBS cannot accommodate all user demands and attempts to offload some
users to nearby small cells, e.g., an access point (AP), and then investigate the trade-off between the
economic incentive and the admittance of load between the MBS the AP to achieve optimal offloading.
They proposed a software-defined networking-assisted Stackelberg game (SSG) model. In the model,
the MBS aggregates users to the AP and prioritizes users experiencing a minor service. Kim et al. [88]
proposed an optimal pricing scheme considering mobile users’ need for resources, formulated a single-
leader-multi-user Stackelberg game model, and then utilized Stackelberg equilibrium to optimize the
overall system utility, i.e., mobiles users and edge cloud utilities.

C) (Non) Convex Optimization

Because it is solvable, convex optimization is a robust tool for solving optimization issues. The
offloading objective(s) is(are) defined as an objective function, and the offloading limitations are
formulated as constraint functions in this paradigm. If the specified optimization model is convex,
traditional approaches like the Lagrange duality method can solve it and accomplish the global
optimization goal. If the offloading model is a non-convex optimization issue, converting it to a convex
optimization is a standard solution.

1) Alternating Direction Method of Multipliers (ADMM)

The Alternate Direction Method of Multipliers (ADMM) is a strategy for resolving convex
optimization problems by breaking them down into smaller, easier chunks. Small local subproblem
solutions are coordinated using a decomposition-coordination technique to solve a global problem.

Wang et al. [89] formulated the computation offloading decision, resource allocation, and
content caching strategy as a non-convex optimization problem. They then transformed the non-
convex problem into a convex one. Furthermore, decomposed the convex problem to solve it in a
distributed and efficient manner. They then developed and applied an Alternating Direction Method
of Multipliers (ADMM) based on distributed convex optimization to solve the problem. Bi et al.
[90] considered a Wireless Powered Transfer (WPT) mobile edge computing system and proposed an
offloading algorithm based on ADMM and Coordinate Descent (CD). They aim to maximize the
weighted sum computation rate of all Wireless Devices (WD) in the network. The authors combined
the recent advancement in WPT and MEC. Each WD followed a full offloading approach in the
proposed architecture, i.e., all computation is either performed locally or executed remotely.

2) Successive Convex Approximation

For decreasing a continuous function among several block variables, successive convex approxi-
mations such as the Block Coordinate Descent (BCD) method are commonly utilized. A single block



CMES, 2023, vol.134, no.1 59

of variables is optimized at each iteration of this approach, while the remaining variables are kept
constant.

Tang et al. [91] jointly optimized a weighted sum of the time and energy consumption in user
experience. They formulated a mixed overhead of time and energy minimization problem (Nonlinear
problem). The proposed a mixed overhead full granularity partial offloading algorithm based on
Block Coordinate Descent (BCD) approach to deal with every variable step by step to tackle the
problem. Baidas [92] formulated a joint subcarrier assignment, power allocation, and computing
resource allocation problem to maximize the network sum offloading efficiency. A low complexity
algorithm is proposed to solve the problem. The algorithm relaxes the problem into two subproblems
and then solves with a successive convex approximation algorithm and polynomial-time complex
Kuhn-Munkres algorithm.

3) Interior Point Method (IPM)

Interior point algorithms are a type of algorithm used to solve inequalities as constraints in both
linear and nonlinear convex optimization problems. The linear programming Interior-Point approach
requires a linear programming model with a continuous objective function and twofold continuously
differentiable constraints. Interior point techniques approach a solution inside or outside the feasible
region but never from the edge.

Yang [93] proposed a joint optimization scheme for task offloading and resource allocation based
on edge computing and 5G communication networks to improve task processing efficiency by reducing
time delay and energy consumption of terminal tasks. The problem of computing task offloading
is transformed into a joint optimization problem and then developed corresponding optimization
algorithms based on the interior point method

4) Semidefinite Programming

Semidefinite Programming (SDP) is a convex optimization discipline concerned with the opti-
mization of a linear objective function (a user-specified function that the user desires to decrease or
maximize) over the crossing of the cone of positive semidefinite matrices with an affine space [94–96].

Chen et al. [97] set out to jointly optimize all users’ offloading decisions and communication
resource allocation to reduce energy, computation, and delay costs for all users. They proposed an
efficient approximate algorithm (MUMTO) Multi-user Multi-task offloading solution. A heuristic
algorithm based on Semidefinite Relaxation (SDR), accompanied by restoration of the binary
offloading decision and optimal communication resource allocation. To solve an NP-hard non-convex
quadratically constraint quadratic optimization problem. Due to the inter-task dependency in various
end devices, Liu et al. [27] sought to develop energy-efficient computation offloading. They used a
Mixed Integer Programming problem (MIP) to solve an energy consumption minimization problem
with two constraints: task dependency and the IoT service completion time deadline. To address
this challenge and provide task computation offloading solutions for IoT sensors, they suggested
an Energy-efficient Collaborative Task Computation Offloading (ECTCO) algorithm based on a
semidefinite relaxation (SDR) and stochastic mapping technique.

D) Particle Swarm Optimization (PSO)

PSO is a metaheuristic optimization method that can solve continuous problems with imperfect
information and computational limitations. As a result, this method may help offload optimization
problems involving the ecosystem’s dynamic behavior without ensuring a globally optimal solution.
The outcome is dependent on the arbitrary spawn variables because PSO is a stochastic optimization
method.



60 CMES, 2023, vol.134, no.1

Particle Swarm Optimization (PSO) is used by Liu et al. [98] to reduce latency and dependability.
They used code partitioning to depict the reliability of task elements as a Directed Acyclic Graph
(DAG). They used the chance of service failure of MEC-enabled Augmented Reality (AR) service
to establish a trade-off between latency and dependability. They presented an Integer PSO (ISPO)
algorithm due to the problem’s non-convexity. They then created a low-complexity heuristic technique
for optimizing offloading because ISPO was not feasible in AR [10]. In Li et al. [99], authors formed a
delay minimization problem. They proposed a computation offloading strategy dubbed EIPSO based
on an improved PSO algorithm to reduce delay and improve load balancing of the MEC server.

E) Genetic Algorithm (GA)

At first look, GA appears to be a good fit for searching an ample state space for optimal solutions
as an evolutionary computation technique. However, if the state space is not constructed correctly, GA
will not discover an optimal solution in an acceptable amount of time. After that, the GA techniques
are the best options when the optimizations are not possible at the local optimum. On the other hand,
GA can be a candidate to solve many optimization problems because it requires several generations
to create adequate outputs. However, it is only suitable for a select few. However, GA fails to achieve
optimal results when measuring fitness is not straightforward.

Zhang et al. [100] studied the collaborative task offloading and data caching models. They
proposed a hybrid of an online Lyapunov and genetic algorithms to tackle task offloading and
data caching problems to minimize edge computation latency and energy consumption. The authors
considered a multi-user MEC system, where multiple base stations serve multiple devices within its
radio range through wireless cellular links. Similarly, Kuang et al. [101] also considered a multi-
user, multi-server MEC system but instead focused on minimizing system communication latency and
energy. Initially, an offloading algorithm based on backtracking was proposed, whose time complexity
happens to be exponential with the number of servers. The authors proposed a genetic algorithm and
a method based on a greedy strategy to reduce this time complexity.

Consequently, the authors proposed three offloading algorithms: backtracking, genetic, and
greedy. They then compared the three algorithms in terms of the total cost of users, resource utilization
of edge servers, and execution time. Zhao et al. [102] applied GA, too, but differently to achieve
system optimality. They worked on a dynamic optimization offloading algorithm based on the
Lyapunov method, namely LODCO. The original problem is time-dependent, converted to a per-time
slot deterministic problem by Lyapunov optimization and using a perturbation parameter for each
mobile device. Based on LODCO, they proposed their Multi-user Multi-server method by GA and
Greedy approaches to achieve optimal results for the system. Shahryari et al. [103] considered a task
offloading scheme that optimizes task offloading decision, server selection, and resource allocation
and investigated the trade-off between task completion time and energy consumption. They then
formulated the task offloading problem as a Mixed-Integer Nonlinear Problem (MINLP). They then
proposed a sub-optimal offloading algorithm based on a Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO). Hussain et al. [104] studied the problem of multi-hop computation offloading
in a Vehicular Fog Computing (VFC) network and later formulated a multi-objective, non-convex,
and np-hard quadratic integer problem and then proposed CODE-V, a computation offloading with
differential evolution in VFC. The proposed algorithm considered the constraint of service latency,
hop-limit, and computing capacity and optimally solved the problem of offloading the decision-
making process, MEC node assignment, and multi-hop path selection for computation offloading.



CMES, 2023, vol.134, no.1 61

F) Hidden Markov Model (HMM)

HMM is a durable and statistical Markov-based model with effective learning parameters gained
from raw data. It may be identified as a finite state machine because of its hidden and observable states.
HMM uses the Viterbi algorithm to find the optimum path for the system’s probable following states,
and by doing so, can perform better than a simple Markov model. However, because this technique is
iterative, it is pretty resource and time-consuming to find the optimum path. With all of this, if HMM
is chosen for the right problem and built effectively for that problem, it may forecast future system
states in the decision-making nature of the offloading environment. Wang et al. [105] presented a
smart HMM scheduling model that allows for dynamically modifying the processing technique while
observing latency, energy, and accuracy in a mobile/cloud-based context Jazayeri et al. [106] set out to
discover the ideal location for running offloading modules (end device, edge, or cloud). As a result,
the authors presented a Hidden Markov model Auto-scaling Offloading (HMAO) based on HMM to
discover the ideal place to execute offloading modules to make a tradeoff between energy usage and
module execution time.

G) Other Algorithms

1) Heuristic Algorithms

In the style of a broad heuristic, a heuristic algorithm can generate an acceptable solution to a
problem in a variety of actual settings, but for which there is no formal demonstration of correctness.
NP-complete problems, a decision problem, are frequently solved using heuristic algorithms. Although
solutions can be validated when offered, there are no known effective means to locate a solution fast
and accurately in these circumstances. Heuristics can be used to generate a solution independently or
combined with optimization techniques to offer a reasonable baseline. When approximate solutions
are satisfactory but exact solutions are computationally expensive, heuristic algorithms are frequently
used. Heuristic techniques might introduce rapid but sub-optimal results. Heuristics have the advan-
tage of being simple algorithms designed to solve a specific problem with a short execution time.

Liao et al. [107] aimed to maximize the number of offloaded tasks for all UEs in uplink communi-
cation while maintaining low system latency. They formulated the problem as an NP-hard mix integer
nonlinear problem and then proposed an efficient low complexity heuristic algorithm that provides a
near-optimal solution. Ren et al. [108] studied three different offloading models, local compression,
edge compression, and partial compression offloading. Close-form expressions of optimal resource
allocation and minimum system delay for local and edge cloud compression are derived. A piecewise
optimization problem was formulated for the partial compression based on a data segmentation
strategy and then proposed an optimal joint computation resource allocation and communication
algorithm. Xing et al. [109] aimed at minimizing computation delay subjected to individual energy
constraints at the local user and the servers. They formulated the latency minimization problem
as a mixed-integer nonlinear problem (MINLP) and then proposed a low complexity sub-optimal
algorithm. You et al. [110] studied resource allocation for multi-user MEC systems based on time-
division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA).
In the TDMA MEC system, the authors formulated the resource allocation problem as a convex
optimization problem. The aim is to minimize mobile energy consumption under computation latency
constraints. In the OFDMA MEC system, the resource allocation problem is formulated as a mix-
integer problem (MIP); to solve this, a low complexity sub-optimal offloading algorithm is proposed
by transforming the OFDMA problem into a TDMA problem. The corresponding resource allocation
is derived by defining an offloading priority function and having close to optimal performance in
simulations. Similar to [90], Xu et al. [111] considered a WPT combined with MEC and proposed



62 CMES, 2023, vol.134, no.1

a metaheuristic search approach to maximize the weighted sum computation rate of all WD in the
network.

2) Dynamic Voltage Scaling (DVS)

Modifying power and speed settings on a computing device’s different CPUs, controller chips,
and peripheral devices to optimize resource allotment for activities and optimum power savings when
those resources are not needed is identified as Dynamic Voltage and Frequency Scaling (DVFS).
By dynamically altering the voltage and frequency of a CPU, Dynamic Voltage and Frequency
Scaling (DVFS) tries to reduce dynamic power usage. This method takes advantage of CPUs’ discrete
frequency and voltage settings.

Wang et al. [112] investigated partial computation offloading using Dynamic Voltage Scaling
(DVS) by jointly optimizing the computational speed, transmit power, and the offloading ratio of
mobile devices. Their study aims to minimize energy consumption and latency. They formulated both
the energy minimization and latency minimization problems as non-convex optimization problems.
They then converted the energy minimization non-convex problem was converted into a convex
problem with the variable substitution technique and obtained its optimal solution. For the latency
minimization non-convex problem, a locally optimal algorithm with a univariate search technique
was proposed for the optimal solution. Like Guo et al. [113] studied an energy-efficient dynamic
computation offloading using Dynamic Voltage Frequency Scaling (DVFS) by jointly optimizing
computation offloading selection, clock frequency control, and transmission power allocation. The
authors presented an energy-efficient dynamic offloading and resource scheduling (eDors) policy to
reduce energy consumption and application completion time by formulating an energy-efficient cost
reduction problem.

3) Gibbs Sampling

Gibbs Sampling is a Monte Carlo Markov Chain method for approximating complex joint
distributions by iteratively drawing one instance from each variable’s distribution, conditional on the
current values of the other variables.

Yan et al. [114] considered a task dependency model where the input of a task at one wireless
device requires the final task output at the other wireless device. They then investigated the optimal
task offloading policy and resource allocation that minimizes the weighted sum of the wireless device’s
energy consumption and task execution time. They then proposed efficient algorithms to optimize
the resource allocation and task offloading decision-making to minimize the weighted sum of energy
consumption and task execution delay, based on the bisection search method and Gibb’s sampling
method.

4) Generalized Benders Decomposition

An approach for solving certain sorts of NLP and MINLP issues is known as Generalized Benders
Decomposition. This approach has recently been proposed as a tool for resolving process design
issues. When examining the solution of nonconvex problems using various GBD implementations,
it is shown that in some circumstances, only local minima may be identified. In contrast, in others,
even convergence to local optima is impossible.

Zhong et al. [115] looked into the coupling relationship between service caching and offloading
decisions. They formulated the problem of joint computation offloading, service caching, and resource
allocation as a mixed-integer non-linear programming problem. They then proposed a cooperative



CMES, 2023, vol.134, no.1 63

service caching and computation offloading (GenCOSCO) algorithm based on generalized benders
decomposition, aimed to minimize the average task execution time in the MEC system.

Table 2: Non-machine learning algorithms

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[107] A heuristic
algorithm
based on
hypergraph

Maximize
offloading
task
(Throughput)

MATLAB Multi-user
Single-server

Partial
offloading

To maximize
the number of
offloading
tasks for all
UEs in uplink
communica-
tion

Centralized

[83] Offloading
algorithm
based on
game theory

Energy,
Latency

Null Multi-user
Single-server

Full
offloading

To achieve
efficient
offloading by
preventing
interference

No consid-
eration for
power
control.
No-fault
tolerance
control

[80] An online
offloading
algorithm
based on
Lyapunov

Power-delay
tradeoff

Null Multi-user
Single-server

Full
offloading

To balance the
power
consumption
to mobile
devices

Not
applicable in
real-time
offloading.
Centralized

[89] Offloading
algorithm
based on
ADMM

Latency,
throughput

MATLAB Multi-user
Single-server

Full
offloading

To reduce
system latency
and increase
throughput

Static
network.
May fail
under high
mobility.
Not
applicable in
real-time
offloading

[97] MUMTO
based on
SDR

Energy cost,
Computation
cost, Latency
cost

MATLAB Multi-user
Single-server

Full
offloading

To reduce the
overall cost of
energy,
computation,
and delay

Centralized
algorithm.
High
latency.
Not
dynamic

[108] Heuristic
algo base on
segmentation
strategy

Latency Null Multi-user
Single-server

Partial
offloading

To minimize
the overall
system delay
of all device

High
complexity

[110] Offloading
algo based
on TDMA
and
OFDMA

Energy, QoE MATLAB Multi-user
Single-server

Partial
offloading

To minimize
the weighted
sum mobile
energy
consumption

High
complexity

(Continued)



64 CMES, 2023, vol.134, no.1

Table 2 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[112] Offloading
algo based
on DVFS,
UST, and
VSM

Energy,
Latency

Null Single-user
Single-server
Multi-user
Multi-server

Partial
offloading

To minimize
system energy
consumption
and latency

Hard to
implement

[30] Dynamic
offloading
algo base on
Lyapunov

Energy Null Single-user
Single-server

Partial
offloading

To achieve
energy saving

No consid-
eration for
latency.
Can achieve
only local
optimal

[81] Offloading
algo based
on Lyapunov

Latency,
Reliability

Null Multi-user
Multi-server

Partial
offloading

To investigate
the
power-delay
tradeoff of
task
offloading

Hard to
implement.
It may fail
when many
users are
around. Can
only achieve
local
optimal

[113] eDors
algorithm
based on
DVFS

Latency,
Energy

Real testbed Multi-user
Single-server

Partial
offloading

To provide an
energy-
efficient
computation
offloading

Less
effective on
reduction of
latency.
Limited by
the trade-off
between
optimality
and compu-
tational
complexity

[92] A low
complexity
algorithm
base on
convex
optimization

Throughput Null Multi-user
Single-server

Full/partial To maximize
network sum
offloading
efficiency

Central
controller.
Not
applicable in
real-time
offloading

[109] A low
complexity
sub-optimal
algo base on
convex
optimization

Latency Null Single-user
Multi-server

Full
offloading

To minimize
user
computation
latency

Single-user
system.
Multi-user
is not
considered.
Not scalable

(Continued)



CMES, 2023, vol.134, no.1 65

Table 2 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[27] ECTCO
based on
SDR and
stochastic
mapping

Energy MATLAB Multi-user
Single-server

Partial
offloading

To minimize
the cost of
energy

Central
controller.
Low
convergence
in high
mobility

[88] Offloading
algo based
on
Stackelberg
model

Energy Null Multi-user
Single-server

Full
offloading

To optimize
the utility of
the mobile
users and the
edge cloud

Central
controller

[87] SaSG Latency,
Throughput

Java Multi-user
Multi-server

Partial
offloading

To minimize
delay and
increase user
throughput

Not
scalable.
It may be
challenging
to
implement
in rea-time
offloading

[114] Offloading
algo based
on bi-section
and Gibb’s
sampling

Energy,
Latency

Null Multi-user
Single-server

Partial
offloading

To minimize
energy
consumption
and system
latency

Not
applicable.
It may
instead
increase
latency—
computational
complexity

[91] Offloading
algo based
on BCD

Energy,
Latency

Null Multi/Single-
user
Single-server

Partial
offloading

To minimize
energy
consumption
and system
latency

There was
no consider-
ation for
change in
the channel
state
information

[93] Offloading
algo based
on IPM

Energy,
Latency

Null Multi-user
Single-server

Partial
offloading

To achieve
better latency
performance

It does not
consider the
execution
order of the
computing
task

(Continued)



66 CMES, 2023, vol.134, no.1

Table 2 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[104] CODE-V Energy,
Latency

Null Multi-user
Multi-server

Full
offloading

To minimize
the average
service latency
and energy
consumption

Too many
assumptions
for the
algorithm to
function.
May incur
latency
when the
network is
scaled up

[19] Offloading
algo based
on SDN

Latency,
Throughput

Python Multi-user
Multi-server

Full
offloading

To select the
optimal
offloading
node and
provide
end-to-end
bandwidth
based on SDN

Controller
vulnerabil-
ity.
Security
issues

[86] Offloading
algo based
on SG

Latency Null Multi-user
Multi-server

Partial
offloading

To cause
cloud service
operators and
edge server
owners to
participate in
computation
offloading

Not
scalable.
Lack of
practicabil-
ity

[85] Offloading
algo based
on game
theory

Latency,
Energy, Cost

Null Multi-user
Single-server

Partial
offloading

To reduce
computation
delay while
optimizing the
energy and
computation
cost

The UAV’s
inflight
energy usage
was
neglected

[84] Offloading
algo based
on game
theory

Latency,
Energy

Null Multi-user
Single-server

Partial
offloading

To minimize
system
computation
overhead

May incur
high compu-
tation
overhead.
Not
applicable

(Continued)



CMES, 2023, vol.134, no.1 67

Table 2 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[115] GenCOSCO
based on
generalized
benders
decomposi-
tion

QoS, Latency Null Single-user
Multi-server

Full
offloading

To minimize
the average
task execution

The cached
service on
the edge
server
cannot be
utilized
among
users; else, it
raises a
security risk

[98] Offloading
heuristic
algorithm
based on
PSO

Reliability,
Latency

Null Single-user
Multi-server

Partial
offloading

To minimize
the probability
of service
failure

High
complexity

[99] EIPSO based
on an
improved
PSO algo

Latency, Load
balancing

Null Multi-user
Multi-server

Full
offloading

To reduce
system latency
and improve
load balancing
in MEC

High
complexity

[106] HMAO
based on
HMM

Latency,
Energy

iFogsim Multi-user
Multi-server

Full
offloading

To find the
best place to
execute a task

Central
controller.
May incur
higher
latency

[105] Dynamic
scheduling
based on
HMM

Reliability Null Single-user
Single-server

Partial
offloading

To
dynamically
adjust the
offloading
strategies
based on
environmental
changes

High state
space

[102] LODCO
based on
GA, DVFS,
and
Lyapunov

QoE, Latency,
Throughput

MATLAB Multi-user
Multi-server

Full
offloading

To improve
quality of
experience
and reduce
delay

High
complexity

[103] A
sub-optimal
algo base on
GA and PSO

Latency,
Energy

Null Multi-user
Multi-server

Full
offloading

To minimize
overall
offloading
overhead

No consid-
eration for
user
mobility

(Continued)



68 CMES, 2023, vol.134, no.1

Table 2 (continued)

Reference Algorithm
(algo)

Performance
metric

Simulation
tool

System Offloading
type

Aim of
algorithm

Algorithm
drawbacks

[101] GA
algorithm
and Greedy
strategy

Cost Python Multi-user
Multi-server

Full
offloading

To reduce the
cost of com-
munication
energy and
delay

Static model

[100] Online algo
base on
Lyapunov
opt. and GA
algo

Latency Null Multi-user
Multi-server

Full
offloading

To minimize
the overall
system latency
of all device

May rather
incur high
latency. May
get stuck in
local
optimal

[111] Offloading
algo based
on Meta-
heuristic
search

Throughput Python Multi-user
Single-server

Full
offloading

To maximize
the
computation
rate of user

Low
convergence
under high
mobility

[90] Offloading
algo based
on CD and
ADMM

Throughput Python
TensorFlow

Multi-user
Single-server

Full
offloading

To maximize
the
computation
rate of users

Rather high
latency. Low
convergence
under high
mobility

4.3 Offloading Strategies
Computation offloading strategies have been studied extensively [116–119] and generally fall

under two categories, full offloading (coarse-grained) [120] and partial offloading (fine-grained) [91],
[121–124]. For coarse-grained mode, the data set of a task has to be executed as a whole either locally or
remotely on an edge server. In the case of partial offloading, task partition is allowed. Hence, a task
is first partitioned into several components. These components are then offloaded to edge servers,
or some components are executed locally while others are offloaded. In practice, binary offloading
is easier to implement, and it is suitable for simple tasks that cannot be partitioned, while partial
offloading is favorable for some complex tasks composed of multiple parallel segments.

4.3.1 Full Offloading

Full offloading is also called binary, coarse-grained, or total offloading. The complete task is
migrated to the edge cloud for execution, or the whole task is executed locally. From Fig. 5, it could
be seen that the task will not be divided. Either all the task is executed locally or offloaded to the edge
for execution. Choosing where to offload may be based on data size, network condition, available
resources, bandwidth, etc. This approach does not require estimating the computation overhead
prior to the execution. The binary offloading problem can be solved using an exhaustive search.
Enumerating all possible decisions can achieve the optimal global objective in a scenario with N end
devices and one edge server. The end devices must decide whether to offload a task to the edge server.
The number of possible decisions, on the other hand, is 2N. When N is huge, it is challenging to solve.



CMES, 2023, vol.134, no.1 69

Some optimization procedures or methods should be used to lower the computational complexity.
Consider the decomposition approach known as the Alternating Direction Method of Multipliers
(ADMM).

Figure 5: Full offloading

4.3.2 Partial Offloading

Partial offloading is also referred to as fine-grained offloading or dynamic offloading. This
technique dynamically transmits as little code as possible and offloads only the computation-hungry
parts of the application. From Fig. 6, it can be observed that the task is separated, one part is
executed locally, and the other part is executed remotely. Despite the added processing expense and
stress on application programmers, fine-grained offloading can eliminate needless transmission over-
head, resulting in lower latency and energy usage. Data-partitioned-oriented tasks, code-partitioned-
oriented tasks, and continuous-execution tasks are the three forms of partitionable jobs. We divide
these partitionable tasks into two categories in the context of offloading modeling: parallel and
sequential. The work is partitioned into components executed in parallel in the first scenario (parallel).
As a result, the only decision the offloading strategy must make is where to place the components.
There are dependencies among the components in the latter case (sequential), i.e., specific components
cannot be executed until the completion of others, necessitating the definition of component placement
and scheduling. The relationship between them is then described using Component Dependency
Graphs (CDGs) or Correlation Graphs; a correlation graph is represented by G (V, E), where V
and E denote its sets of nodes and edges respectively [125–127]. The CDG’s vertices represent the
application’s various components or tasks. At the same time, the edges reflect the invocations between
these components, or each vertex represents a component, and the direct edge represents the magnitude
of data migration from one component to another. Fig. 7 shows an example of a CDG representation.
The non-offloadable components must be executed locally, as indicated by the blue vertices. The
offloadable components are represented by green vertices.



70 CMES, 2023, vol.134, no.1

Figure 6: Partial offloading

Figure 7: Component Dependency Graph (CDGs)

Table 3 groups all the proposed offloading algorithms, both the machine learning and the non-
machine learning algorithms, into the two offloading strategies, full offloading or partial offloading.



CMES, 2023, vol.134, no.1 71

Table 3: Full offloading and partial offloading

Full offloading (ML and Non-ML) Partial offloading (ML and Non-ML)

[106], [102], [103], [101], [100], [128], [80], [89]
[97], [92], [109], [88], [104], [19], [115]
[99], [28], [59], [61], [56], [32]
[62], [68], [75], [77], [26]
[78], [43], [79], [69]
[71], [57], [51]
[66], [54]
[73], [72]
[22]

[107], [108], [110], [112], [30], [81], [113],
[92]
[27], [87], [114], [91], [93], [86], [85]
[84], [98], [105], [67], [58], [49]
[60], [50], [44], [42], [76]
[52], [63], [64]
[70], [65]
[74]

5 Open Discussion
5.1 Utilized Metrics

In all, under the machine learning algorithms, 12 metrics were considered by researchers in
the literature. From Fig. 8, it can be observed that the majority of the recently published works of
researchers focus more on latency (Delay) and energy. From the chart, it can be observed that among
the 36 chosen papers, 33.85% of work focused on latency and 32.31% on energy. We will like to
state that different reviewed papers do not formulate a specific metric in the same way. Therefore,
this study avoids introducing a general way to cover the formulation of reviewed metrics. Instead, we
only review and present the metrics as they were put by authors. It is also worth mentioning that since
some reviewed articles are multi-objective, some of the mentioned metrics might be considered in more
than one article. Moreover, we will also like to mention that we considered all delays as latency and
considered maximizing overall system utility and maximizing offloading task rate as throughput. See
Fig. 8, for more details.

Figure 8: Machine learning offloading metrics



72 CMES, 2023, vol.134, no.1

As for the non-machine learning algorithms, a total of 35 recently published papers were surveyed,
and among all 8-performance metrics were considered by authors, from Fig. 9. It can be observed that
energy and latency again are the dominant metrics considered by researchers. Among the 35 papers
surveyed, 38.33% focused on latency, and 26.67% focused on energy. See Fig. 6 for details.

Figure 9: Non-machine learning metric

For machine learning and non-machine learning techniques, energy and latency are the main focus
of research direction in computation offloading. Moreover, minimizing latency and energy consump-
tion improves both service quality and experience, reduces both communication and computation
costs, and improves overall system utility.

5.2 Utilized Techniques
Based on the above-mentioned reviewed papers, most of the offloading approaches in machine

learning belong to reinforcement learning followed by supervised learning and then unsupervised
learning, as shown in Fig. 10. RL is probably more suitable in a dynamic environment and covers
ample state and action spaces. Moreover, RL removes the need for massive computational complexities
with its DNN for approximation. RL methods can also be utilized for several scenarios. In the RL,
most published papers considered in this article belong to DQN and Actor-Critic, with the least Q-
Learning. Generally, the selection of the offloading approaches depends highly on the state-space of
the problems. Fig. 11 shows the various distributions of the machine learning techniques utilized by
various articles.

Since the offloading problems have commonly high complexities, pure Q-Learning is not applica-
ble and suitable for solving such problems due to its tubular search nature. The time of the exploration
to take the appropriate action by the agent to learn a policy will be close to impossible. This process will
become considerably time-intensive and resource-intensive if the number of actions to select Q-values
is significant. More specifically, in DQN or Actor-Critic, neural networks are generally approximating
the Q-values. For the input (i.e., states), neural networks support the agent to learn the best possible
actions that improve the decision-making performance of offloading. DQN and Actor-Critic perform



CMES, 2023, vol.134, no.1 73

well in discrete and continuous space, respectively. It makes it appropriate for implementation in
various applications, such as AR, VR, online gaming, stock market, and Intelligent vehicle systems to
enhance different metrics such as delay, energy, cost, bandwidth, and security. Since powerful open-
source tools such as PyTorch and TensorFlow run appropriately with Python, such tools are in the
attention of the researchers to implement their proposed models more precisely.

Figure 10: Classes of machine learning

Figure 11: Machine learning offloading techniques

Meanwhile, for the non-machine learning techniques out of 35 papers considered in this article,
convex optimization methods happen to have the maximum usage followed by Game theory and
Lyapunov. Lately, there have been many game-theoretic approaches to deal with resource allocation
problems and decision-making. For example, the problem of partial task offloading in a multi-
user, Edge Computing Infrastructure, and a multi-channel wireless interference environment can be
formulated as an offloading game [129,130]. This game maximizes the spectrum efficiency during



74 CMES, 2023, vol.134, no.1

offloading by allocating the proper channel to each user or player. On the other hand, Lyapunov
optimization algorithms provide a unique property of finding sufficient conditions for stability in
dynamical systems. Due to the stability theory of dynamical systems, Lyapunov-based optimization
algorithms can study the task offloading problem. The key to using Lyapunov optimization in
offloading modeling is to define the drift and the penalty. The drift could be the energy queue drift
or the task queue drift in an offloading scenario. In contrast, the penalty is usually the offloading
objective, e.g., the minimization of task dropping or execution latency. Then at each time slot,
minimizing the drift-plus-penalty expression could determine the optimal offloading decision and
other parameters.

Convex optimization is a powerful tool for optimization problems because it is solvable. In this
model, the objective(s) of offloading is(are) formulated as an objective function, and the limitations
of offloading are formulated as constraint functions. If the formulated optimization model is convex,
classical methods such as the Lagrange duality method and Karush-Kuhn-Tucker (KKT) conditions
can solve the model and achieve the global optimization objective. If the offloading model is a non-
convex optimization problem, a usual way is to transform it into convex optimization. Some of the
convex optimization methods considered here include ADMM, BCD, and IPM. Fig. 12. Shows the
non-machine learning techniques considered here; more details can be found in Section 4.

Figure 12: Non-machine learning offloading techniques

5.3 Utilized Systems
The following technical question is addressed in this section:

Q5: What utilized systems are considered in both ML and Non-ML based approaches?

The MEC systems considered in this article for both machine learning and non-machine learning
techniques include Multi-user Multi-server, Multi-user Single-server, single-user multi-server, and
Single-user Single-server.

There is greater complexity in the multi-user multi-server offloading scenario. It is a hybrid of
single-user multi-server and Multi-user Single-server offloading scenarios. The information from both
end devices and edge servers is necessary for decision making if a centralized offloading approach
is employed for the Multi-user Multi-server offloading scenario. Although the centralized method



CMES, 2023, vol.134, no.1 75

can accomplish global optimization, solving the model is usually complex. As a result, a distributed
technique is more suited to solving the problem of Multi-user Multi-server offloading [131].

In the Multi-user Single-server offloading scenario, multiple end devices offload their responsi-
bilities to a single server. When modeling this type of scenario, all entities should be considered, and
the decision should be made to maximize the entire system. There is no server selection in this scenario
because there is only one server, and the server functions as the decision-maker for all end devices. A
base station is a decision-maker in You et al. [132]. It gathers the essential data from the environment
and all of its end devices before making decisions on their behalf.

Many edge servers are available in the single-user multi-server offloading scenario. Therefore,
servers must be chosen based on several parameters (task size, availability of resources, mobility). The
end device determines whether or not to offload the task and which server(s) it should be offloaded
to. End devices may distribute components to numerous edge cloud servers if partitioning the
work [133].

Only one end device selects whether to offload a computation work to an edge cloud server in
a single-user single-server offloading scenario. The authors in [116] created a setup that included one
edge device and one edge cloud server to show how to minimize the energy consumption at the mobile
handset while guaranteeing a computational rate constraint imposed by the application. They later
extended it to the multi-user scenario. Figs. 13 and 14 show the proportion of the various systems
utilized under both machine learning and non-machine learning techniques.

Figure 13: Machine learning systems

5.4 Utilized Tools
The following technical question is addressed in this section:

Q4: What evaluation tools are utilized for assessing the ML and Non-ML based approaches?

In Fig. 15, it can be observed that 52.78 percent of research publications do not specify evaluation
methods for the proposed models. Furthermore, in the literature, 22.22 percent and 15.28 percent



76 CMES, 2023, vol.134, no.1

of articles employed Python and MATLAB, respectively, to develop their model. Furthermore, 4.17
percent and 2.78 percent of the study publications used the Java and iFogSim tools to assess and
analyze the existing case studies. Finally, CloudSim and Google Cloud trace logs have the fewest
participants of 1.39 percent each in the literature.

Figure 14: Non-machine learning systems

Figure 15: Evaluation tools utilization



CMES, 2023, vol.134, no.1 77

6 Comparison of the Various Offloading Algorithms

In this subsection, we analyze the benefits and limitations of each algorithm, and we discuss the
scenario for which these algorithms are well suited.

Because reinforcement learning can handle the curse of dimensionality problem mentioned in
MDP, it is logical for a high-complexity offloading scenario like large-scale offloading. Furthermore,
because reinforcement learning is an online method, it is appropriate for use in a dynamic environment.
However, since end devices rarely support reinforcement learning, a powerful entity should be
developed to implement reinforcement-learning for all end devices.

Offloading optimization and Lyapunov drift optimization can both be accomplished with Lya-
punov optimization. As a result, it can be used in task offloading scenarios where load balancing
and energy harvesting balance, for example, are essential. Although Lyapunov optimization is a
centralized modeling method, it could be used in a large-scale offloading scenario because of its low
computational complexity. On the other hand, Lyapunov optimization is a one-step optimization that
can only achieve local optimization.

The inherently distributed nature of game theory models is an advantage. It is frequently utilized
in multi-user offloading scenarios where users compete for computational or cellular resources. It, like
MDP, can be used in a dynamic setting. Because a game theory requires each user to maximize their
utility, it works well in large-scale offloading scenarios. On the other hand, Game theory models can
only guarantee the Nash equilibrium, which may not be the optimal global solution.

MDP has the advantage of being used in both centralized and distributed environments. A
centralized body decides for all users in the centralized situation, whereas each user makes their own
offloading decision in the distributed scenario. The decision-maker must be aware of the system state
at the decision to achieve optimal offloading. Therefore, data collecting remains a challenge. MDP is
not scalable, which goes hand in hand with the curse of dimensionality. Nonetheless, MDP’s dynamic
decision-making makes it well suited for dynamic offloading scenarios in which a user can better their
decision as the environment changes.

The advantage of (non-) convex optimization is that it can achieve global or near-global opti-
mization. However, it necessitates the introduction of a centralized entity to collect all necessary
data and make decisions for all users, making this approach non-scalable. As a result, this strategy
is not appropriate for extensive offloading. However, it works effectively in a small-scale context,
mainly when the offloading problem can be treated as a convex optimization problem, allowing for
global optimization. Because (non-) convex optimization is a type of static modeling, it is ineffective
for dynamic offloading scenarios in which the environment, such as channel state and network
architecture, changes often.

6.1 Research Challenges and Open Issues
The following technical question is addressed in this section:

Q6: What are the future research directions and open perspectives of ML and Non-ML based
offloading approaches?

1) Mobility

In many cases, the users’ dynamic movement behavior becomes the decisive element in offloading
the work. Even though few existing studies consider mobility, the case remains an open challenge.
For new and emerging applications, building algorithms by learning the user behavior and network
dynamics simultaneously, for example, is critical to cut communication and processing costs. Beyond



78 CMES, 2023, vol.134, no.1

2021, high-user mobility applications such as UAVs, high-speed rails, moving hotspots, and 3D
connectivity will be in great demand. Existing solutions would be impossible to apply in such intense
conditions, not just in terms of accuracy but also minimal performance expectations. Since mobile
devices with inherently high dynamic behavior can quickly move across different places, these devices
might need to change their dedicated servers scattered in a geographically wide area. As the main
challenge, it is required to have a proper mobility management technique to keep the connection with
the edge server despite leaving the place of origin to receive the high dynamic content optimizations.
On the other hand, to keep these connections, it is required for related organizations to offer standard
protocols and unit platforms, as well. Notwithstanding their importance, mobility issues have been
poorly or insufficiently addressed in the literature on MEC contexts.

2) Offloading Modeling in Edge Intelligence

With the proliferation of edge computing and IoT, a recent trend is to integrate artificial
intelligence into edge computing, which gives rise to a new edge paradigm, namely, the emergence of
edge Intelligence. In a three-tier edge intelligence architecture, a DNN with multiple layers is deployed
at both the edge computing server and the cloud server, i.e., the front layers of the DNN are deployed
at the edge server; the remaining layers are deployed at the cloud server. The output of the edge server
is offloaded to the cloud, but the challenge here is deciding on which layer should be offloaded to the
cloud, i.e., how to deploy the DNN. In a more typical scenario, multiple edge intelligence servers work
together to provide Artificial Intelligence (AI) service for end devices. The offloading modeling for
AI tasks should consider the AI performance, i.e., offloading to an edge intelligence server that has
already been trained with similar tasks. Although some works [134–138] have contributed to this area,
offloading modeling in edge intelligence is still an open issue.

3) Fault Tolerance

Aside from privacy and security, fault tolerance is crucial in establishing confidence in offloading
at the edge. The tendency of a system to perform its intended purpose despite failures is known
as fault tolerance [139,140]. Fault-tolerant computation refers to computing correctly even when a
system contains mistakes. Mobility is one of the most vital requirements during offloading. The
autonomy of communication and freedom of movement are critical factors for user experience. Even
yet, achieving continuous connectivity and ongoing access to an edge server while moving presents
particular challenges. Network bandwidth and data transfer speeds, for example, may fluctuate, or a
connection may be lost. Following the application, some attributes are required to correctly analyze a
system’s behavior. Some of these characteristics, such as component reliability, availability, and failure
probability, can be represented by various mathematical models, including the Binomial distribution,
Markov model, and Poisson distribution, depending on the conditions and situations of the problems
solved. Despite its importance, few studies on computation offloading consider fault-tolerance
issues. Yang et al. [141] looked at service reliability and delays and errors. Through code-splitting,
Liu et al. [98] represented the dependency of task components as a Directed Acyclic Graph. They
used the service failure probability of MEC-enabled AR service to create a trade-off between latency
and reliability. Qiao et al. [142] collaborated in a collaboratively self-organized D2D edge computing
network to utilize mobile devices’ processing capabilities while ensuring service availability utilizing
energy harvesting technologies. Therefore, fault tolerance can be classified as a hot topic with a high
significance level. To ensure the successful transmission and implementation of the task and decrease
error, task offloading should be upgraded with fault tolerance mechanisms.



CMES, 2023, vol.134, no.1 79

4) Interoperability

Interconnectivity, system model infrastructure, and interoperability interface are the three funda-
mental scope of interoperability. It is necessary to pay attention to the system’s interoperability which
is a complex challenge to incorporate security features as part of intercommunication. In addition,
paying attention to interoperability factors while exchanging diverse data kinds across different levels
and devices of a typical system or between different systems and paradigms as a form of offloading is
a significant difficulty to be overcome. In general, interoperability, or the capacity to communicate
between systems and concepts, is required to increase the system’s vital metrics in mobile edge
computing. Data could be transferred, transmitted, or handled together according to interoperability
principles in interconnectivity and intercommunication. True interoperability requires an intermediate
interface, known as a controller, to be in a structure that allows interaction between the system’s pieces.
The structure and system model in such a system should be highly adaptive to facilitate connectivity
between mobile devices and servers because of the high dynamic behavior of the MEC environment,
which involves high data rates on the one hand and heterogeneity on the other.

5) Privacy and Security

Because task offloading includes a large volume of data sent to third-party Edge infrastructures,
security, and privacy [143] considerations are critical. These ideas can be approached from a variety
of perspectives. One way to defend the computation offloading process is to provide confidentiality,
integrity, availability, access control, and authentication between end devices and edge servers. Qi et
al. [144] proposed a privacy-aware data fusion for smart cities to protect user-sensitive data during
offloading. Many of the security concerns raised in this context are similar to those raised in the area
of cloud computing. Edge computing’s unique characteristics, such as restricted end-device resources
and wireless access, make security procedures more difficult to implement. Another feature of the
Edge server is that it serves as an authentication server or security source for end devices. End devices
with limited resources are thought not to support complex security mechanisms [145]. To alleviate
this issue, end-device security mechanisms should be offloaded to an edge server, which performs
these mechanisms on behalf of the end devices due to the complex nature of end devices, including
multiple types of communication protocols and dynamic security setups. Offloading compute or
security functions to edge servers raise several privacy issues. Threats to Edge architectures are
primarily focused on data transfer between the network’s different nodes. Various encoding and
critical cryptographic approaches and secure equipment execution are among the proposed solutions.
Nonetheless, many of these technologies possess drawbacks in their implementations when used
independently; for example, cryptographic keys may be too large, substantially increasing the volume
of sent and stored data, and computations on encrypted data are still in the initial phases of the study.
Edge-related security and privacy concerns are evolving rapidly, making it difficult to react to and
defend against.

7 Conclusion

Task offloading is a critical technology for edge computing that can prolong battery life, reduce
latency and improve application performance. In practice, many factors affect task offloading,
which makes many offloading unable to achieve their expected objectives. This study presented a
thorough examination of current task offloading and resource allocation in edge computing, covering
offloading strategies, algorithms, and factors that influence offloading. We then grouped offloading
strategies into two categories, Full and partial offloading. Additionally, we categorized offloading



80 CMES, 2023, vol.134, no.1

algorithms into machine learning and non-machine learning and discussed some general factors
affecting offloading. Lastly, some research challenges and issues in edge computing were presented.

Funding Statement: This work is supported by the National Natural Science Foundation of China
(Grant No. 61872002); Anhui Province Key Research and Development Program Project (Grant No.
201904a05020091).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Wang, F., Zhu, M., Wang, M., Khosravi, M. R., Ni, Q. et al. (2021). 6G-Enabled short-term forecasting

for large-scale traffic flow in massive IoT based on time-aware locality-sensitive hashing. IEEE Internet of
Things Journal, 8(7), 5321–5331. DOI 10.1109/JIOT.2020.3037669.

2. Wei, D., Ning, H., Shi, F., Wan, Y., Xu, J. et al. (2021). Dataflow management in the Internet
of Things: Sensing, control, and security. Tsinghua Science and Technology, 26(6), 918–930. DOI
10.26599/TST.2021.9010029.

3. Zheng, T., Wan, J., Zhang, J., Jiang, C., Jia, G. (2020). A survey of computation offloading in edge com-
puting. Proceedings of the 2020 International Conference on Computer, Information and Telecommunication
Systems, Hangzhou, China.

4. Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D. et al. (2021). Task offloading in
edge and cloud computing: A survey on mathematical, artificial intelligence and control theory solutions.
Computer Networks, 195(3), 108177. DOI 10.1016/j.comnet.2021.108177.

5. Zhao, T., Zhou, S., Guo, X., Zhao, Y., Niu, Z. (2015). A cooperative scheduling scheme of local cloud
and internet cloud for delay-aware mobile cloud computing. 2015 IEEE Globecom Work, San Diego, CA,
USA.

6. Xu, F., Yang, W., Li, H. (2020). Computation offloading algorithm for cloud robot based on improved
game theory. Computers and Electrical Engineering, 87(4), 1–11. DOI 10.1016/j.compeleceng.2020.106764.

7. Wang, L., Zhang, X., Wang, T., Wan, S., Srivastava, G. et al. (2021). Diversified and scalable service
recommendation with accuracy guarantee. IEEE Transactions on Computational Social Systems, 8(5),
1182–1193. DOI 10.1109/TCSS.2020.3007812.

8. Xu, Y., Qi, L., Dou, W., Yu, J. (2017). Privacy-preserving and scalable service recommendation based on
simhash in a distributed cloud environment. Complexity, 2017(2), 1–9. DOI 10.1155/2017/3437854.

9. Wang, F., Zhu, H., Srivastava, G., Li, S., Khosravi, M. R. et al. (2021). Robust collaborative filtering
recommendation with user-item-trust records. IEEE Transactions on Computational Social Systems, 3, 1–
11. DOI 10.1109/TCSS.2021.3064213.

10. Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hosseinzadeh, M. (2020). A survey on the computation
offloading approaches in mobile edge/cloud computing environment: A stochastic-based perspective.
Journal of Grid Computing, 18(4), 639–671. DOI 10.1007/s10723-020-09530-2.

11. Lin, H., Zeadally, S., Chen, Z., Labiod, H., Wang, L. (2020). A survey on computation offload-
ing modeling for edge computing. Journal of Network and Computer Applications, 169, 102781. DOI
10.1016/j.jnca.2020.102781.

12. Xu, X., Li, H., Xu, W., Liu, Z., Yao, L. et al. (2022). Artificial intelligence for edge service opti-
mization in internet of vehicles: A survey. Tsinghua Science and Technology, 27(2), 270–287. DOI
10.26599/TST.2020.9010025.

https://doi.org/10.1109/JIOT.2020.3037669
https://doi.org/10.26599/TST.2021.9010029
https://doi.org/10.1016/j.comnet.2021.108177
https://doi.org/10.1016/j.compeleceng.2020.106764
https://doi.org/10.1109/TCSS.2020.3007812
https://doi.org/10.1155/2017/3437854
https://doi.org/10.1109/TCSS.2021.3064213
https://doi.org/10.1007/s10723-020-09530-2
https://doi.org/10.1016/j.jnca.2020.102781
https://doi.org/10.26599/TST.2020.9010025


CMES, 2023, vol.134, no.1 81

13. Ahmed, E., Gani, A., Sookhak, M., Hamid, S. H. A., Xia, F. (2015). Application optimization in
mobile cloud computing: Motivation, taxonomies, and open challenges. Journal of Network and Computer
Applications, 52(11), 52–68. DOI 10.1016/j.jnca.2015.02.003.

14. Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A. (2020). A survey on the computation offloading
approaches in mobile edge computing: A machine learning-based perspective. Computer Networks, 182(2),
107496. DOI 10.1016/j.comnet.2020.107496.

15. Bhattacharya, A., De, P. (2017). A survey of adaptation techniques in computation offloading. Journal of
Network and Computer Applications, 78, 97–115. DOI 10.1016/j.jnca.2016.10.023.

16. Carvalho, G., Cabral, B., Pereira, V., Bernardino, J. (2020). Computation offloading in edge computing
environments using artificial intelligence techniques. Engineering Applications of Artificial Intelligence, 95,
103840. DOI 10.1016/j.engappai.2020.103840.

17. Guevara, J. C., Torres, R., da, S., da Fonseca, N. L. S. (2020). On the classification of fog computing
applications: A machine learning perspective. Journal of Network and Computer Applications, 159(8),
102596. DOI 10.1016/j.jnca.2020.102596.

18. Shan, X., Zhi, H., Li, P., Han, Z. (2018). A Survey on computation offloading for mobile edge Computing
information. Proceedings of 4th IEEE International Conference on Big Data Security on Cloud, BigDataSe-
curity 2018, 4th IEEE International Conference on High Performance and Smart Computing, HPSC, 2018
and 3rd IEEE International Conference on Intelligent Data and Securit, pp. 248–251. Omaha, NE, USA.

19. Phan, L. A., Nguyen, D. T., Lee, M., Park, D. H., Kim, T. (2021). Dynamic fog-to-fog offloading
in SDN-based fog computing systems. Future Generation Computer Systems, 117(1), 486–497. DOI
10.1016/j.future.2020.12.021.

20. Zhang, Y., Li, J., Li, Y., Xu, D., Ahmed, M. et al. (2019). Cellular traffic offloading via link prediction in
opportunistic networks. IEEE Access, 7, 39244–39252. DOI 10.1109/ACCESS.2019.2891642.

21. Liu, H., Kou, H., Yan, C., Qi, L. (2019). Link prediction in paper citation network to construct paper
correlation graph. Eurasip Journal on Wireless Communications and Networking, 2019(1), 233. DOI
10.1186/s13638-019-1561-7.

22. Zhang Y., Niyato D., Wang P. (2015). Offloading in mobile cloudlet systems with intermittent connectivity.
IEEE Transactions on Mobile Computing, 14(12), 2516–2529. DOI 10.1109/TMC.2015.2405539.

23. Wang, Z., Liang, W., Huang, M., Ma, Y. (2018). Delay-energy joint optimization for task offloading in
mobile edge computing. http://arxiv.org/abs/1804.10416.

24. Malan, D. J. (2006). Getting started with amazon EC2 self-service, prorated super computing fun!
https://cs.harvard.edu/malan/publications/ec2.pdf.

25. Polak, A. (2012). The beginner’s guide to microsoft azure. www.connection.com/∼/media/pdfs/
content/cloudtechnology/beginnersguidetomicrosoftazure.pdf?la=en.

26. Rego, P. A. L., Trinta, F. A. M., Hasan, M. Z., de Souza, J. N. (2019). Enhancing offloading systems
with smart decisions, adaptive monitoring, and mobility support. Wireless Communications and Mobile
Computing, 2019, 1–18. DOI 10.1155/2019/1975312.

27. Liu, F., Huang, Z., Wang, L. (2019). Energy-efficient collaborative task computation offloading in cloud-
assisted edge computing for IoT sensors. Sensors, 19(5), 1105. DOI 10.3390/s19051105.

28. Huang, L., Feng, X., Feng, A., Huang, Y., Qian, L. P. (2018). Distributed deep learning-based offload-
ing for mobile edge computing networks. Mobile Networks and Applications, 3(6), 1123–1130. DOI
10.1007/s11036-018-1177-x.

29. Wang X., Ning Z., Wang L. (2018). Offloading in internet of vehicles: A fog-enabled real-time
traffic management system. IEEE Transactions on Industrial Informatics, 14(10), 4568–4578. DOI
10.1109/TII.2018.2816590.

30. Huang, D., Wang, P., Niyato, D. (2012). A dynamic offloading algorithm for mobile computing. IEEE
Transactions on Wireless Communications, 11(6), 1991–1995. DOI 10.1109/TWC.2012.041912.110912.

https://doi.org/10.1016/j.jnca.2015.02.003
https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1016/j.jnca.2016.10.023
https://doi.org/10.1016/j.engappai.2020.103840
https://doi.org/10.1016/j.jnca.2020.102596
https://doi.org/10.1016/j.future.2020.12.021
https://doi.org/10.1109/ACCESS.2019.2891642
https://doi.org/10.1186/s13638-019-1561-7
https://doi.org/10.1109/TMC.2015.2405539
http://arxiv.org/abs/1804.10416
https://cs.harvard.edu/malan/publications/ec2.pdf
https://www.connection.com/&#x007E;/media/pdfs/content/cloudtechnology/beginnersguidetomicrosoftazure.pdf?la&
https://doi.org/10.1155/2019/1975312
https://doi.org/10.3390/s19051105
https://doi.org/10.1007/s11036-018-1177-x
https://doi.org/10.1109/TII.2018.2816590
https://doi.org/10.1109/TWC.2012.041912.110912


82 CMES, 2023, vol.134, no.1

31. Yang, L., Cao, J., Tang, S., Li, T., Chan, A. T. S. (2012). A framework for partitioning and execution of data
stream applications in mobile cloud computing. Proceedings of 2012 IEEE 5th International Conference on
Cloud Computing, pp. 794–802. Honolulu, HI, USA.

32. Huang, L., Feng, X., Zhang, C., Qian, L., Wu, Y. (2019a). Deep reinforcement learning-based joint task
offloading and bandwidth allocation for multi-user mobile edge computing. Digital Communications and
Networks, 5(1), 10–17. DOI 10.1016/j.dcan.2018.10.003.

33. Tse, D., Viswanath, P. (2012). The wireless channel. Fundamentals of Wireless Communication, pp. 10–48.
Cambridge, UK, Cambridge University Press.

34. Rabbachin, A., Quek, T. Q. S., Shin, H., Win, M. Z. (2011). Cognitive network interference. IEEE Journal
on Selected Areas in Communications, 29(2), 480–493. DOI 10.1109/JSAC.2011.110219.

35. Yang, C., Liu, Y., Chen, X., Zhong, W., Xie, S. (2019). Efficient mobility-aware task offloading for
vehicular edge computing networks. IEEE Access, 7, 26652–26664. DOI 10.1109/ACCESS.2019.2900530.

36. Zhao, P., Tian, H., Qin, C., Nie, G. (2017). Energy-saving offloading by jointly allocating radio and
computational resources for mobile edge computing. IEEE Access, 5, 11255–11268. DOI 10.1109/AC-
CESS.2017.2710056.

37. Education, I. cloud (2020). Machine learning. https://www.ibm.com/cloud/learn/machine-learning.
38. Ai, E. (2020). What is machine learning? A definition. https://www.expert.ai/blog/machine-learning-

definition/.
39. Liao, X., Zheng, D., Cao, X. (2021). Coronavirus pandemic analysis through tripartite graph

clustering in online social networks. Big Data Mining and Analytics, 4(4), 242–251. DOI
10.26599/BDMA.2021.9020010.

40. Berwick, R. (2003). An idiot’s guide to support vector machines (SVMS): A new generation of
learning algorithms key ideas. Village Idiot, pp. 1–28. http://www.cs.ucf.edu/courses/cap6412/fall2009/
papers/Berwick2003.pdf.

41. Moore, A. W. (2003). Support vector machines why maximum margin? https://people.idsia.ch/∼juergen/
mooresvm.pdf.

42. Wu, S., Xia, W., Cui, W., Chao, Q., Lan, Z. et al. (2018). An efficient offloading algorithm based on support
vector machine for mobile edge computing in vehicular networks. 2018 10th International Conference on
Wireless Communications and Signal Processing, pp. 1–6. Hangzhou, China.

43. Majeed, A. A., Khan, A. U. R., Ulamin, R., Muhammad, J., Ayub, S. (2017). Code offloading using
support vector machine. 6th International Conference on Innovative Computing Technology, pp. 98–103.
Dublin, Ireland.

44. Wang, S., Chen, M., Saad, W., Yin, C. (2020). Federated learning for energy-efficient task computing in
wireless networks. IEEE International Conference on Communications, pp. 20–25. Dublin, Ireland.

45. Wang, W., Wang, Z., Zhou, Z., Deng, H., Zhao, W. et al. (2022). Anomaly detection of industrial
control systems based on transfer learning. Applied Mathematics and Computation, 412(6), 821–832. DOI
10.26599/TST.2020.9010041.

46. Chen, H., Zhang, Y., Cao, Y., Xie, J. (2021). Security issues and defensive approaches in deep learning
frameworks. Tsinghua Science and Technology, 26(6), 894–905. DOI 10.26599/TST.2020.9010050.

47. Hou, C., Wu, J., Cao, B., Fan, J. (2021). A deep-learning prediction model for imbalanced time series data
forecasting. Big Data Mining and Analytics, 4(4), 266–278. DOI 10.26599/BDMA.2021.9020011.

48. Zhang, S., Liu, H., He, J., Han, S., Du, X. (2021). Deep sequential model for anchor rec-
ommendation on live streaming platforms. Big Data Mining and Analytics, 4(3), 173–182. DOI
10.26599/BDMA.2021.9020002.

49. Ali, Z., Jiao, L., Baker, T., Abbas, G., Abbas, Z. H. et al. (2019). A deep learning approach for energy
efficient computational offloading in mobile edge computing. IEEE Access, 7, 149623–149633. DOI
10.1109/ACCESS.2019.2947053.

https://doi.org/10.1016/j.dcan.2018.10.003
https://doi.org/10.1109/JSAC.2011.110219
https://doi.org/10.1109/ACCESS.2019.2900530
https://doi.org/10.1109/ACCESS.2017.2710056
https://www.ibm.com/cloud/learn/machine-learning
https://www.expert.ai/blog/machine-learning-definition/
https://doi.org/10.26599/BDMA.2021.9020010
http://www.cs.ucf.edu/courses/cap6412/fall2009/papers/Berwick2003.pdf
https://people.idsia.ch/~juergen/mooresvm.pdf
https://doi.org/10.26599/TST.2020.9010041
https://doi.org/10.26599/TST.2020.9010050
https://doi.org/10.26599/BDMA.2021.9020011
https://doi.org/10.26599/BDMA.2021.9020002
https://doi.org/10.1109/ACCESS.2019.2947053


CMES, 2023, vol.134, no.1 83

50. Yu, S., Wang, X., Langar, R. (2018). Computation offloading for mobile edge computing: A deep learning
approach. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1–6.
Montreal, QC, Canada.

51. Zhao, M., Zhou, K. (2019). Selective offloading by exploiting ARIMA-BP for energy optimization in
mobile edge computing networks. Algorithms, 12(2), 48. DOI 10.3390/a12020048.

52. Rego, P. A. L., Cheong, E., Coutinho, E. F., Trinta, F. A. M., Hasany, M. Z. et al. (2017). Decision tree-
based approaches for handling offloading decisions and performing adaptive monitoring in MCC systems.
Proceedings of 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering,
pp. 74–81. San Francisco, CA, USA.

53. Crutcher, A., Koch, C., Coleman, K., Patman, J., Esposito, F. et al. (2017). Hyperprofile-Based computa-
tion offloading for mobile edge networks. Proceedings-14th IEEE International Conference on Mobile Ad
Hoc and Sensor Systems, pp. 525–529. Orlando, FL, USA.

54. Sheng, J., Hu, J., Teng, X., Wang, B., Pan, X. (2019). Computation offloading strategy in mobile edge
computing. Information, 10(6), 1–20. DOI 10.3390/info10060191.

55. Kiran, N., Pan, C., Wang, S., Yin, C. (2020). Joint resource allocation and computation offloading in
mobile edge computing for SDN based wireless networks. Journal of Communications and Networks, 22(1),
1–11. DOI 10.1109/JCN.2019.000046.

56. Hossain, M. S., Nwakanma, C. I., Lee, J. M., Kim, D. S. (2020). Edge computational task offload-
ing scheme using reinforcement learning for IIoT scenario. ICT Express, 6(4), 291–299. DOI
10.1016/j.icte.2020.06.002.

57. Chen X., Zhang, H., Wu, C., Mao, S., Ji, Y. et al. (2018). Performance optimization in mobile-edge
computing via deep reinforcement learning. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall),
Chicago, IL, USA.

58. Zhao, R., Wang, X., Xia, J., Fan, L. (2020). Deep reinforcement learning based mobile edge
computing for intelligent Internet of Things. Physical Communication, 43(9), 101184. DOI
10.1016/j.phycom.2020.101184.

59. Tong, Z., Deng, X., Ye, F., Basodi, S., Xiao, X. et al. (2020). Adaptive computation offloading and resource
allocation strategy in a mobile edge computing environment. Information Sciences, 537(2), 116–131. DOI
10.1016/j.ins.2020.05.057.

60. Xu, Z., Wang, Y., Tang, J., Wang, J., Gursoy, M. C. (2017). A deep reinforcement learning based
framework for power-efficient resource allocation in cloud RANs. 2017 IEEE International Conference
on Communications (ICC), pp. 1–6. Paris, France.

61. Shan, N., Cui, X., Gao, Z. (2020). “DRL + FL”: An intelligent resource allocation model based on
deep reinforcement learning for mobile edge computing. Computer Communications, 160, 14–24. DOI
10.1016/j.comcom.2020.05.037.

62. Ho, T. M., Nguyen, K. (2020). Joint server selection, cooperative offloading and handover in multi-access
edge computing wireless network : A deep reinforcement learning approach. IEEE Transactions on Mobile
Computing, 21(7), 2421–2435. DOI 10.1109/TMC.2020.3043736.

63. Chen, C., Zhang, Y., Wang, Z., Wan, S., Pei, Q. (2021). Distributed computation offloading
method based on deep reinforcement learning in ICV. Applied Soft Computing, 103, 107108. DOI
10.1016/j.asoc.2021.107108.

64. Lin, B., Lin, K., Lin, C., Lu, Y., Huang, Z. et al. (2021). Computation offloading strategy based on deep
reinforcement learning for connected and autonomous vehicle in vehicular edge computing. Journal of
Cloud Computing: Advances, Systems and Applications, 10(1), 33. DOI 10.1186/s13677-021-00246-6.

65. Alam, M. G. R., Hassan, M. M., Uddin, M. Z., Almogren, A., Fortino, G. (2019). Autonomic computation
offloading in mobile edge for IoT applications. Future Generation Computer Systems, 90(1), 149–157. DOI
10.1016/j.future.2018.07.050.

https://doi.org/10.3390/a12020048
https://doi.org/10.3390/info10060191
https://doi.org/10.1109/JCN.2019.000046
https://doi.org/10.1016/j.icte.2020.06.002
https://doi.org/10.1016/j.phycom.2020.101184
https://doi.org/10.1016/j.ins.2020.05.057
https://doi.org/10.1016/j.comcom.2020.05.037
https://doi.org/10.1109/TMC.2020.3043736
https://doi.org/10.1016/j.asoc.2021.107108
https://doi.org/10.1186/s13677-021-00246-6
https://doi.org/10.1016/j.future.2018.07.050


84 CMES, 2023, vol.134, no.1

66. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y. et al. (2019). Optimized computation offloading performance
in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3),
4005–4018. DOI 10.1109/JIOT.2018.2876279.

67. Ke, H., Wang, J., Deng, L., Ge, Y., Wang, H. (2020). Deep reinforcement learning-based adaptive
computation offloading for MEC in heterogeneous vehicular networks. IEEE Transactions on Vehicular
Technology, 69(7), 7916–7929. DOI 10.1109/TVT.2020.2993849.

68. Huang, L., Bi, S., Zhang, Y. J. A. (2020). Deep reinforcement learning for online computation offloading
in wireless powered mobile-edge computing networks. IEEE Transactions on Mobile Computing, 19(11),
2581–2593. DOI 10.1109/TMC.2019.2928811.

69. Liu Y., Cui, Q., Zhang, J., Chen, Y., Hou, Y. (2019). An actor-critic deep reinforcement learning based
computation offloading for three-tier mobile computing networks. 11th International Conference on
Wireless Communications and Signal Processing, Xi’an, China.

70. Wang, Y., Fang, W., Ding, Y., Xiong, N. (2021). Computation offloading optimization for UAV-assisted
mobile edge computing: A deep deterministic policy gradient approach. Wireless Networks, 27(4), 2991–
3006. DOI 10.1007/s11276-021-02632-z.

71. Chen, Z., Wang, X. (2020). Decentralized computation offloading for multi-user mobile edge computing:
A deep reinforcement learning approach. Eurasip Journal on Wireless Communications and Networking,
2020(1), 188. DOI 10.1186/s13638-020-01801-6.

72. Ko, H., Lee, J., Pack, S. (2018). Spatial and temporal computation offloading decision algorithm
in edge cloud-enabled heterogeneous networks. IEEE Access, 6, 18920–18932. DOI 10.1109/AC-
CESS.2018.2818111.

73. Wei, Z., Zhao, B., Su, J., Lu, X. (2019). Dynamic edge computation offloading for Internet of Things
with energy harvesting: A learning method. IEEE Internet of Things Journal, 6(3), 4436–4447. DOI
10.1109/JIOT.2018.2882783.

74. Zhang, X., Zhang, J., Liu, Z., Cui, Q., Tao, X. et al. (2020). MDP-based task offloading for vehicular
edge computing under certain and uncertain transition probabilities. IEEE Transactions on Vehicular
Technology, 69(3), 3296–3309. DOI 10.1109/TVT.2020.2965159.

75. Eom, H., Juste, P. S., Figueiredo, R., Tickoo, O., Illikkal, R. et al. (2013). Machine learning-based runtime
scheduler for mobile offloading framework. Proceedings of 2013 IEEE/ACM 6th International Conference
on Utility and Cloud Computing, pp. 17–25. Dresden, Germany.

76. Lu, H., Gu, C., Luo, F., Ding, W., Liu, X. (2020). Optimization of lightweight task offloading strategy
for mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems,
102(5), 847–861. DOI 10.1016/j.future.2019.07.019.

77. Huang, L., Feng, X., Zhang, L., Qian, L., Wu, Y. (2019). Multi-server multi-user multi-task computation
offloading for mobile edge computing networks. Sensors, 19(6), 1446. DOI 10.3390/s19061446.

78. Darbanian, E., Rahbari, D., Ghanizadeh, R., Nickray, M. (2020). Improving response time time of task
offloading by random forest, extra-trees and adaboost classifiers in mobile fog computing. Jordanian
Journal of Computers and Information Technology, 6(4), 486–498. DOI 10.5455/jjcit.71-1590557276.

79. Cui, Y., Zhang, D., Zhang, T., Chen, L., Piao, M. et al. (2020). Novel method of mobile edge computation
offloading based on evolutionary game strategy for IoT devices. AEU-International Journal of Electronics
and Communications, 118, 153134. DOI 10.1016/j.aeue.2020.153134.

80. Mao, Y., Zhang, J., Song, S. H., Letaief, K. B. (2016). Power-delay tradeoff in multi-user mobile-edge
computing systems. 2016 IEEE Global Communications Conference, Washington DC, USA.

81. Liu, C. F., Bennis, M., Poor, H. V. (2018). Latency and reliability-aware task offloading and resource
allocation for mobile edge computing. 2017 IEEE Globecom Workshops, pp. 1–7. Singapore.

82. de Haan, L., Ferreira, A. (2006). Extreme value theory: An introduction. In: Springer series in operations
research and financial engineering, pp. 1–413. Secaucus, NJ, USA. Springer Science & Business Media.

https://doi.org/10.1109/JIOT.2018.2876279
https://doi.org/10.1109/TVT.2020.2993849
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1007/s11276-021-02632-z
https://doi.org/10.1186/s13638-020-01801-6
https://doi.org/10.1109/ACCESS.2018.2818111
https://doi.org/10.1109/JIOT.2018.2882783
https://doi.org/10.1109/TVT.2020.2965159
https://doi.org/10.1016/j.future.2019.07.019
https://doi.org/10.3390/s19061446
https://doi.org/10.5455/jjcit.71-1590557276
https://doi.org/10.1016/j.aeue.2020.153134


CMES, 2023, vol.134, no.1 85

83. Chen, X, Jiao, L., Li, W. (2016). Efficient multi-user computation offloading for mobile-edge cloud com-
puting. IEEE/ACM Transactions on Networking, 24(5), 2795–2808. DOI 10.1109/TNET.2015.2487344.

84. Zhou, S., Jadoon, W. (2020). The partial computation offloading strategy based on game theory
for multi-user in mobile edge computing environment. Computer Networks, 178(2020), 107334. DOI
10.1016/j.comnet.2020.107334.

85. Alioua, A., Djeghri, H. E., Cherif M. E. T., Senouci, S. M., Sedjelmaci, H. (2020). UAVs for traffic
monitoring: A sequential game-based computation offloading/sharing approach. Computer Networks,
177, 107273. DOI 10.1016/j.comnet.2020.107273.

86. Liu, Y, Xu, C., Zhan, Y., Liu, Z., Guan, J. et al. (2017). Incentive mechanism for computation offload-
ing using edge computing: A Stackelberg game approach. Computer Networks, 129(2), 399–409. DOI
10.1016/j.comnet.2017.03.015.

87. Anbalagan, S., Kumar, D., Raja, G., Balaji, A. (2019). SDN assisted Stackelberg game model for
LTE-WiFi offloading in 5G networks. Digital Communications and Networks, 5(4), 268–275. DOI
10.1016/j.dcan.2019.10.006.

88. Kim, S. H., Park, S., Chen, M., Youn, C. H. (2018). An optimal pricing scheme for the energy-efficient
mobile edge computation offloading with OFDMA. IEEE Communications Letters, 22(9), 1922–1925.
DOI 10.1109/LCOMM.2018.2849401.

89. Wang, C., Liang, C., Yu, F. R., Chen, Q., Tang, L. (2017). Computation offloading and resource allocation
in wireless cellular networks with mobile edge computing. IEEE Transactions on Wireless Communications,
16(8), 4924–4938. DOI 10.1109/TWC.2017.2703901.

90. Bi, S., Zhang, Y. J. (2017). Computation rate maximization for wireless powered mobile-edge computing
with binary computation offloading. IEEE Transactions on Wireless Communications, 17(6), 4177–4190.
DOI 10.1109/TWC.2018.2821664.

91. Tang, Q., Lyu, H., Han, G., Wang, J., Wang, K. (2020). Partial offloading strategy for mobile edge
computing considering mixed overhead of time and energy. Neural Computing and Applications, 32(19),
15383–15397. DOI 10.1007/s00521-019-04401-8.

92. Baidas, M. W. (2021). Resource allocation for offloading-efficiency maximization in clustered
NOMA-enabled mobile edge computing networks. Computer Networks, 189, 107919. DOI
10.1016/j.comnet.2021.107919.

93. Yang, S. (2020). A joint optimization scheme for task offloading and resource allocation based on
edge computing in 5G communication networks. Computer Communications, 160(1), 759–768. DOI
10.1016/j.comcom.2020.07.008.

94. Parrilo, P. A. (2005). Semidefinite programming relaxations for semi algebraic problems. Functional
Ecology, 19(2), 594–601. DOI 10.1007/s10107-003-0387-5.

95. Freund, R. (2004). Introduction to Semidefinite Programming (SDP). Massachusetts Institute of Technol-
ogy. https://ocw.mit.edu/courses/15-084j-nonlinear-programming-spring-2004/a632b565602fd2eb3be574
c537eea095_lec23_semidef_opt.pdf.

96. Overton, M., Wolkowicz, H. (1997). Semidefinite programming. Mathematical Programming, 77(1), 105–
109. DOI 10.1007/BF02614431.

97. Chen, M. H., Liang, B., Dong, M. (2016). Joint offloading decision and resource allocation for multi-user
multi-task mobile cloud. 2016 IEEE International Conference on Communications, vol. 67, pp. 2–7. Kuala
Lumpur, Malaysia.

98. Liu, J., Zhang, Q. (2019). Code-partitioning offloading schemes in mobile edge computing for augmented
reality. IEEE Access, 7, 11222–11236. DOI 10.1109/ACCESS.2019.2891113.

99. Li, S., Ge, H., Chen, X., Liu, L., Gong, H. et al. (2021). Computation offloading strategy for improved
particle swarm optimization in mobile edge computing. 2021 IEEE 6th International Conference on Cloud
Computing and Big Data Analytics, pp. 375–381. Chengdu, China.

https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1016/j.comnet.2020.107334
https://doi.org/10.1016/j.comnet.2020.107273
https://doi.org/10.1016/j.comnet.2017.03.015
https://doi.org/10.1016/j.dcan.2019.10.006
https://doi.org/10.1109/LCOMM.2018.2849401
https://doi.org/10.1109/TWC.2017.2703901
https://doi.org/10.1109/TWC.2018.2821664
https://doi.org/10.1007/s00521-019-04401-8
https://doi.org/10.1016/j.comnet.2021.107919
https://doi.org/10.1016/j.comcom.2020.07.008
https://doi.org/10.1007/s10107-003-0387-5
https://ocw.mit.edu/courses/15-084j-nonlinear-programming-spring-2004/a632b565602fd2eb3be574c537eea095_lec23_semidef_opt.pdf
https://doi.org/10.1007/BF02614431
https://doi.org/10.1109/ACCESS.2019.2891113


86 CMES, 2023, vol.134, no.1

100. Zhang, N., Guo, S., Dong, Y., Liu, D. (2020). Joint task offloading and data caching in mobile edge
computing networks. Computer Networks, 182, 107446. DOI 10.1016/j.comnet.2020.107446.

101. Kuang, L., Gong, T., Ouyang, S., Gao, H., Deng, S. (2020). Offloading decision methods for multiple users
with structured tasks in edge computing for smart cities. Future Generation Computer Systems, 105(6),
717–729. DOI 10.1016/j.future.2019.12.039.

102. Zhao, H., Du, W., Liu, W., Lei, T., Lei, Q. (2018). QoE aware and cell capacity enhanced computation
offloading for multi-server mobile edge computing systems with energy harvesting devices. Proceedings
of 2018 IEEE Smart World, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart
City Innovations, SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 671–678, Guangzhou, China.

103. Shahryari, O. K., Pedram, H., Khajehvand, V., TakhtFooladi, M. D. (2021). Energy and task completion
time trade-off for task offloading in fog-enabled IoT networks. Pervasive and Mobile Computing, 74(5),
101395. DOI 10.1016/j.pmcj.2021.101395.

104. Hussain, M. M., Beg, M. M. S. (2021). CODE-V: Multi-hop computation offloading in vehicular fog
computing. Future Generation Computer Systems, 116(3), 86–102. DOI 10.1016/j.future.2020.09.039.

105. Wang, X., Xu, W., Jin, Z. (2017). A hidden markov model based dynamic scheduling approach for mobile
cloud telemonitoring. 2017 IEEE EMBS International Conference on Biomedical and Health Informatics,
BHI 2017, pp. 273–276. Orlando, FL, USA.

106. Jazayeri, F., Shahidinejad, A., Ghobaei-Arani, M. (2021). A latency-aware and energy-efficient com-
putation offloading in mobile fog computing: A hidden Markov model-based approach. Journal of
Supercomputing, 77(5), 4887–4916. DOI 10.1007/s11227-020-03476-8.

107. Liao, Y., Shou, L., Yu, Q., Ai, Q., Liu, Q. (2020). Joint offloading decision and resource alloca-
tion for mobile edge computing enabled networks. Computer Communications, 154(1), 361–369. DOI
10.1016/j.comcom.2020.02.071.

108. Ren, J., Yu, G., Cai, Y., He, Y. (2018). Latency optimization for resource allocation in mobile-
edge computation offloading. IEEE Transactions on Wireless Communications, 17(8), 5506–5519. DOI
10.1109/TWC.2018.2845360.

109. Xing, H., Liu, L., Xu, J., Nallanathan, A. (2019). Joint task assignment and resource allocation for
D2D-enabled mobile-edge computing. IEEE Transactions on Communications, 67(6), 4193–4207. DOI
10.1109/TCOMM.2019.2903088.

110. You, C., Huang, K., Chae, H., Kim, B. H. (2017). Energy-efficient resource allocation for mobile-
edge computation offloading. IEEE Transactions on Wireless Communications, 16(3), 1397–1411. DOI
10.1109/TWC.2016.2633522.

111. Xu, Y., Wang, Y., Yang, J. (2020). Meta-heuristic search based model for task offloading and time
allocation in mobile edge computing. Proceedings of the 2020 6th International Conference on Computing
and Artificial Intelligence, pp. 117–122. Tianjin, China.

112. Wang, Y., Min, S., Wang, X., Liang, W., Li, J. (2016). Mobile-edge computing: Partial computation
offloading using dynamic voltage scaling. IEEE Transactions on Communications, 64(10), 4268–4282.
DOI 10.1109/TCOMM.2016.2599530.

113. Guo, S., Xiao, B., Yang, Y., Yang, Y. (2016). Energy-efficient dynamic offloading and resource scheduling
in mobile cloud computing. 35th Annual IEEE International Conference on Computer Communications,
San Francisco, CA, USA.

114. Yan, J., Bi, S., Zhang, Y. J., Tao, M. (2020). Optimal task offloading and resource allocation in mobile-
edge computing with inter-user task dependency. IEEE Transactions on Wireless Communications, 19(1),
235–250. DOI 10.1109/TWC.2019.2943563.

115. Zhong, S., Guo, S., Yu, H., Wang, Q. (2021). Cooperative service caching and computation offloading in
multi-access edge computing. Computer Networks, 189, 107916. DOI 10.1016/j.comnet.2021.107916.

https://doi.org/10.1016/j.comnet.2020.107446
https://doi.org/10.1016/j.future.2019.12.039
https://doi.org/10.1016/j.pmcj.2021.101395
https://doi.org/10.1016/j.future.2020.09.039
https://doi.org/10.1007/s11227-020-03476-8
https://doi.org/10.1016/j.comcom.2020.02.071
https://doi.org/10.1109/TWC.2018.2845360
https://doi.org/10.1109/TCOMM.2019.2903088
https://doi.org/10.1109/TWC.2016.2633522
https://doi.org/10.1109/TCOMM.2016.2599530
https://doi.org/10.1109/TWC.2019.2943563
https://doi.org/10.1016/j.comnet.2021.107916


CMES, 2023, vol.134, no.1 87

116. Barbarossa, S., di Lorenzo, P., Sardellitti, S. (2014). Computation offloading strategies based on energy
minimization under computational rate constraints. European Conference on Networks and Communica-
tions, pp. 16–20. Bologna, Italy.

117. Zhang, Y., Fu, J. (2021). Energy-efficient computation offloading strategy with tasks scheduling in edge
computing. Wireless Networks, 27(1), 609–620. DOI 10.1007/s11276-020-02474-1.

118. Nath, S., Wu, J. (2020). Dynamic computation offloading and resource allocation for multi-user mobile
edge computing. 2020 IEEE Global Communications Conference. Taipei, Taiwan.

119. Feng, S., Chen, Y., Zhai, Q., Huang, M., Shu, F. (2021). Optimizing computation offloading strategy in
mobile edge computing based on swarm intelligence algorithms. Eurasip Journal on Advances in Signal
Processing, 36(1), 462. DOI 10.1186/s13634-021-00751-5.

120. Li, N., Yang, S., Wang, Z., Hao, W., Zhu, Y. (2020). Multi-tier MEC offloading strategy based on dynamic
channel characteristics. IET Communications, 14(22), 4029–4037. DOI 10.1049/iet-com.2020.0371.

121. Xu, R., Wang, Q. (2019). DPDK-accelerated partial offload for fine-grained HQoS. https://www.dpdk.org/
wp-content/uploads/sites/35/2019/10/AcceleratedPartialOffload.pdf.

122. Kuang, Z., Li, L., Gao, J., Zhao, L., Liu, A. (2019). Partial offloading scheduling and power allo-
cation for mobile edge computing systems. IEEE Internet of Things Journal, 6(4), 6774–6785. DOI
10.1109/JIOT.2019.2911455.

123. Dat, V. T., Truong, T. P., Nguyena, T. V., Noh, W., Cho, S. (2021). Partial computation offloading in
noma-assisted mobile-edge computing systems using deep reinforcement learning. IEEE Internet of Things
Journal, 8(17), 13196–13208. DOI 10.1109/JIOT.2021.3064995.

124. Wang, Z., Hao, W., Yan, L., Han, Z., Yang, S. (2020). Cooperative scheduling of multi-core and cloud
resources: Fine-grained offloading strategy for multithreaded applications. IET Communications, 14(10),
1632–1641. DOI 10.1049/iet-com.2019.1060.

125. Qi, L., He, Q., Chen, F., Zhang, X., Dou, W. et al. (2020). Data-driven web apis recommendation for build-
ing web applications. IEEE Transactions on Big Data, 116, 1–15. DOI 10.1109/TBDATA.2020.2975587.

126. Zhang, J., Xu, Q. (2021). Attention-aware heterogeneous graph neural network. Big Data Mining and
Analytics, 4(4), 233–241. DOI 10.26599/BDMA.2021.9020008.

127. Qi, L., Song, H., Zhang, X., Srivastava, G., Xu, X. et al. (2021). Compatibility-aware web API recommen-
dation for mashup creation via textual description mining. ACM Transactions on Multimedia Computing,
Communications and Applications, 17, 1–19. DOI 10.1145/3417293.

128. Saab, S. A., Chehab, A., Kayssi, A. (2013). Energy efficiency in mobile cloud computing: Total offloading
selectively works. does selective offloading totally work. 2013 4th Annual International Conference on
Energy Aware Computing Systems and Applications, pp. 165–168. Istanbul, Turkey.

129. Messous, M. A., Senouci, S. M., Sedjelmaci, H., Cherkaoui, S. (2015). A game theory based efficient
computation offloading in an UAV network. IEEE Transactions on Vehicular Technology, 68(5), 4964–
4974. DOI 10.1109/TVT.2019.2902318.

130. Liu, Y., Wang, S., Huang, J., Yang, F. (2018). A computation offloading algorithm based on game theory
for vehicular edge networks. IEEE International Conference on Communications, pp. 1–6. Kansas City,
MO, USA.

131. Tang, L., He, S. (2018). Multi-user computation offloading in mobile edge computing: A behavioral
perspective. IEEE Network, 32(1), 48–53. DOI 10.1109/MNET.2018.1700119.

132. You, C., Huang, K., Chae, H. (2016). Energy efficient mobile cloud computing powered by wire-
less energy transfer. IEEE Journal on Selected Areas in Communications, 34(5), 1757–1771. DOI
10.1109/JSAC.2016.2545382.

133. Tran, T. X., Pompili, D. (2019). Joint task offloading and resource allocation for multi-server
mobile-edge computing networks. IEEE Transactions on Vehicular Technology, 68(1), 856–868. DOI
10.1109/TVT.2018.2881191.

https://doi.org/10.1007/s11276-020-02474-1
https://doi.org/10.1186/s13634-021-00751-5
https://doi.org/10.1049/iet-com.2020.0371
https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/AcceleratedPartialOffload.pdf
https://doi.org/10.1109/JIOT.2019.2911455
https://doi.org/10.1109/JIOT.2021.3064995
https://doi.org/10.1049/iet-com.2019.1060
https://doi.org/10.1109/TBDATA.2020.2975587
https://doi.org/10.26599/BDMA.2021.9020008
https://doi.org/10.1145/3417293
https://doi.org/10.1109/TVT.2019.2902318
https://doi.org/10.1109/MNET.2018.1700119
https://doi.org/10.1109/JSAC.2016.2545382
https://doi.org/10.1109/TVT.2018.2881191


88 CMES, 2023, vol.134, no.1

134. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T. et al. (2017). Neurosurgeon: Collabora-
tive intelligence between the cloud and mobile edge. ACM SIGPLAN Notices, 52(4), 615–629. DOI
10.1145/3093336.3037698.

135. Sun, W., Liu, J., Yue, Y. (2019). AI-enhanced offloading in edge computing: When machine learning meets
industrial IoT. IEEE Network, 33(5), 68–74. DOI 10.1109/MNET.001.1800510.

136. Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L. et al. (2016). DeepX: A software
accelerator for low-power deep learning inference on mobile devices. 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks, Vienna, Austria.

137. Ran, X., Chen, H., Liu, Z., Chen, J. (2017). Delivering deep learning to mobile devices via offloading.
Proceedings of the 2017 Workshop on Virtual Reality and Augmented Reality Network, Part of SIGCOMM
2017, pp. 42–47. Los Angeles CA USA.

138. Xu, M., Qian, F., Zhu, M., Huang, F., Pushp, S. et al. (2020). DeepWear: Adaptive local offload-
ing for on-wearable deep learning. IEEE Transactions on Mobile Computing, 19(2), 314–330. DOI
10.1109/TMC.2019.2893250.

139. Ayav, T. (2021). Embedded computer systems lecture notes fault-tolerance. http://web.iyte.edu.tr/
∼tolgaayav/courses/ceng314/Fault-Tolerance.pdf.

140. Notes, L. (2009). Faults and fault-tolerance. https://homepage.divms.uiowa.edu/∼ghosh/16612.week10.pdf.
141. Yang, T., Hu, Y., Gursoy, M. C., Schmeink, A., Mathar, R. (2018). Deep reinforcement learning based

resource allocation in low latency edge computing networks. Proceedings of the International Symposium
on Wireless Communication Systems, pp. 1–5. Lisbon, Portugal.

142. Qiao, G., Leng, S., Zhang, Y. (2019). Online learning and optimization for computation offload-
ing in D2D edge computing and networks. Mobile Networks and Applications, 29(7), 1–9. DOI
10.1007/s11036-018-1176-y.

143. Zhang, Y. W., Pan, J., Qi, L., He, Q. (2021). Privacy-preserving quality prediction for edge-based IoT
services. Future Generation Computer Systems, 114(6), 336–348. DOI 10.1016/j.future.2020.08.014.

144. Qi, L., Hu, C., Zhang, X., Khosravi, M. R., Sharma, S. et al. (2021). Privacy-aware data fusion and
prediction with spatial-temporal context for smart city industrial environment. IEEE Transactions on
Industrial Informatics, 17(6), 4159–4167. DOI 10.1109/TII.2020.3012157.

145. Hsu, R. H., Lee, J., Quek, T. Q. S., Chen, J. C. (2018). Reconfigurable security: Edge-computing-based
framework for IoT. IEEE Network, 32(5), 92–99. DOI 10.1109/MNET.2018.1700284.

https://doi.org/10.1145/3093336.3037698
https://doi.org/10.1109/MNET.001.1800510
https://doi.org/10.1109/TMC.2019.2893250
http://web.iyte.edu.tr/~tolgaayav/courses/ceng314/Fault-Tolerance.pdf
https://homepage.divms.uiowa.edu/~ghosh/16612.week10.pdf
https://doi.org/10.1007/s11036-018-1176-y
https://doi.org/10.1016/j.future.2020.08.014
https://doi.org/10.1109/TII.2020.3012157
https://doi.org/10.1109/MNET.2018.1700284

	A Review of the Current Task Offloading Algorithms, Strategies and Approach in Edge Computing Systems
	1 Introduction
	2 Related Work
	3 Offloading Metrics
	4 Offloading Algorithms
	5 Open Discussion
	6 Comparison of the Various Offloading Algorithms
	7 Conclusion


