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ABSTRACT

In this paper, a self-triggered consensus filtering is developed for a class of discrete-time distributed filtering
systems. Different from existing event-triggered filtering, the self-triggered one does not require to continuously
judge the trigger condition at each sampling instant and can save computational burden while achieving good
state estimation. The triggering policy is presented for pre-computing the next execution time for measurements
according to the filter’s own data and the latest released data of its neighbors at the current time. However, a
challenging problem is that data will be asynchronously transmitted within the filtering network because each
node self-triggers independently. Therefore, a co-design of the self-triggered policy and asynchronous distributed
filter is developed to ensure consensus of the state estimates. Finally, a numerical example is given to illustrate the
effectiveness of the consensus filtering approach.
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Nomenclature

R
n The n dimension Euclidean spaces

R
n×m The set of all n × m real matrices

diagn {A} The block-diagonal matrix diag {A, A, . . . , A}
diagn {Ai} The block-diagonal matrix diag {A1, A2, . . . , An}
vecn {xi} [x1, x2, . . . , xn]
⊗ Kronecker product for matrices
||x|| = √

(xTx) Euclidean norm of a column vector x
�2[0, ∞) The space of square-summable functions on [0, ∞)

∗ The symmetric block of a symmetric matrix
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1 Introduction

A wireless sensor network (WSN) is composed of a large number of sensor nodes distributed
in a specific area. With the development of sensing, cloud computing, and wireless communication
technologies, WSN has been successfully applied in a variety of practical environments, such as
battlefield monitoring, target tracking, health monitoring, search and rescue operations after disasters,
industrial automation, and so on [1,2]. However, noise ubiquitously exists in signal transmission
and WSN environment, which often results in degradation of the filtering performance. Therefore,
distributed filtering obtains an ever-increasing attention when estimating unavailable states through
measured outputs and historical data [3–5]. Compared with traditional centralized filtering [6], each
sensor node finalizes filtering according to its own and neighbors’ data under a fixed interconnection
topology within a distributed filtering network. Therefore, distributed filtering is robust to sensor
failures and transmission constraints.

Usually, the sensor is powered by a lithium battery and has a limited capacity for memory. There-
fore, it is of great significance to reduce communication and computation energy loss. Traditional time-
triggered sampling requires signal transmission to be continuous or periodically updated. Although
it is conducive to analysis and design, the rate of signal update is constant and quick, and may lead
to waste use of limited communication resources. In addition, the narrow network bandwidth may
lead to channel congestion, induced delay and data packet drop out [7,8], etc. The key to solving these
problems is to reduce the transmission load on the premise of good filtering performance.

Therefore, event-triggered mechanisms (ETM) [9–11], which can greatly reduce the unnecessary
data transmission and resource occupation, are developed with burgeoning research interests. In the
past few years, the main progress of ETM for distributed filtering can be generally divided into
four categories, i.e., triggering based on constant threshold [12–14], instantaneous measurement-/
estimate-dependent threshold [15–17], released measurement-/estimate-dependent threshold [18–21]
and dynamic event-triggering [22,23]. The first three categories can be summarized as static event-
triggered mechanisms (SETM), which has a fixed scalar triggering threshold. In contrast, the fourth
class is named as dynamic event-triggered mechanisms (DETM), which can adjust the triggering
threshold. Aiming at distributed set-membership estimation for time-varying systems, a new DETM
designed in [23] leads to larger average inter-event times and thus less totally released data packets.

It is worth noting that ETM are more effective in reducing transmission frequency compared to
traditional time-triggered sampling at the cost of increased computational burden [24]. Specifically,
in order to check whether the triggering conditions are met, the above ETM strategies embedded in
the sensor nodes have to continuously make judgments at each sampling instant. For a large-scale
WSN, there is numerous computational burden consumption. In order to overcome this shortcoming,
a self-triggered policy was first proposed in [25] to optimize the allocation of computing burden
and performance for real-time systems containing multiple control tasks. Since such a scheme pre-
calculates the next update moment through the current samplings, the self-triggering is an active
behavior. Up to now, the self-triggering policy is mostly employed in control systems [9,26–32] and
it still remains open for solving filtering problems. The main motivation of this study is to shorten the
gap between self-triggering theory and its applications to distributed filtering.

The main contributions of this paper are summarized as follows:

1. For a filtering network, a self-triggered policy is designed to save transmission energy and
computational burden, especially in a large-scale WSN. Unlike the ETM, the self-triggered
policy can predict the subsequent execution time in advance without checking the triggering
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conditions at each sampling time. That is, the next triggering interval is calculated based on
the latest transmission data, the latest state estimates of itself and neighboring nodes.

2. In filtering networks, since each filtering node is triggered independently and has its own
triggering interval, this will lead to an asynchronous transmission phenomenon. Through
the co-design of self-triggered policy and distributed consensus filtering, even when the
WSN encounters asynchronous communication, the filtering system can maintain good state
estimation.

2 Preliminaries and Problem Formulation

Consider a sensor network with n nodes to monitor the plant and estimate its states. The directed
weighted graph G = (V , E ,A) is used to model the network topology of interacting sensors, where
V = {1, 2, . . . , n} denotes an index set of sensor nodes, E ⊆ V × V represents the edge of paired sensor
nodes and A = [

aij

]
n×n

(
aij ≥ 0

)
stands for the weighted adjacency matrix. The adjacency element

aij > 0 ⇔ (i, j) ∈ E represents a positive weighting of the edge between two adjacent sensors, which
implies that sensor i receives data from sensor j or sensor j transmits data to sensor i, otherwise, aij = 0
if no data link exists between sensor j to sensor i. In addition, we assume aii = 1 for all i ∈ V and
(i, i) can be considered as an additional edge. The set of neighbors of node i including the node itself
is denoted by Ni = {j ∈ V : (i, j) ∈ E}. The Laplace matrix of the graph G is defined as L = D − A,
where D = diagn {di} with the diagonal element di = ∑

j∈Ni
aij.

Consider the plant described by a discrete-time linear system of the following form:{
x (k + 1) = Ax (k) + Bω (k)

z (k) = Mx (k)
(1)

where x (k) ∈ R
nx is the system state; z (k) ∈ R

nz is the output to be estimated; ω (k) ∈ R
nω is the

external disturbance belonging to l2 [0, ∞); A, B and M are known constant matrices with appropriate
dimensions. The initial state x (0) is an unknown vector.

For every sensor i (i ∈ V), the model of sensor node i is in the form of

yi (k) = Cix (k) + Divi (k) (2)

where yi (k) ∈ R
ny is the measured output collected by node i,vi (k) ∈ R

nv is measurement noise
belonging to l2 [0, ∞), Ci and Di are known constant matrices with appropriate dimensions.

In sensor networks, the data available for filter on the sensor node comes not only from the sensor
i, but also from its neighbors. Considering the consensus problem, the whole distributed filtering
network can be constructed as follows:⎧⎨
⎩

x̂i (k + 1) = Ax̂i (k) + Hi

(
yi (k) − Cix̂i (k)

) + Gi

∑
j∈Ni

(
x̂i

(
mki

) − x̂j

(
mkj

))
ẑi (k) = Mx̂i (k)

(3)

where time sequence
{
mki

|m0i , m1i , . . .
}

is used to represent the triggering instants of node i. Sampling
moment k is in the time interval [mki , m(k+1)i). mki is the latest triggering time of the filter node i before
the current time k. x̂i (k) ∈ R

nx denotes the state estimation of the filter node i with the initial condition
given by x̂i (0). ẑi (k) ∈ R

nz is the output estimation. Hi, Gi are filtering gains to be determined.

Assumption 1: We assume that sensors monitor the target plant at every sampling moment. Then
we focus on reducing the communication frequency between sensors so as to achieve better resource
efficiency.
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The distributed self-triggered filtering system is illustrated in Fig. 1. For example, the sensor node
i transmits the measurements yi (k) to the corresponding filter i. In the whole sensor network, each
filter obtains the latest state estimation x̂j

(
mkj

)
from its neighbors and transmits its own filtering results

x̂i

(
mki

)
to other neighbors when meeting a well-defined condition. At each sampling instant, filter i

calculates and updates its estimated state x̂i (k). x̂i (k) and its time-stamp k are integrated into a data
packet

(
k, x̂i (k)

)
. Similarly, the data packet

(
mki , x̂i

(
mki

))
is considered as the latest released data when

the filter i is triggered. Buffer i containing multiple units is driven by self-triggered policy, and has the
capability of checking the time stamps of the newly arrived data packet

(
mki , x̂i

(
mki

))
and discarding

old data packets. In brief, the buffer can reserve the latest data packets until new data packets arrive.

Self-triggered policy

Plant Filter i
Triggering 

Condition i

From other
neighbours

To other neighbours
Buffer i

ˆ ( )
jj kx mˆ ( )

jj kx m

( )iy k ˆ ( )ix k ˆ ( )
ii kx m ˆ ( )

ii kx m

Triggering time

Figure 1: Block diagram of distributed self-triggered system

The self-triggered policy predicts the subsequent execution time and calculates the triggering
interval by the latest data of each filter without a continuous judgment process. Therefore, the strategy
proposed in this paper is beneficial to the energy saving of sensor networks with limited resources, as
well as scant network channel bandwidth.

The self-triggered time-sequence diagram is illustrated in Fig. 2. The dash lines indicate that
data is exchanged between nodes and the arrow points to the object of data transmission. The
broadcasting and receiving of the latest released state estimation are determined by the filter node’s
own self-triggered policy. It is clear that each filter node has its own triggering time sequence, which
causes different triggering intervals between each other. Moreover, for filter i, the time that data
packets from neighbors arrive at buffer i may be asynchronous, since it is determined by different
triggering conditions. Such an asynchronous transmission brings challenges to the design of consensus
distributed filtering.

Triggering interval

k k+1 k+2 k+3 k+4 k+5 k+6 k+7

Sampling instant

Triggering instant

Triggering interval

1filter

2filter

3filter

Figure 2: Self-triggered sequence diagram
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For filter i, let’s define a state estimation error ei (k) = x (k) − x̂i (k), an output estimation error
z̃i (k) = z (k)− ẑi (k) and a state estimation update error ẽi (k) = x̂i

(
mki

)−x̂i (k), k ∈ [mki , m(k+1)i). Then
x̂i

(
mki

)− x̂j

(
mkj

)
can be expressed as ẽi (k) − ẽj (k) − (ei (k) − ej (k)). Combing (1)–(3), the estimation

error dynamics can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

ei (k + 1) = (A − HiCi) ei (k) + Bw (k) − HiDivi (k)

+
∑
j∈Ni

Gi

(
ei (k) − ej (k)

) −
∑
j∈Ni

Gi

(
ẽi (k) − ẽj (k)

)
z̃i (k) = Mei (k)

. (4)

The topology of the sensor is determined by a given graph G = (V , E ,A). For the sake of brevity,
we denote

e (k) = vecT
n

{
eT

i (k)
}
, z̃ (k) = vecT

n

{
z̃T

i (k)
}
, ẽ (k) = vecT

n

{
ẽT

i (k)
}
,

v (k) = vecT
n

{
vT

i (k)
}
, B̄ = vecT

n

{
BT

}
, M̄ = diagn {M},

Ā = diagn {A}, C̄ = diagn {Ci}, D̄ = diagn {Di}, Ḡ = diagn {Gi}, H̄ = diagn {Hi}.
Then, the error dynamics governed by (4) can be rewritten in the following compact form:{

e (k) = Ãe (k) + B̃ẽ (k) + C̃v (k) + D̃w (k)

z̃ (k) = M̄e (k)
. (5)

where Ã = Ā − H̄C̄ + ḠL̄, B̃ = −ḠL̄, C̃ = −H̄D̄, D̃ = B̄ and L̄ = L ⊗ Ip.

Definition 1 ([27]): Filters (3) are said to be a distributed self-triggered H∞ consensus filtering
system (1) if they meet the following conditions:

1) In the absence of system disturbance and measurement noise, the filtering error system (5) is
exponentially stable, i.e., there exist positive constants η and α ∈ (0, 1) such that limk→∞ ||e (k) ||2 ≤ ηαk,
for all k ≥ 0.

2) Under the condition of the system disturbance and measurement noises, the output filtering
errors z̃i (k) , ∀i ∈ V satisfy the following H∞ performance:

1
n

n∑
i=1

∞∑
k=0

‖z̃i (k)‖2
2 ≤ γ 2

(
1
n

n∑
i=1

∞∑
k=0

‖vi (k)‖2
2 +

∞∑
k=0

‖w (k)‖2 + 1
n

n∑
i=1

eT
i (0) Riei (0)

)
(6)

where γ > 0 is the attenuation level and Ri = RT
i > 0 are some given positive definite matrices.

3 Main Results

In this section, we first design a distributed self-triggered policy. Based on such a policy, sufficient
conditions are given for the H∞ consensus analysis of the filtering error system (4). Furthermore, a
co-design method for self-triggered threshold parameters and distributed filter gains is presented.

3.1 Self-Triggered Policy
The self-triggered policy predicts that the subsequent execution time depends on the current

sampling data and the estimated state updated by its neighbors. Based on this idea, we develop self-
triggered distributed filtering. The next triggering instant is considered as follows:

m(k+1)i = mki + Mki

(
x̂i(mki), x̂j(mkj), yi(k)

)
. (7)
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The key to realizing the self-triggered policy is to obtain the triggering interval function Mki (·).
We develop the following error-based self-triggered policy:

Mki = inf
{(

m(k+1)i − mki

) ∈ N | ẽT
i (k)�i ẽi(k) ≥ εiδi�iδi

}
(8)

where δi = ∑
j∈Ni

aij

(
x̂i

(
mki

) − x̂j

(
mkj

))
; εi ∈ (0, 1] is the threshold parameter; Φi ∈ R

p×p is the
weighting matrix to be determined.

Theorem 1: In order to formulate a suitable self-triggered policy for the distributed filtering system
(5), the triggering interval function can be expressed as

Mki = m(k+1)i − mki =
⌊

ln
(

Qi
1 (Si − Ui)

Qi
2

+ 1
)/

ln
(
Qi

1 + 1
)⌋

(9)

where �·� denotes rounding up to the nearest integer,

Qi
1 =

∥∥∥√Φi (I − A + HiCi)
√

Φi

−1
∥∥∥,

Qi
2 = ∥∥√Φi (I − A + HiCi) x̂i

(
mki

)∥∥ +
∥∥∥∥∥∥
√

ΦiGi

∑
j∈Ni

(
x̂i

(
mki

) − x̂j

(
mkj

))∥∥∥∥∥∥,

Qi
3 = ∥∥√ΦiHi

∥∥,

Si = ∥∥√εiΦiδi

∥∥,

Ui =
k−mki

−1∑
ξ=0

(
Qi

1 + 1
)ξ

Qi
3 ‖y (k − 1 − ξ)‖.

Proof: Combining relations (3) and (4), we can obtain∥∥∥√�i ẽi (k + 1)

∥∥∥ −
∥∥∥√�i ẽi (k)

∥∥∥
≤
∥∥∥√�i

(
ẽi (k + 1) − ẽi (k)

)∥∥∥
=
∥∥∥√Φi

(
x̂i (k) − x̂i (k + 1)

)∥∥∥
≤
∥∥∥√�i (I − A + HiCi)

(
x̂i

(
mki

) − ẽi (k)
)∥∥∥ +

∥∥∥√�iHiyi (k)

∥∥∥ +
∥∥∥∥∥∥
√

�iGi

∑
j∈Ni

(
x̂i

(
mki

) − x̂j

(
mkj

))∥∥∥∥∥∥ .

≤ Qi
1

∥∥∥√�i ẽi (k)

∥∥∥ + Qi
2 + Qi

3 ‖yi (k)‖ . (10)

Assume Yi (k) = ||√�i ẽi (k)||. Then inequality (10) can be rewritten as

Yi (k + 1) − Yi (k) ≤ Qi
1Yi (k) + Qi

2 + Qi
3 ‖yi (k)‖ . (11)
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From (11), we can obtain

Yi (k) ≤ (
1 + Qi

1

)
Yi (k − 1) + Qi

2 + Qi
3 ‖yi (k − 1)‖

≤ (
1 + Qi

1

)2
Yi (k − 2) + (

1 + Qi
1

)
Qi

2 + Qi
2 + (

1 + Qi
1

)
Qi

3 ‖yi (k − 2)‖ + Qi
3 ‖yi (k − 1)‖

...

≤ (
1 + Qi

1

)k−mki Yi

(
mki

)
+ (

1 + Qi
1

)k−mki
−1

Qi
2 + . . . + (

1 + Qi
1

)
Qi

2 + Qi
2

+ (
1 + Qi

1

)k−mki
−1

Qi
3

∥∥yi

(
mki

)∥∥ + . . . + (
1 + Qi

1

)
Qi

3 ‖yi (k − 2)‖ + Qi
3 ‖yi (k − 1)‖ . (12)

Because Yi

(
mki

) = ||√�i ẽi

(
mki

) || = 0 and the right part of (12) is a geometric series, the above
inequality could be rewritten as

Yi (k) ≤
(
Qi

1 + 1
)k−mi

k − 1

Qi
1

Qi
2 +

k−mki
−1∑

ξ=0

(
Qi

1 + 1
)ξ

Qi
3 ‖y (k − 1 − ξ)‖. (13)

According to self-triggered condition (8), if the filter node i is triggered, the following inequality
is obtained

Yi (k) ≥
∥∥∥√εi�iδi

∥∥∥ . (14)

Combining inequality (13) and (14), we have(
1 − (

Qi
1 + 1

)k−mi
k
)

Qi
2 ≥ (Si − Ui) Qi

1. (15)

Through the simple mathematical manipulation of (15), triggering interval (9) is derived.

To guarantee the system performance, the current state estimation of the filter node i should be
broadcasted to other neighbors immediately once the triggering conditions are satisfied. This means
that the triggering interval Mki should be rounded up. The proof is completed.

3.2 H∞ Consensus Performance Analysis
Lemma 1: Given a positive definite matrix Ri = RT

i > 0 (1 ≤ i ≤ n), the filtering error system (4)
is exponentially stable and satisfy H∞ consensus performance under the self-triggered policy (9) and
the initial condition ei (0)

T Piei (0) ≤ γ 2ei (0)
T Riei (0), if there exist a positive scalar γ > 0 and real

symmetric matrices Pi > 0, Φ̄i satisfying⎡
⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 0 0
(
PĀ − PH̄C̄ + PḠL̄

)T

∗ Ξ22 0 0
(−PḠL̄

)T

∗ ∗ −γ 2I 0
(−PH̄D̄

)T

∗ ∗ ∗ −nγ 2I PB̄T

∗ ∗ ∗ ∗ −P

⎤
⎥⎥⎥⎥⎥⎦ ≤ 0 (16)



864 CMES, 2023, vol.134, no.2

where �11 = −P + M̄TM̄ + L̄T ε̄�̄L̄, �12 = −L̄T ε̄�̄L̄, �22 = L̄T ε̄�̄L̄ − �̄, ε̄i = εi ⊗ Ip, ε̄ = diagn {ε̄i},
Φ̄i = Φi ⊗ Ip, Φ̄ = diagn

{
Φ̄i

}
, and P = diagn {Pi}.

Proof: Consider a Lyapunov function

V (k) = e (k)
T Pe (k) . (17)

The one-step time difference is

V (k + 1) − V (k) = eT (k + 1) Pe (k + 1) − eT (k) Pe (k) . (18)

According to the self-triggered policy (9), the following inequality in augmented form is valid for
[mki , m(k+1)i)[

e (k)

ẽ (k)

]T

�

[
e (k)

ẽ (k)

]
≥ 0 (19)

where Ψ is a real symmetric matrix, �11 = L̄T ε̄�̄L̄, �12 = −L̄T ε̄�̄L̄, Ψ22 = L̄T ε̄�̄L̄− �̄, and others are
zero matrices.

Therefore, Eq. (18) can be rewritten into the following inequality

V (k + 1) − V (k) + ‖z̃ (k)‖2 − nγ 2 ‖w (k)‖2 − γ 2 ‖v (k)‖2 ≤ ξ TρTPρξ + ξ T�ξ (20)

where ξ T = [eT (k) , ẽT (k) , vT (k) , wT (k)], ρT =
[
ÃT (k) , B̃T (k) , C̃T (k) , D̃T (k)

]
, �11 = −P +M̄TM̄ +

L̄T ε̄�̄L̄, �12 = −L̄T ε̄�̄L̄, �22 = L̄T ε̄�̄L̄− �̄, Π33 = −γ 2I , Π44 = −nγ 2I , and others are zero matrices.

We assume that

Γ � ρTPρ + Π ≤ 0. (21)

By applying Schur complement lemma to (20), we obtain

� =
[
� ϒT

∗ −P

]
≤ 0 (22)

where ϒ = Pρ = [
PĀ − PH̄C̄ + PḠL̄, −PḠL̄, −PH̄D̄, PB̄

]
.

First, we prove that the system (4) is exponentially stable when there is no disturbance and
measurement noises. Denoting λ1 = λmax (Γ), obviously λ1 is smaller than zero, which indicates that
(20) satisfies

V (k + 1) − V (k) + ‖z̃ (k)‖2 − nγ 2 ‖w (k)‖2 − γ 2 ‖v (k)‖2 ≤ λ1 ‖ξ (k)‖2 ≤ λ1 ‖e (k)‖2 (23)

Define λ2 = λmax (P) > 0. Then given positive scalar μ, from inequality (23), we obtain
1

μk+1
v (k + 1) − 1

μk+1
v (k) ≤ λ1

μk+1
‖e (k)‖2 . (24)

With some simple mathematical managements, we get
1

μk+1
v (k + 1) − 1

μk
v (k) ≤ 1

μk

[
λ1

μk
+
(

1
μk

− 1
)

λ2

]
‖e (k)‖2 . (25)
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Since
1
μk

[
λ1

μk
+
(

1
μk

− 1
)

λ2

]
= λ1 < 0, when μ = 1, there exist a constant μ0 ∈ (0, 1) such that

1
μ0

k

[
λ1

μ0
k

+
(

1
μ0

k
− 1

)
λ2

]
< 0. By iteration of (25), we have

‖e (k)‖2
<

λ2

λ3

μk
0 ‖e (0)‖2 (26)

where λ3 = λmin (P) > 0. When k approaches to infinity, we can obtain limk→∞ ||e (k) ||2 = 0 which
implies estimation error system (4) is exponentially stable.

Second, it follows from (20) and (21) that

V (k + 1) − V (k) ≤ nγ 2 ‖w (k)‖2 + γ 2 ‖v (k)‖2 − ‖z̃ (k)‖2 (27)

Summing up both sides of (27) from 0 to t with respect to k
t∑

k=0

‖z̃ (k)‖2
2 ≤ nγ 2

t∑
k=0

‖w (k)‖2 + γ 2

t∑
k=0

‖v (k)‖2
2 + V (0) − V (k + 1) . (28)

Since V (k + 1) ≥ 0, letting t approaches to infinity, we can obtain
∞∑

k=0

‖z̃ (k)‖2
2 ≤ nγ 2

∞∑
k=0

‖w (k)‖2 + γ 2

∞∑
k=0

‖v (k)‖2
2 + γ 2e (0)

T Re (0) . (29)

Therefore, the filtering error system also satisfies the H∞ filtering performance condition in
Definition 1. The proof is completed.

3.3 Co-Design of Self-Triggered Policy and Asynchronous Distributed Filter
The above Theorem and Lemma will be employed to design distributed self-triggered consensus

filtering network (3), which leads to the following theorem.

Theorem 2: Given a positive definite matrix Ri = RT
i > 0 (1 ≤ i ≤ n), the distributed self-triggered

filtering problem is solvable, if there exist a positive scalar γ > 0, real symmetric matrices Pi = PT
i > 0,

Φ̄i, and real matrices Xi, Yi satisfying

initial conditions
n∑

i=1

ei (0)
TPiei (0) ≤ γ 2

n∑
i=1

ei (0)
T Riei (0) (30)

and the following set of linear matrix inequalities⎡
⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 0 0
(
PĀ − XC̄ + YL̄

)T

∗ Ξ22 0 0
(−YL̄

)T

∗ ∗ −γ 2I 0
(
X D̄

)T

∗ ∗ ∗ −nγ 2I
(
PB̄

)T

∗ ∗ ∗ ∗ −P

⎤
⎥⎥⎥⎥⎥⎦ ≤ 0 (31)

where X = diagi
n {Xi}, Y = diagi

n {Yi}.
Moreover, if the set of linear matrix inequalities (31) with (30) is feasible, the filter gains can be

computed as
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Hi = Pi
−1Xi, Gi = Pi

−1Yi. (32)

Proof: Denoting Xi = PiHi, Yi = PiGi. Then we have

PH̄ = X , PḠ = Y . (33)

Substituting relations (33) into inequality (16), it can be seen that the inequality (16) in Lemma 1
results in inequality (31) with (30). The proof is completed.

Remark 1: The goal of the above co-design is to conquer the asynchronous communication caused
by self-triggered policy and achieve good filtering performance. Through Theorem 2, the self-triggered
threshold parameters Φi and the filter gain matrices Hi, Gi could be successfully solved together.

4 Numerical Example

In this section, a numerical example is given to demonstrate effectiveness of the above co-design.

The network topology is represented by directed weighted graph G = (V , E ,A) with five nodes
V = {1, 2, 3, 4, 5}, set of edges E ⊆ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 1),
(4, 4), (5, 3), (5, 5)}. The transmission paths between five nodes in Fig. 3 and adjacency matrix as
follows:

A =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 1 0
0 0 1 0 1

⎤
⎥⎥⎥⎥⎦.

1

2

4

5

3

Plant 
( )iy k

ˆ ( )
ii kx m

Figure 3: Schematic of distributed filtering over the WSN

The simulation is taken as 300-time units and each unit length is taken as 0.1. The system and
sensor parameters are given as

A =
[

0.9 −0.6
0.8 0.3

]
, B =

[
0.5
1

]
, M =

[
0.6
0.6

]
,

C1 = [−0.2 0.3
]
, C2 = [−0.3 0.4

]
, C3 = [−0.2 0.1

]
,

C4 = [−0.3 0.2
]
, C5 = [

0.2 −0.4
]
, D1 = D2 = D3 = D4 = [

1 1
]
.
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The system noise and measurement noise are taken as ω (k) = e−2k and vi (k) =
[e−2k sin (k) 2e−k cos (2k)], respectively. The initial state x0 = [

0.2 −0.1
]T

. The initial estimation
of each node i are given as

x̂1 (0) = [
0.2 −0.1

]T
, x̂2 (0) = [

0.2 −0.2
]T

,

x̂3 (0) = [−0.1 −0.2
]T

, x̂4 (0) = [
0.1 −0.2

]T
, x̂5 (0) = [

0.1 −0.1
]T

.

The self-triggered parameters of each node i are taken as ε1 = 0.7, ε2 = 0.2, ε3 = 0.6, ε4 = 0.4,
ε5 = 0.3. The positive definite matrices are given R1 = R2 = R3 = R4 = R5 = diag2 {0.7}.

The self-triggered matrices Φ̄i and the filter gain matrices Hi, Gi are obtained together by solving
the linear matrix inequality conditions (30), (31) by the MATLAB software.

To further verify the strength of the self-triggered consensus filtering, a rectangular pulse ωd (k)

as an external disturbance is introduced into the system when k ∈ [8, 10]. The simulation results are
shown in Figs. 4–6.

The output z (k) and its estimation are depicted in Fig. 4. The filtering root means square error is
given in Fig. 5. They show that the designed self-triggered consensus filter performs well in tracking
the state of the target plant and the system has good robustness under the self-triggered policy.

Figure 4: Plant output z (k) and its estimation

Fig. 6 illustrates the self-triggered times of each filter. Under the periodic time-triggered mech-
anism, data transmits between the sensor and its neighbors at every sampling moment. It is clear
that the self-triggered policy developed in this paper can effectively reduce the data transmission
frequency within the network. In particular, in the first 6 time steps, filter 1-filter 5 is triggered less
than 20 times under the self-triggered policy, while triggered 60 times under the time-triggered strategy.
Therefore, the self-triggered policy developed in this paper can greatly save communication resources
and computation burden of the filtering network.
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Figure 5: Filtering root mean square error

Figure 6: The self-triggered times of each filter

On the other hand, after the system is perturbed, the number of triggers intensively increases, and
the triggers become gentle until the estimation becomes consensus during the time interval k ∈ [8, 14].
This also means that filter i should update data released from neighbors frequently when the filtering
departs from consistency.
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In summary, the simulation results illustrate that the self-triggered policy can save communication
and computation burden while satisfying filtering performance.

5 Conclusion

The self-triggering policy is developed for a class of distributed filtering systems in this paper.
This policy can actively predict the time when the following exchanged data will be updated. Through
such a policy, the frequency of data exchange can be reduced, while communication resources can
be saved within the filtering network. Compared with the existing event-triggered communication
scheme, this means that it is not necessary to continuously judge trigger conditions, which saves the
computing burden. The asynchronous transmission problem caused by each filter node’s independent
self-triggering can be solved by co-design. In order to make the research work close to the engineering
practice, we will further consider transmission delay, packet loss, data conflicts, and other network
induced phenomena.
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