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ABSTRACT

The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by
traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity
or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification
is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which
use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and
hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification
is carried out on three types of damage. The proposed algorithms are used to analyze the damage of 4585 structural
images. The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix. For the
testing dataset, the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for
the best model (WAE-DE) in distinguishing damage types as flexural, shear, combined, or undamaged.
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Nomenclature

CNN Convolutional Neural Network
SHM Structural Health Monitoring
PEER Pacific Earthquake Engineering Research
PHI Center Hub ImageNet
F Flexural Damage
S Shear Damage
FS Combined Damage
UN Undamaged Condition
SAE Simple Averaging Ensemble
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WEA Weighted Averaging Ensemble
DE Differential Evolution
SSM Separate Stacking Ensemble
SVM Support Vector Machine
ISE Integrated Stacking Ensemble
CM Confusion Matrix

1 Introduction

Artificial intelligence (AI) methods have had a significant impact on a variety of disciplines,
ranging from engineering applications, health sciences, intelligent games, to material discovery [1].
Machine learning (ML) methodologies and computing power advancements facilitate not only the
handling of big data within reasonable time restrictions, but also the automatic discovery of underlying
patterns of the data without requiring human subjective judgments [2,3]. The decision-making process
may become more reliable and efficient using ML models [4]. The application of ML algorithms in
civil engineering involves a wide range of disciplines [5–7], including structural health monitoring [8,9],
geotechnical engineering [7], and structural and earthquake engineering [10–12]. Das et al. [13] adopted
a deep convolutional neural network (CNN) to determine crack patterns in strain hardening cemen-
titious composites. The proposed model can predict crack metrics such as average crack width and
crack density based on the crack pattern. Abdelkader [14] proposed a hybrid pre-trained deep learning
algorithm for the crack identification in various infrastructures using visual geometry group networks,
K-nearest neighbors, and differential evolution algorithms. Reis et al. [15] proposed methodologies for
classifying images of cracks in historical buildings using a deep learning architecture. Wan et al. [16]
assessed an encoder-decoder network-based architecture for identifying pavement cracks with intricate
textures under various illumination situations. Bigdeli et al. [17] used a new architecture based on
CNNs for densifying crack bifurcation in concrete structures. Mohammed et al. [18] utilized various
established open-source CNNs to evaluate their detection accuracy in concrete crack classification.
Ye et al. [19] used CNNs, a bridge crack library, to develop a model for structural crack detection of
multiple structural materials such as masonry, concrete, and steel. Flah [20] presented an automated
inspection framework based on image processing and deep learning techniques to identify defects in
otherwise difficult to access regions of concrete structures. Wang et al. [21] developed a structural
damage identification framework based on time-frequency graphs and the marginal spectrum of the
signals using CNNs and particle swarm optimization algorithm. Meng et al. [22] introduced a modified
CNN for long-term structural monitoring using both forward convolution and reverse convolution.
Quqa et al. [23] utilized image processing techniques and CNNs for crack identification in steel bridges
using an image dataset of the welded joints of steel bridges. Sharma et al. [24] suggested a one-
dimensional CNN for detecting damaged joints in semi-rigid frames. A novel procedure is suggested
by Sony et al. [25] based on a windowed one-dimensional CNN for multiclass damage detection using
vibration responses on a full-scale bridge. Alazzawi et al. [26] proposed a deep residual network to
extract characteristics from raw response signals recorded from steel beams under various damage
situations. Yang et al. [27] presented a CNN-U-Net architecture model combined with a nonlinear
regression model for identifying the crack skeleton. The different research studies cited above classified
structural damage in structural members using typical DL-based models, which involve classifying the
damage using a set of pictures from the desired damage type. However, these ML algorithms still have
flaws, such as being inaccurate or weak, having limited generalization capacity, and running at a low
speed [28,29].



CMES, 2023, vol.134, no.2 837

After a seismic event, a quick and accurate assessment of the damage level of structures is crucial
for emergency action and recovery design. Visual identification is commonly used in current quick
damage evaluation methodologies. However, visually detecting and classifying existing reinforced
concrete structural damage can be laborious. To this end structural health monitoring (SHM) and fast
and easy damage assessment following natural disasters has gained significant research interest. In civil
engineering design, using DL in vision-based SHM is a relatively recent research direction and to this
end some significant challenges remain to be addressed as researchers try to apply these concepts to
structural engineering concerns. For example, there is a lack of a standardized automated identification
principle or framework based on existing knowledge with acceptable accuracy for structural damage
identification. To this end this research evaluates the feasibility of using ensemble learners, including
simple averaging, weighted averaging, integrated stacking, and separate stacking ensemble models, to
assess the earthquake-induced damage of reinforced concrete structural members. Ensemble models
are developed for structural damage identification using deep convolutional neural network models.
Damage type corresponds to a complicated vision pattern that is divided into three categories: flexural,
shear, and combined damage. The paper is structured as follows: The data are presented in detail in
Section 2. Section 3 describes the CNN and ensemble learning techniques models. Section 4 explains
the results and discussion , and Section 5 presents the main conclusions.

2 Data Description

In general, reinforced concrete member failures can be divided into three main categories:
flexural, shear and flexural-shear. Mechanical characteristics of the reinforced concrete members
are directly affected by damage type. In this research, a damage-type dataset was obtained from the
Pacific Earthquake Engineering Research (PEER) Center Hub ImageNet (PHI) website [30,31]. A
total of 4585 images were available in this dataset, comprising the three damage types defined as
flexural (F) damage, shear (S) damage, combined (FS) damage, and also the undamaged (UN)
condition. Mechanical characteristics and seismic design are directly affected by damage type. Label
definitions corresponding to failure type are presented by Moehle [32] and based on engineering
judgment as follows: (1) Flexural-type damage is defined as most cracks occurring in the horizontal
or vertical directions, or at the end of an element having vertical or horizontal planes, (2) Shear-type
damage is defined when the majority of cracks run diagonally or create a “X” or “V” pattern, and (3)
It is classified as combined-type damage if the crack distribution is uneven or accompanied by severe
spalling. Images have dimensions as high as 224 × 224 × 3, where 224 × 224 is the resolution (pixels)
and the last dimension (3) is the number of the color channels. Table 1 shows the number of images for
each damage type. Fig. 1 shows examples of images in the database. In this study, the ML models are
developed on the basis of a random split of the data into a training set (70%), a validation set (15%),
and a testing set (15%).

Table 1: Distribution of damage type

Type UN F S FS Total

Number of images 1813 522 925 1325 4585
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Figure 1: Sample images of the database; (a) F damage, (b) S damage, and (c) FS damaged [30,31]

3 Ensemble Model

In this research, ensemble neural network models and super learner ensemble are used to
characterize different damage types. The ensemble neural network models use deep neural networks
such as base sub-models, but super learner ensemble use bagging and boosting algorithms as base
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sub-models. The ensemble neural network models developed in this research are simple averaging,
weighted averaging, integrated stacking, and separate stacking ensemble models.

3.1 Sub-Models
A deep convolutional neural network (DCNN) architecture comprises several layers: an input

layer, a convolutional layer, a pooling/dropout layer, fully connected layer, and ultimately output layer.
As an example, a configuration of a binary classification is illustrated in Fig. 2. A picture is received
by the first layer (Input layer). The input data is then processed by the architecture, which reduces its
size. Finally, based on the type of categorization, the Softmax layer predicts the final output. For the
binary classification, the prediction is based on whether or not the image belongs to a specific group,
those classification tasks that have two class labels. For a multi-purpose, classification tasks have more
than two class labels.

Figure 2: Architecture of the DCNN classifier

3.2 Sub-Models
In this research, five convolutional network models (CNN) are utilized as the base learners (sub-

models). The number of base learners is determined using a trial and error method. These models are
created by modifying deep learning models, including a MobileNetV2 [33] and NASNetMobile [34],
to capture global context and local deep learning characteristics. This research employs the transfer
learning technique (TLT). TLT is a strategy in which a model that was trained to address one problem
is reapplied to solve a new problem that is related to the original [35]. Typically, the early layers of
an image recognition model will learn to identify generic traits, while the later layers will be able to
recognize more specific traits [35,36]. The last layer of an image recognition model will have N Softmax
neurons (assuming we are classifying N classes); therefore, it should be modified appropriately and
in some cases additional layers may be required. The important step, is fine-tuning, which involves
unfreezing the entire model obtained above and re-training it using the new data with a very low
learning rate.

MobileNetV2 and NASNetMobil have a total of 88 and 769 layers, respectively [33,34]. CNNs
architectures of the sub-models are shown in Fig. 3. The additional layers are highlighted in green. The
simple averaging, weighted averaging, integrated stacking, and separate stacking ensemble models are
created using these sub-models.
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Figure 3: (Continued)
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Figure 3: Architectures of the sub-models

3.3 Simple Averaging Ensemble
For numerical purposes, averaging is the most common and basic combination approach. Simple

averaging ensemble (SAE) is one of the most widely used approaches [37], and it is often the first choice
in many real-world applications due to its simplicity and efficacy. By directly averaging the outputs of
the sub-models, simple averaging yields the total output. Here, five CNN base learners (Section 3.2)
are considered for developing the SAE. A diagram of the SAE process is illustrated in Fig. 4.

Figure 4: Simple averaging method
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3.4 Weighted Averaging Ensemble
The simple averaging technique assigns the same weight to all sub-models. The weighted averaging

ensemble (WEA), generates a combined output by averaging each sub-model output by varying the
assigned weights. Determining the weights may be computationally challenging, and optimization
algorithms are usually employed at this stage [38]. In this research, differential evolution (DE) is
employed to determine the weights in the WEA [39,40]. DE is a vector-based technique that, due
to its usage of crossover and mutation, is similar to pattern searching and genetic algorithms [39,40].
DE is a self-organizing search method that does not rely on derivative information. As a result, it is a
population-based, derivative-free approach. DE uses the population’s directional data. Each member
of the present generation is allowed to reproduce by mating with other randomly chosen members
of the population. For each individual, three other separate individuals are randomly selected. As a
result, to breed an offspring, a parent pool of four individuals is generated. After initialization, DE
uses mutation to build a mutated vector relating to each population member, and then uses arithmetic
recombination to construct a target vector in the present generation. Differentiating one DE scheme
from another is the procedure of creating the modified vector. In DE, mutation occurs before crossover,
whereas in genetic algorithms, mutation occurs after crossover. Furthermore, mutation is used less
frequently in genetic algorithm, whereas it is used on a regular basis in DE to develop each offspring.
Fig. 5 shows the conceptual schematic of the WAE-DE hybrid algorithm.

Figure 5: Conceptual schematic of the WAE-DE algorithm

3.5 Stacking Ensemble
Stacking is another ensemble learning approach that employs a meta-model to integrate a large

number of the sub-models (usually heterogeneous learners) to provide a more accurate final prediction
than a single model (Fig. 6) [41]. The predictions returned by the sub-models are then aggregated by
training a meta-model based on the outputs of individual sub-models. The term “integrated stacking”
is used when the meta-model is a neural network; otherwise, “separate stacking” is used.
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Figure 6: Stacking ensemble algorithms workflow

3.5.1 Separate Stacking Ensemble (SSM)

In this research, SSMs are generated with sub-models (Section 3.2) and five different meta-
models, including support vector machine, Adaptive Boosting (AdaBoost), RandomForest, Bagging,
and Gradient Boosting (GraBoost), default parameters are used for meta-models. Support vector
machine (SVM) is firstly developed for classification of different classes. The strategy is that the
sample points (input) are transformed into a higher-dimensional feature space using a linear/nonlinear
transformation. Then a hyperplane is used to describe the classification. SVM regression is generally
regarded as a nonparametric method because it relies on kernel functions. A kernel is used to identify
a hyperplane in a higher-dimensional space while reducing the computing cost. When we use SVM,
our major goal in the regression problem is to choose a decision boundary that is a certain distance
from the initial hyperplane and contains data points that are closest to the hyperplane. AdaBoost is
a collection of numerous decision trees, each of which is a poor learner and performs just marginally
better than arbitrary guessing [42]. The AdaBoost method transmits the gradient of previous trees to
subsequent trees in order to minimize the error of the prior tree. As a result, the subsequent learning
of trees at each step contributes to the development of a strong learner. The ultimate prediction is a
weighted average of each tree’s projections. AdaBoost is more resistant to outliers and noisy data due
to its strong flexibility. Bagging is a condensed version of bootstrap aggregation. It is an ensemble
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technique that splits a dataset into m samples, and samples sets do not need to be disjointed. After
that, each of the m samples is trained separately into m different machine learning models. The outputs
of all the different models are then integrated into a single output via for example voting or averaging.
Random Forest (RF) is a Bagging extension in which randomized feature selection is incorporated [43].
At each step of split selecting in the construction of a decision tree, RF first takes a subset of features
at random, then performs the traditional split selection technique inside the selected feature subset.
Graboost is comparable to other methods of boosting [44]. Since it is necessary to incrementally raise
or boost weak learners, unlike AdaBoost, which involves adding a new learner after increasing the
weight of poorly predicted data, gradient boosting involves training a new model based on residual
errors from the preceding prediction.

3.5.2 Integrated Stacking Ensemble (ISE)

When employing deep neural networks as a sub-model, a neural network may be a preferable
choice as a meta-model. In the ISE algorithm, a neural network is used as a meta learner. The sub-
models can be inserted in a larger network that the meta-model learns how to combine the sub-models’
outputs in the best way possible. In this work, a shallow neural network consisting of only 1 hidden
layer with 25 neurons is selected as the meta-model. The number of neurons in hidden layer has
been determined using trial and error method. The activation function and optimizer are “Tanh” and
“Adm”, respectively.

4 Result and Discussion

A confusion matrix (CM) is used to assess the effectiveness and efficiency of each ML model
in greater depth. The CM is a table that compares the observed and predicted damage. The metrics
utilized to assess the performance of the models are in Eqs. (1)–(3):

Accuracy = TP + TN
TP + FP + FN + TN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

A TP is when the model forecasts the positive class properly. A TN, on the other hand, is a result
in which the model accurately forecasts the negative class. A FP occurs when the model forecasts the
positive class inaccurately. And a FN is an output in which the model forecasts the negative class
inaccurately. Recall and Precision are very useful when dealing with unbalanced datasets [45].

In Fig. 7, F, S, FS, and UN stand for flexural damage, shear damage, combined (flexural-shear)
damage, and undamaged. The diagonal cells in the CM reflect the classes that the algorithm properly
detected, whereas the off-diagonal cells denote the classes that were mistakenly predicted. The accuracy
(Eq. (1)) is shown in the lowest cell on the right side of the CM (i.e., fifth row and fifth column, Fig. 7).
The precision metric (Eq. (2)) is indicated by the column on the far right of the CM. The recall metric
(Eq. (3)) is indicated by the row at the bottom of the CM. Fig. 7 reports the CM of each sub-model
for the testing phase. It can be recognized that the worst classification accuracy is represented for
the sub-model 1 with a value of 82.7%. The highest accuracy has been recorded for the sub-model
4 with a value of 89.97%. Although the sub-model 4 has the highest accuracy, Recall values of the
sub-model 3 for all classes are higher than 84%.
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Figure 7: (Continued)
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Figure 7: Confusion matrix of sub-models using the testing set

The number of members in the SAE method can affect the outcome. As a result, the impact of
the number of base learners (sub-models) on the model performance is investigated, and the ideal
number of members is determined. Increasing the size of the ensemble model (adding base learners)
is accomplished by first generating a new model using the first two base learners (from Section 3.2),
namely sub-model 1 and sub-model 2, and then adding another sub-model to the preceding group for
each succeeding model. The accuracy of the model is assessed each time using the test data. Fig. 8
depicts the relationship between the number of members and accuracy. When the model members
include the base learner 1 to 4, there is a marked increase from 0.83 to 0.93 in the accuracy of the
ensemble models. After that point the accuracy of the SAE reaches a plateau and does not change.

Figure 8: Influence of the number of members

The WAE-DE is the second ensemble learning method. As previously mentioned, the weight of
each BL model is computed via the DE algorithm. The weight of each sub-model in WAE-DE is shown
in Table 2. Based on Table 2, the sub-models 1 and 4 are given more weight than the others.
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Table 2: Optimized weights of the sub-models

BL model 1 2 3 4 5

Weight 4.1e-01 1.9e-02 1.1e-01 3.9e-01 7.1e-02

The models’ accuracy is assessed using an unknown test set. Fig. 9 shows the CM of various
models for the testing phase. For the testing dataset, all models have an accuracy greater than 91%,
demonstrating their ability to quickly assess the damage type after an earthquake with reasonable
accuracy. The accuracies of the various models are SAE = 91.4%, WAE-DE = 94%, ISE = 93.7% SSM-
AdaBoost = 92.7%, SSM-Bagging = 92.4%, SSM-Graboost = 92.7%, SSM-RF = 93.1%, and SSM-
SVM = 94%. Among the ensemble models, the WAE-DE and SSM-SVM models fare much better.
Meanwhile, the precision and recall of SSM-SVM, ISE, and WAE-DE are greater than 91% for almost
all damage classes. While the recognition of FS damage is challenging in other research studies [46,47],
the WAE-DE and SSM-SVM model achieved a near 93% recall and 96% precision in identifying the
flexure-shear failure type in the testing dataset. Nevertheless, it seems that the prediction of the FS
damage is challenging for the other examined models. A modeling averaging ensemble combines the
prediction from each model equally and often results in better performance on average than a given
single model. Comparison of the performance of the ensemble models (Fig. 9) with the performance
of single models (sub-models, Fig. 7) shows the efficiency of the SSM-SVM and WAE-DE models in
classifying damage types of RC members. The rate of increase in accuracy in identifying the type of
failure is about 4%.

The SAE equalizes the predictions of each model. A weighted average ensemble is a method for
allowing different models to contribute to a forecast in proportion to their level of confidence or
anticipated performance. WAE-DE (weighted average ensemble) outperforms the SAE [48]. Although
model averaging can be upgraded by weighting the influences of each sub-model to the merged
prediction by the expected performance of the sub-models, this can be further enhanced by training
a completely new model (meta model, such as SVM) to discover how to optimally aggregate the
contributions of each sub-model considering nonlinear relationship between inputs and output.
Depending on how well the meta model can model the nonlinear relationship between inputs and
output, the performance of this type of hybrid model will vary [48].

Gao et al. [49] used some well-known deep CNN (benchmark) models, including VGG-16 [50],
VGG-19 [50], and ResNet-50 [51] models, for structural damage identification using same database.
Table 3 shows the results of the VGG-16, VGG-19, and ResNet-50 models. The best benchmark model
(VGG-19) is significantly poorer than the SSM-SVM and WAE-DE models in terms of performance.
This emphasizes the significance of choosing the right model for future applications rather than relying
on a single model.
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Figure 9: (Continued)
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Figure 9: Confusion matrix of various ensemble models for the testing phase

Table 3: Performance of benchmark models for test set

Models Accuracy (%)

VGG-16 70.53
VGG-19 72.36
ResNet-50 68.09
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The k-fold cross-validation approach may produce a noisy assessment of model performance after
just one run [52]. Different data splitting can produce quite various findings. Repeated k-fold cross-
validation [52] is a technique for improving assessment of a machine learning model’s performance.
In this method, the cross-validation technique is performed several times and return the mean result
across all folds from all runs. This mean result is believed to be a more accurate representation of
the genuine unknown underlying mean performance of the model on the dataset. As an example, Box-
Whisker Plots of performance vs. repeats for k-fold cross-validation for SSM-SVM and SAE model are
shown in Fig. 10. The orange line represents the median and the green triangle indicates the arithmetic
mean of the distribution. In addition, examining the learning curves of the algorithms during training
could be used to discover learning challenges like the overfitting [52]. Overfitting results in a model that
is too similar to the inputs, lowering the generalizability of the model. Overfitting leads the validation
loss graph to rise at a certain level and does not approach a point of stability. Fig. 11 illustrates an
example of overfitting. The models’ curve is depicted in Fig. 11. The validation loss curves approach
a point of stability, as shown in Fig. 12.

Figure 10: Loss-Epochs curve for a overfitted-model

Figure 11: Loss-Epochs curve for a overfitted-model
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Figure 12: Loss-Epochs curve of various ensemble models
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5 Conclusions

After a major earthquake, the timely success of a post-reconnaissance and recovery effort depends
on the accurate assessment of inflicted structural damages. It is crucial to assess the seismic risk
of structures in earthquake-prone areas and to collect data on the built domain within a possibly
wide geographical area, following a severe earthquake. This paper developed and evaluated ensem-
ble learning algorithms for identifying structural damage in RC members. The utilized ensemble
algorithms include simple averaging, integrated stacking, separate stacking, and hybrid weighted
averaging ensemble and differential evolution (WAE-DE) ensemble model, which are based on deep
convolutional networks. The results were reported and examined using a confusion matrix, a table
that was used to assess algorithm’s performance. Overall accuracy, precision, and recall metrics are
reported for each model.

The results show that the WAE-DE and separate stacking ensemble with support vector machine
(SSM-SVM) had the highest accuracy in the testing phase. The prediction accuracy of the ensemble
models with the performance of sub-models shows the efficiency of the SSM-SVM and WAE-DE
models in classifying damage types of RC members. Furthermore, the results demonstrated that
predicting flexural-shear damage was challenging, as the lowest value of the recall corresponded to
this type of damage for the majority of the investigated cases. The results of the proposed models
were compared with three well-known deep convolutional neuronal networks (benchmark) models,
including VGG-16, VGG-19, and ResNet-50 models. The benchmark models were significantly poorer
than the of the ensemble models in terms of performance. The best benchmark model (VGG-19) had
an accuracy of 72%, but the SSM-SVM and WAE-DE models had an accuracy of 94%. Because the
WAE-DE and SSM-SVM models have the highest accuracy, precision, and recall among the various
ML models, these two algorithms are recommended as the best prediction models for detecting
structural damage.

Data Availability: Some or all data, models, or code that support the findings of this study are available
from the corresponding author upon reasonable request.
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