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ABSTRACT

Given one specific image, it would be quite significant if humanity could simply retrieve all those pictures that fall
into a similar category of images. However, traditional methods are inclined to achieve high-quality retrieval by
utilizing adequate learning instances, ignoring the extraction of the image’s essential information which leads to
difficulty in the retrieval of similar category images just using one reference image. Aiming to solve this problem
above, we proposed in this paper one refined sparse representation based similar category image retrieval model.
On the one hand, saliency detection and multi-level decomposition could contribute to taking salient and spatial
information into consideration more fully in the future. On the other hand, the cross mutual sparse coding model
aims to extract the image’s essential feature to the maximum extent possible. At last, we set up a database concluding
a large number of multi-source images. Adequate groups of comparative experiments show that our method could
contribute to retrieving similar category images effectively. Moreover, adequate groups of ablation experiments
show that nearly all procedures play their roles, respectively.
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1 Introduction

With the advent of the big data era, similar category image retrieval plays a very significant
application value in e-commerce, education, life science and other fields. In contrast, it is different
from modern mainstream image retrieval technology. Actually, modern image retrieval is a process
that involves the browsing, searching, and retrieval of target images from a database. Early on, the
development of image retrieval spurred the development of many feature descriptors, such as color
histogram [1], texture histogram [2], SIFT [3], rgSIFT [4], PHOG [5], and GIST [6]. Meanwhile, a large
number of retrieval models, such as the Bayesian model [7,8], random forest model [9], and SVM model
[10–12], directly support the retrieval process. Moreover, quite a few improved retrieval models [13–
15] increase the accuracy of image retrieval significantly. However, the traditional retrieval models and
other improved models are on the foundation of adequate learning instances. It is almost impossible
to achieve high-quality retrieval with just a few learning instances, let alone only one reference image.
Moreover, the fields of image classification [16], image annotation [17], and image recognition [18] also
face similar issues.
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The emergence of deep learning models [19,20] has completely changed the traditional retrieval
mode. Traditional methods often rely on feature operators and retrieval models to achieve high
precision retrieval. In contrast, the deep learning model directly uses a large number of learning
instances to predict categories, trends and other information, fundamentally replacing some pro-
cedures of traditional methods. Without a doubt, more learning instances should be provided and
more computing resources are consumed, but the accuracy of classification, retrieval and detection
is significantly improved, which is highly recognized by scholars and engineering technicians. For
instance, many remarkable application-based models [21,22] have been recognized fully owing to their
remarkable experimental results. Especially in recent years, many innovative models have been applied
to image retrieval, which improves the retrieval accuracy significantly. Specifically, innovative networks
[23,24] were used to improve the efficiency of retrieval and more powerful feature representations
[25,26] directly contribute to high-quality image retrieval.

As mentioned above, machine learning-based retrieval methods need adequate learning instances
to support higher retrieval accuracy, especially the number of learning instances required by deep
learning couldn’t be underestimated. However, the classical methods cannot meet our requirements if
we want to achieve similar category image retrieval based on reference image. Because the essence of
machine learning is that a large number of learning instances could be used for tendency prediction, in
contrast, similar category image retrieval is impossible without adequate learning instances. Although
it has obvious limitations, which significantly increases the difficulty of implementation, we could
still take advantage of the new strategy combined with valuable experience from traditional methods
to achieve it. After all, it only needs to retrieve images of similar categories and the requirement is
relatively lower than other classic methods. It is important to note that each image contains abundant
semantic information [27,28] beyond our imagination, but it is not fully extracted by traditional
classical methods. Moreover, the obvious distinctions between essential content and background
content are not fully considered. More importantly, the obvious spatial information of the image is
often ignored as well. Some previous methods [29,30] consider the above problems to a certain extent,
and they can also retrieve many semantically valid images. However, the above methods do not deeply
mine the essential features of the image, and do not fully consider the spatial location information of
the image. These problems will directly lead to the decline of image retrieval accuracy.

Given the above problems, this paper has carried on further targeted research. On the one
hand, saliency detection and multi-level decomposition are used to consider the image’s essential
information and spatial information into consideration to the maximum. On the other hand, the
cross mutual sparse coding method is used to extract image features more accurately. In the process
of similarity calculation, salient regions and multi-level regions are provided with different weights.
More importantly, we have designed very comprehensive experiments to verify the effectiveness of the
proposed method. The experimental results also fully prove the validity and robustness of our proposed
method, especially for each critical procedure. On the whole, although our method can just retrieve
similar category images limited by the semantic information of one reference image, it still has high-
level practical application value. Our contributions are more reflected in the perspective of methods
and ideas. In addition to machine learning, there are still many other image retrieval strategies having
practical application value.

2 Algorithm

In the process of algorithm implementation, we first detect the salient region of a specific image.
Next, we divide the specific image into different levels and spatial regions on different levels are
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represented. In order to achieve a more accurate representation, the cross mutual sparse representation
is used to realize it. Essentially, in the process of similar category image retrieval, the salient and spatial
information are fully considered, which provides direct support for similar category image retrieval.

2.1 Pretreatment of Refined Sparse Representation
Since saliency detection can be realized conveniently, the Graph-Based Manifold Ranking strategy

[31] was used for saliency detection. In essence, we ranked the similarity of the image elements (pixels or
regions) with foreground cues or background cues via graph-based manifold ranking. Furthermore, as
shown in Fig. 1, a two-stage scheme was used to achieve saliency detection by extracting background
regions and foreground salient objects efficiently. Since manifold ranking is one important procedure,
we illustrate it more clearly. The optimal ranking of queries would be computed through optimization
problem solving, which is highly similar to the PageRank and spectral clustering algorithms.

Figure 1: A two-stage scheme [31] was used to achieve saliency detection through extracting back-
ground regions and foreground salient objects efficiently
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In Eq. (1), the first term is smoothness constraint and the second term is fitting constraint, and
they are balanced by the parameter μ. Specifically, a high-level ranking function should not change too
much between surrounding points and should not differ too much from the initial query assignment.
Actually, the minimum solution could be computed through setting the derivative of above function
to be zero. Next, resulted ranking function could be expressed as Eqs. (2)–(3), where I is an identity
matrix and S is the normalized Laplacian matrix.

f∗ = (I − αS)−1y (2)

α = 1/(1 + μ) (3)
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The ranking algorithm [32] draws lessons from semi-supervised learning [33] for classification.
Essentially, the manifold ranking could be considered a one-class classification problem.

Next, in order to further consider the spatial information of the image, we divide an image into
different levels. Spatial information will be more detailed with a higher level. As shown in Fig. 2, when
an image is decomposed into more levels, spatial information will be considered more completely.
Actually, the quality of image feature extraction and similarity calculation largely depends on the fine
degree of image decomposition.

Figure 2: A specific image is divided into different levels and spatial information could be considered
by decomposition

As the essential semantic region of the whole image, the saliency region could be detected, which
should be given prioritized in the similarity calculation process. Moreover, the spatial information of
the image also needs to be fully considered. After all, even if the same content appears in different
regions, it may represent different meanings. The above algorithms fully consider these problems and
lay a foundation for accurate image similarity calculation.

2.2 Refined Sparse Representation Based Retrieval
On the foundation of the pretreatment process, we use a cross mutual sparse coding method to

represent images. In order to achieve accurate and effective image representation, we train millions of
images to reduce the error caused by randomness. When each image is represented precisely, image
similarity can be calculated expediently.

The sparse coding based model [34,35] represents one image by training a group of patches to
minimize the following step-by-step equation, where xi refers to input learning images, φ indicates
words in the dictionary, and ai,j represents sparse parameters. In training, m, k, j, and i are adjusted
multiple times to determine the best base groups. Eq. (4) and procedures (a) and (b) present the sparse-
coding process.
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(a) Adjustment while locking φ to minimize the target function.

(b) Adjusting φ while locking a to minimize the target image.

One group of bases can be obtained through sufficient iterations until convergence. Although this
set of bases can comparatively provide better representation for images, we find this set of bases is still
not unreasonable after adequate experiments. Because of the aforementioned problem, we do more
groups of experiments to obtain different groups of bases. More importantly, let them test and verify
with each other. On the foundation, we select the most reasonable set of bases. Each image could be
expressed more accurately owing to a more precise set of base vectors.

min
a

m∑
i=1

||xi −
k∑

j=1

ai,jφj||2 + λ

m∑
i=1

k∑
j=1

|ai,j| (5)

When a set of high-quality base vectors has been obtained, a similar cost function minimization
process is used to implement a sparse representation. Compared with Eqs. (4) and (5), it is no need to
calculate the base vector. It only needs to obtain the sparse vector by using other parameters. Although
the base vector has been locked, the other parameters still need to be adjusted step by step to minimize
the objective function. When the objective function has been minimized, we obtain the encoding
coefficients for achieving a sparse coding representation of the image. Fig. 3 shows one typical instance
of an image region represented by one group of bases. Although the process is relatively complex, it
can not only realize the accurate image representation, but also provide support for the similarity
calculation of different images.

Figure 3: One typical instance of image region represented by one group of bases

With precise sparse representation, we can calculate the similarity of different regions. Specifically,
suppose we want to calculate the similarity between regions (a) and (b). In that case, be expressed as
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the Eq. (6), where C represents sparse coding-based function and k represents the dimension of sparse
coding.

S (a, b) =
√∑k=n

k=1
(Ck(a) − Ck(b))

2 (6)

On this basis, we calculate the similarity of different images and characterize it as two parts. For the
first part, the similarity measure mainly focuses on the similarity of saliency regions between different
images. For the second part, the similarity measure mainly focuses on the similarity of different levels
between different images. When the similarity between the candidate retrieved image and the reference
image exceeds the set threshold, we consider it as one targeted retrieval image owing to the high
similarity between each other.

The above section shows the key modules of our method in detail, especially for the essential
modules; we lay extra emphasis on them with more targeted descriptions. In general, each module
supports and complements each other mutually. What’s more, there is no very high dependence
between each module. In other words, even if a single module could not play a significant role, it still
would not have a negative influence on other modules, which further improves the method’s feasibility
and lays a foundation for superior experimental results in a convincing database.

3 Experiments

In order to make the experimental results more credible, we selected 257,823 images from the
Internet database, personally collected database and some classic databases. More importantly, images
with different resolutions or complicated semantic content would be selected as more as possible.
Meanwhile, in order to make the experimental results more objective, we use a subjective system to
evaluate the image similarity. Specifically, we then determine the correctness when two of the three
volunteers consider that the reference image and retrieval images are highly similar. It should be noted
that some baseline methods are not suitable for retrieval directly, but we use their strategies or essential
algorithms to achieve comparison.

From the AP values in Fig. 4, our retrieval accuracy has significantly improved compared to the
traditional baseline methods. Meanwhile, the experimental results are evaluated by AUC values in
Fig. 5. Similarly, AUC values further illustrate the effectiveness of our method.

In order to test the effectiveness of saliency detection, multi-level decomposition and cross mutual
sparse representation, we added some ablation experiments. The experimental results in Fig. 6 fully
reflect the necessity of the three procedures, which provide direct support for improving the retrieval
accuracy. Similarly, AUC values in Fig. 7 further illustrate the necessity of the three procedures.

Considering the diversity of the images, we have carried out further experiments on complex
semantic-based images, low resolution-based images and weak saliency region-based images. From
the experimental results by AP and AUC values in Figs. 8 and 9, we perceive these special images
could not be retrieved very realistically, but our method still has a certain application value for general
retrieval.
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Figure 4: AP values calculated using different methods. Baseline 1: The improved sparse coding based
method [36]. Baseline 2: Weighted spatial pyramid matching based method [37]. Baseline 3: The
practical-based method [38]. Baseline 4: The spatial pyramid matching based method [39]. Baseline 5:
The GIST-based similarity calculation method [40]

Figure 5: AUC values calculated using different methods. Baseline 1: The improved sparse coding
based method [36]. Baseline 2: Weighted spatial pyramid matching based method [37]. Baseline 3: The
practical-based method [38]. Baseline 4: The spatial pyramid matching method [39]. Baseline 5: The
GIST-based similarity calculation method [40]



900 CMES, 2023, vol.134, no.2

Figure 6: Comparison of AP values between our model and baseline models. Baseline 1 model is
that we retrieve similar category images using our model just without the saliency detection step.
Baseline 2 model is that we retrieve similar category images using our model just without using multi-
level decomposition step. Baseline 3 model is that we retrieve similar category images using our model
just without using cross mutual sparse representation

Figure 7: Comparison of AUC values between our model and baseline models. Baseline 1 model is that
we retrieve similar category images using our model just without the saliency detection step. Baseline
2 model is that we retrieve similar category images using our model just without using a multi-level
decomposition step. Baseline 3 model is that we retrieve similar category images using our model just
without using cross mutual sparse representation
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Figure 8: Comparison of AP values by our method based on different types of images. The AP values
are experimental results based on universal images, complex semantic-based images, low resolution-
based images and weak saliency region-based images, respectively

Figure 9: Comparison of AUC values by our method based on different types of images. The AUC
values are experimental results based on universal images, complex semantic based images, low
resolution based images and weak saliency region based images, respectively

Furthermore, to prove the universality of our method, we have added new groups of experiments.
The image database was randomly divided into five groups, each of which underwent the corre-
sponding retrieval experiment. It can be seen from the experimental results in Figs. 10 and 11 show
no significant difference between each group of experimental results, which further proves that our
method is robust. In addition, in order to make the experimental results more visible and intuitive, we
spread four typical groups of retrieval experimental results in Figs. 12–15. Although the experimental
results that can be displayed are limited, these experimental results are still highly representative. It
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should be noted that the traditional feature operator-based method is also very effective while saving
considerable computing time for some non-complex images. Therefore, for some non-complex images,
we use the traditional feature operator-based retrieval method directly considering the efficiency
factor. In order to further verify our method, we divided the images into architecture, scene, and other
categories and tested them, respectively. Moreover, we artificially add some noise to some images. We
find that the experimental results are basically unchanged, which further proves the effectiveness and
robustness of our method.

Figure 10: Comparison of AP values by our method based on different groups of images. The AP
values are experimental results based on the original database and five other random divided groups
of images, respectively

Figure 11: Comparison of AUC values by our method based on different groups of images. The AP
values are experimental results based on original database and five other random divided groups of
images, respectively
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Figure 12: Input images and similar images retrieved using our method. The image at the top is the
input image, while the images at the bottom are the similar images retrieved using our method. Special
note: our method also retrieve a lot of unreasonable images, here we mainly select some reasonable
ones for display

Figure 13: (Continued)
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Figure 13: Input image and its similar images retrieved by our method. The image at the top is the
input image and the other images are its similar to ours. Special note: our method also retrieves a lot
of unreasonable images. Here, we mainly select some reasonable ones for display

Figure 14: Input image and its similar images retrieved by our method. The image at the top is the input
image and the other images are its similar images retrieved by our method. Special note: our method
also retrieve a lot of unreasonable images, here we mainly select some reasonable ones for display
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Figure 15: Input image and its similar images retrieved by our method. The image at the top is the input
image and the other images are similar to those retrieved by our method. Special note: our method
also retrieve a lot of unreasonable images, here we mainly select some reasonable ones for display

On the whole, the above experiments are in line with our expectations. Both AP values and AUC
values prove the effectiveness of our method. More importantly, ablation experiments have shown that
several essential procedures are also indispensable. Based on relatively realistic experimental results,
we analyze the reasons in depth. On the one hand, saliency detection and multi-level decomposition
contribute to considering the image relationship from multiple dimensions. On the other hand, the
cross mutual sparse coding strategy extracts the feature information deeper. In addition, the rationality
of detail processing and strategy design also provide direct support.

Nevertheless, we also found some limitations in our proposed method. Even if we thoroughly
consider the characteristics of an image very thoroughly, we cannot achieve very realistic retrieval
results compared to some powerful machine-learning-based methods. After all, the reference image
of our proposed method is just one image, and the essential information which could be extracted
is limited. At the same time, image similarity judgment often has a certain degree of subjectivity.
Although we invite a number of volunteers to judge, there will still be some errors. Therefore, our
work still needs to be further optimized and improved.
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4 Conclusion

In this paper, we proposed one refined sparse representation based similar category image retrieval
method. Considering the saliency region and spatial information, this method fully extracts the image’s
essential information to the maximum extent possible. Sufficient experiments have proved that similar
category images can be retrieved by the limited reference image instead of a learning instance-based
machine learning model.

To be fair, our method has many shortcomings or limitations. After all, the information in an
image is limited even if we make the most of it. For instance, if the semantic information of an image
is too complex, our method is not very effective. Moreover, many factors of the reference image will
directly affect the retrieval accuracy. Despite the fact that our method is not suitable for very realistic
retrieval, we still provide an innovative strategy for retrieval generally.
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