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ABSTRACT

In the present manuscript, a Layer-Wise (LW) generalized model is proposed for the linear static analysis of doubly-
curved shells constrained with general boundary conditions under the influence of concentrated and surface loads.
The unknown field variable is modelled employing polynomials of various orders, each of them defined within
each layer of the structure. As a particular case of the LW model, an Equivalent Single Layer (ESL) formulation is
derived too. Different approaches are outlined for the assessment of external forces, as well as for non-conventional
constraints. The doubly-curved shell is composed by superimposed generally anisotropic laminae, each of them
characterized by an arbitrary orientation. The fundamental governing equations are derived starting from an
orthogonal set of principal coordinates. Furthermore, generalized blending functions account for the distortion
of the physical domain. The implementation of the fundamental governing equations is performed by means of the
Generalized Differential Quadrature (GDQ) method, whereas the numerical integrations are computed employing
the Generalized Integral Quadrature (GIQ) method. In the post-processing phase, an effective procedure is adopted
for the reconstruction of stress and strain through-the-thickness distributions based on the exact fulfillment of
three-dimensional equilibrium equations. A series of systematic investigations are performed in which the static
response of structures with various curvatures and lamination schemes, calculated by the present methodology,
have been successfully compared to those ones obtained from refined finite element three-dimensional simulations.
Even though the present LW approach accounts for a two-dimensional assessment of the structural problem, it
is capable of well predicting the three-dimensional response of structures with different characteristics, taking
into account a reduced computational cost and pretending to be a valid alternative to widespread numerical
implementations.

KEYWORDS
Concentrated load; doubly-curved shells; generalized differential quadrature; laminated anisotropic materials;
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1 Introduction

Laminated materials are very often required in many engineering applications. In particular, an
increasing need for structures with complex geometric shapes characterized by smart non-conventional
fabrics is much more evident [1–4]. In this way, an optimization of the material properties can be
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obtained from the model, since the lamination scheme can be selected according to the structural needs,
especially when the geometry cannot be varied due to architectural and functional requirements [5,6].
On the other hand, the introduction of curvature provides an optimization of the stress distribution.
Nevertheless, classical models can lead to erroneous predictions due to an unusual structural behaviour
coming from the absence of material and geometric symmetry planes [7–10]. In order to prevent the
invalidation of the design process and exposing the final product to some safety risks, new simple
but accurate methodologies should be developed. Furthermore, a proper mathematical modelling
of complex appliances, embedding all the curvature effects and constitutive couplings, can be very
cumbersome in its conception as well as computationally demanding, due to the huge number of
variables occurring in the structural problem [11,12]. Three-dimensional elasticity solutions are the
most accurate approaches for the correct prediction of a structural response [13–15]. However, in
the case of anisotropic materials and complicated structural shapes, a closed-form solution can
not be easily found. Therefore, a large numerical system should be developed with a significative
number of Degrees of Freedom (DOFs). This is likely to come across several numerical issues like the
computational stability. For this reason, simplified two-dimensional formulations have been developed
throughout literature, so that the solution is found with a lower computational effort [16–20]. In
particular, two main approaches can be traced, namely the Equivalent Single Layer (ESL) and Layer-
Wise (LW) formulations [21–24]. According to ESL, the three-dimensional doubly-curved solid is
reduced to a surface located in its middle thickness. In this way, a 2-manifold is derived with its
geometric parameters describing the shape of the actual structure [25,26]. Moreover, the field variable,
as well as the primary and secondary ones, are reduced to the surface at issue. A key aspect of this
approach is the homogenization of the stacking sequence so that a set of equivalent properties can be
computed. In contrast, the two-dimensional LW implementations account for a displacement field
expansion within each lamina, thus providing an accurate local description of all the mechanical
quantities. Furthermore, compatibility conditions are developed between two adjacent laminae so
that the consistency of the whole model is assessed [27,28]. Within the LW approach, the accuracy
of the solution may be increased if the order of the adopted interpolating polynomials gets higher, or
equivalently if a generic lamina is divided in some virtual sub-layers following a local-global strategy,
thus leading to sub-laminate formulations [29–36]. As far as the displacement field assumption is
concerned, classical approaches provide a linear through-the-thickness assumption of the unknown
in-plane field variables, whereas a rigid behaviour is assumed in the out-of-plane directions. In this
way, no stretching effects can be predicted, as well as the softcore behaviour of the lamination
scheme [37]. In addition, a smooth displacement field assumption does not fit the actual interlaminar
deformation during the deflection of the structure. For this reason, a higher order axiomatic expression
for the out-of-plane variable is crucial in both LW and ESL approaches, even though the latters
should embed in themselves with the well-known zig-zag function in order to obtain accurate results
[38–43]. A milestone for the assessment of the kinematic field variable is its unified description [44,45],
which incorporates both higher order theories and classical approaches like the First Order Shear
Deformation Theory (FSDT) and the Third Order Shear Deformation Theory (TSDT), outlined in
references [46,47]. Since it allows the introduction of a generalized set of thickness functions in both
in-plane and out-of-plane directions, polynomials, non-polynomials and trigonometric functions can
be employed to this purpose [48–50], depending on the material properties and relative thickness
of the laminae embedded in the structure. Moreover, it is possible to develop an advanced set of
axiomatic thickness functions, whose expressions is obtained from the mechanical shear properties
of the lamination scheme, leading to the so-called refined zig-zag theories [51–53].
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The fundamental governing equations have been analytically solved only for simple geometries
and lamination schemes, such as frames, plates, cylinders and spherical panel. On the other hand, only
cross-ply orthotropic laminates can be adopted, otherwise no mathematical procedures are available
at the moment for the solutions of such differential sets of equations. For this reason, in references
[54,55] the ESL structural problem for structures with single and double curvatures accounting for
a generally anisotropic lamination scheme is numerically developed by means of the Generalized
Differential Quadrature (GDQ) method. We recall that such methodology discretizes directly the
derivatives of a given function, thus allowing to solve the problem directly in the strong form, as
it has been shown in references [56–60]. Belonging to the class of spectral collocation methods, it
embeds a series of numerical techniques like the gaussian quadrature and the classical differential
quadrature [61,62], accounting for a rectangular computational grid. The accuracy of the method
comes from the proper selection of a set of discrete points from the physical domain, as well as the
computation of the quadrature coefficients. In references [63,64] its accuracy has been compared to
other numerical techniques. Moreover, it has been shown that it is a very reliable procedure for the
analysis of lattice three-dimensional cells [65–67], as well as Functionally Graded Materials (FGMs)
employing a reduced computational cost [68–71]. Moving from the above discussed GDQ procedure,
the Generalized Integral Quadrature (GIQ) method turns out to be an effective strategy for the
numerical implementation of integrals with a domain collocation strategy. In references [72,73], the
interested reader can find an extended treatise on the topic.

In classical variational approaches like the well-known Finite Element Method (FEM), an
axiomatic set of shape functions are provided, leading to a weak form of the governing equations
[74–76]. However, this methodology induces some drawbacks in the solution due to the discrepancy
between the geometry and the adopted interpolating function. As a matter of fact, this problem can
be overcome if a domain is discretized with a fine mesh, which in turn increases the computational
cost. In contrast, the Iso-Geometric Approach (IGA) adopts the actual geometry of the structure
employed in the Computer Aided Design (CAD) procedure itself for the assessment of the unknown
field variable of the governing equations. Starting from the pioneer works reported in reference [77],
the IGA methodology has been successfully applied to several structural problems related to arbitrary
shapes [78,79]. It has been shown that IGA is a very efficient methodology in the case of structures
of arbitrary geometries, especially when a significative domain distortion is required. In particular,
the best performances of such methodology are reached when Non-Uniform Rational Basis Spline
(NURBS) curves with higher order basis functions are adopted because they show a significative
computational stability. In references [80,81], the curves at issue are presented in a comprehensive
way, together with an iterative procedure for their computation. Furthermore, in references [82–83], a
meshfree Galerkin method is applied for the buckling analysis of shallow shells with single and double
curvatures accounting for geometric interpolation functions for the assessment of the unknown field
variable. In reference [84], the meshfree approach has been adopted for the finite rotation analysis of
structures with different curvatures.

Another topic related to the analysis of shell structures relies on the computation of concentrated
loads within the structural problem. In classic domain decomposition procedures like FEM, gener-
alized forces are applied at a specific node of the domain mesh [85,86]. If the load is not applied in
a computational point, a set of equivalent forces are derived by means of an interpolating procedure
employing the adopted shape functions. The same approach can be found in references [87,88] where
the GDQ algorithm has been adopted within each element in which the domain has been divided.
As a consequence, a concentrated force pretends to be a boundary condition within the differential
model. On the other hand, in the case of a problem developed within a single domain, in references
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[89–91], an interesting procedure based on GDQ and GIQ methods accounts for a differential-integral
implementation on a rectangular plate under a concentrated load, taking into account the main
features of the well-known Dirac-Delta function [92]. On the other hand, a concentrated load can be
seen as a particular case of a surface pressure acting on a very small area. Nevertheless, the distribution
governing parameters should be set according to the actual dimension of the structure object of
analysis [93,94].

In the present manuscript, a LW formulation is derived for the static analysis of generally
anisotropic shell structures with a double curvature under the action of concentrated loads. The
unknown displacement field variable is described, within each layer, employing a generalized approach
with different higher order thickness functions. Furthermore, the displacement compatibility condi-
tions between two adjacent layers are fulfilled. The geometry of the shell is described with curvilinear
principal coordinates and a mapping procedure is adopted for arbitrarily-shaped structures. A gener-
ally anisotropic elastic behaviour is considered within each lamina. The fundamental set of differential
equations is derived following an energy approach, together with the kinematic and static boundary
conditions by means of a strong formulation of the structural problem. Then, non-conventional
external constraints are enforced within the two-dimensional model. The differential problem is
tackled numerically with the GDQ method, accounting for the discretization of the derivatives of
a generic order, whereas integrals are solved with the GIQ numerical algorithm. Since the numerical
model embeds in itself a smooth variation of derivatives, both surface distributed and concentrated
loads are modelled with a comprehensive set of bivariate distributions, whose governing parameters
have been carefully calibrated. Furthermore, the Dirac-Delta function is adopted in its classical and
generalized GDQ discrete version for the assessment of concentrated loads [95–97]. The main elements
of novelty of the proposed method are the efficient numerical implementation of the concentrated load,
which is a singularity among surface tractions, directly in the continuum model. Furthermore, the
normalization of the distribution with respect to the surface area provides an effective calibration of
the shape and position parameters. In the post-processing stage, an effective reconstruction of physical
quantities throughout the entire shell thickness is assessed based on the three-dimensional static
balance equations for a laminated anisotropic solid applied to each layer of the stacking sequence. A
significative number of numerical investigations have been attached to the manuscript. The accuracy of
the numerical predictions has been checked with respect to refined three-dimensional Finite Element
models developed with a commercial package, showing a very good agreement between different
approaches. Moreover, the inconsistency of higher order ESL formulations has been outlined for very
thick structures characterized by very complex lamination schemes with a huge number of laminae
with various material syngonies. Then, the solution has been checked for both single and double
curvatures. The proposed higher order LW formulation has been added to the Differential Quadrature
for Mechanics of Anisotropic Shells, Plates, Arches and Beams (DiQuMASPAB) project [98], a free
research software which provides the static and the dynamic response of doubly-curved shell structures
with various ESL and LW theories.

2 Doubly-Curved Shell Geometry

A doubly-curved shell is a three-dimensional solid within the Euclidean space (Fig. 1). For this
reason, if e1, e2, e3 are the unit vectors of a global coordinate system, the position vector R (α1, α2, α3)

of an arbitrary point of the structure can be described in terms of the following relation [21]:

R (α1, α2, α3) = f1 (α1, α2, α3) e1 + f2 (α1, α2, α3) e2 + f3 (α1, α2, α3) e3 (1)
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where f1, f2, f3 are functions of the variables α1, α2, α3. It should be said that Eq. (1) assumes a physical
meaning if the variations α0

i ≤ α i ≤ α1
i for i = 1, 2, 3 are declared, being α0

i , α
1
i the extremes of the

variation intervals. If a laminated structure composed by l laminae is considered, the overall thickness
of the structure h can be computed as the sum of the widths hk of each layer, with k = 1, . . . , l:

h =
l∑

k=1

hk (2)

Figure 1: Geometric assessment of a doubly-curved shell according to a LW approach. Representation
of a generic thickness function of different orders defined in each k-th layer of the stacking sequence
for k = 1, . . . , l, being l the total number of laminae occurring in the lamination scheme

As a matter of fact, the association α3 = ζ is performed so that the axis at issue is oriented
alongside the thickness direction of the shell. Moreover, a reference surface r (α1, α2) is assessed,
located in the middle thickness of the structure, whose parametric directions α1, α2 are defined from
the principal geometric features of the shell. Referring to a generic k-th layer of a laminated structure,
a unit vector set O′α(k)

1 α
(k)

2 ζ (k) is introduced for k = 1, . . . , l. On the other hand, if hk assumes a constant
value throughout the entire structure, α

(k)

1 α
(k)

2 can be obtained from an affine transformation alongside
ζ direction of α1, α2 in-plane coordinates of the shell reference surface, thus setting α

(k)

i = α i for i = 1, 2.
As a consequence, a key relation for the LW geometric and mechanic computation is introduced [24],
defining the differential variation of local and global thickness coordinates ζ (k) and ζ :
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dζ (k) = dζ (3)

In this way, a reference surface r(k) (α1, α2) is defined in the middle thickness of each k-th layer
of the stacking sequence starting from the global geometric quantity r (α1, α2) referred to the global
curvilinear coordinate O′α1α2ζ according to the following expression [21], as shown in Fig. 1.

r(k) (α1, α2) = r (α1, α2) + ζk+1 + ζk

2
n (α1, α2) (4)

where ζ k, ζ k+1 denote the extreme locations of the k-th layer along the shell thickness direction, whereas
n (α1, α2) accounts for the normal unit vector of the reference surface r (α1, α2), defined as follows:

n (α1, α2) = r,1 × r,2∣∣r,1 × r,2

∣∣ (5)

where r ,i = ∂r/∂α i denotes the partial derivative of the shell reference surface with respect to the
already introduced principal direction α i for i = 1, 2 [21]. Starting from Eq. (4), the thickness curvature
parameter H (k)

i (α1, α2) referred to the α i = α1, α2 principal direction is computed:

H (k)

i = 1 + ζ (k)

R(k)

i

i = 1, 2 (6)

Furthermore, the Lamé parameters A(k)

i (α1, α2) and the principal curvature radii R(k)

i (α1, α2) of the
reference surface of the k-th layer can be computed as:

A(k)

i (α1, α2) =
√

r(k)

,i · r(k)

,i = Ai

(
1 + ζk+1 + ζk

2Ri

)
R(k)

i (α1, α2) = −r(k)

,i · r(k)

,i

r(k)

,ii · n
= Ri + ζk+1 + ζk

2

for i = 1, 2 (7)

where n is the normal unit vector defined in Eq. (5), whereas r(k)

,i = ∂r(k)/∂α i and r(k)

,ii = ∂2r(k)/∂α2
i

account for the first and the second order derivative of Eq. (4) with respect to α i = α1, α2, respectively.
In addition, Ai = Ai (α1, α2) and Ri = Ri (α1, α2) for i = 1, 2 are referred to the surface r (α1, α2)

located in the middle thickness of the entire laminated structure. From the main outcomes of the
differential geometry, such quantities are calculated according to the following expressions, setting
r ,ii = ∂2r/∂α2

i [21]:

Ai (α1, α2) = √
r,i · r,i, Ri (α1, α2) = −r,i · r,i

r,ii · n
for i = 1, 2 (8)

Having in mind all these premises, the three-dimensional position vector R(k)
(α1, α2, ζ ) of a generic

point belonging to the k-th layer can be referred to r (α1, α2) as follows (Fig. 1):

R(k)
(α1, α2, ζ ) = r (α1, α2) +

(
ζk+1 + ζk

2
+ hk

2
zk

)
n (α1, α2) (9)

being zk = 2ζ (k)/hk a dimensionless thickness coordinate belonging to the interval [−1, 1]. It is useful
to compute the first order derivative of zk with respect to the local thickness coordinate ζ (k), so that:
∂zk

∂ζ (k)
= 2

ζk+1 − ζk

= 2
hk

(10)
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2.1 Arbitrarily-Shaped Shells
When the parametrization of the reference surface does not account for a curvilinear set of

principal coordinates, the two-dimensional physical domain is distorted so that a rectangular dimen-
sionless parent element is obtained, described in terms of the natural coordinates ξ1 ∈ [−1, +1] and
ξ2 ∈ [−1, +1], as it has been schematically shown in Fig. 2. If we denote with

(
α1(i), α2(i)

)
the location

of the i-th corner of the distorted geometry, for i = 1, . . . , 4, the blending functions presented in the
following can be employed [21]:

α1 (ξ1, ξ2) = 1
2

(
(1 − ξ2) α1(1) (ξ1) + (1 + ξ1) α1(2) (ξ2) + (1 + ξ2) α1(3) (ξ1) + (1 − ξ1) α1(4) (ξ2)

)+
−1

4

(
(1 − ξ1) (1 − ξ2) α1(1) + (1 + ξ1) (1 − ξ2) α1(2)+ (1 + ξ1) (1 + ξ2) α1(3) + (1 − ξ1) (1 + ξ2) α1(4)

)
(11)

α2 (ξ1, ξ2) = 1
2

(
(1 − ξ2) α2(1) (ξ1) + (1 + ξ1) α2(2) (ξ2) + (1 + ξ2) α2(3) (ξ1) + (1 − ξ1) α2(4) (ξ2)

)+
−1

4

(
(1 − ξ1) (1 − ξ2) α2(1) + (1 + ξ1) (1 − ξ2) α2(2) + (1 + ξ1) (1 + ξ2) α2(3) + (1 − ξ1) (1 + ξ2) α2(4)

)
(12)

In the previous equation,
(
α1(j), α2(j)

)
denotes the description in terms of α1, α2 of the j = 1, . . . , 4

edge of the structure. To describe a generic curve C (u) with a ≤ u ≤ b alongside the physical domain,
a combination of n control points Pi for i = 1, . . . , n is employed, as follows (Fig. 2):

C (u) =
n∑

i=0

Ri,p (u) Pi (13)

where Ri,p (u) is a rational B-Spline of p-th order which can be computed from the following expression,
being wi a proper weighting coefficient:

Ri,p (u) = Ni,p (u) wi

n∑
i=0

Ni,p (u) wi

(14)

Setting for simplicity [a, b] = [0, 1] and introducing a predefined knot vector

U =
⎡
⎣a, . . . , a︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

⎤
⎦ a recursive relationship can be adopted to compute

the B-Spline basis function Ni,p (u) of p-th order. Starting with p = 0, it is [21]:

Ni,0 (u) =
{

1 if ui ≤ u < ui+1

0 otherwise

Ni,p (u) = u − ui

ui+p − ui

Ni,p−1 (u) + ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1 (u)
(15)

When arbitrarily-shaped structures are investigated, the fundamental relations, provided in terms
of (α1, α2) ∈ [

α0
1 , α1

1

] × [α0
2 , α1

2

]
, should be expressed in terms of ξ1, ξ2 coordinates within the

interval [−1, 1] × [−1, 1]. If we denote with J the Jacobian matrix of the coordinate transformation
α1 = α1 (ξ1, ξ2), α2 = α2 (ξ1, ξ2), it can be stated that:⎡
⎢⎣

∂

∂ξ1
∂

∂ξ2

⎤
⎥⎦ =

⎡
⎢⎣

∂α1

∂ξ1

∂α2

∂ξ1
∂α1

∂ξ2

∂α2

∂ξ2

⎤
⎥⎦
⎡
⎢⎣

∂

∂α1
∂

∂α2

⎤
⎥⎦ = J

⎡
⎢⎣

∂

∂α1
∂

∂α2

⎤
⎥⎦ (16)
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Figure 2: Isogeometric mapping of the physical domain employing NURBS curves. Definition of the
local reference system along the edges of the distorted shell for the assessment of boundary conditions.
Derivation of the rectangular computational domain employing natural coordinates

Accordingly, an inversion of Eq. (16) can be performed if det (J) = ξ1,α1
ξ2,α2

−ξ1,α2
ξ2,α1

�= 0, leading
to the definition of the inverse Jacobian matrix J−1:⎡
⎢⎣

∂

∂α1
∂

∂α2

⎤
⎥⎦ = J−1

⎡
⎢⎢⎣

∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ = 1

det (J)

⎡
⎢⎢⎣

∂α2

∂ξ2

−∂α2

∂ξ1

−∂α1

∂ξ2

∂α1

∂ξ1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ (17)

Once Eqs. (11) and (12) have been assessed, it is possible to provide an expression to define the
first order partial derivatives with respect to α1, α2 principal coordinates in terms of the natural ones
ξ1 (α1, α2) and ξ2 (α1, α2), starting from the well-known derivation chain rule:⎡
⎢⎢⎣

∂

∂α1

∂

∂α2

⎤
⎥⎥⎦ =

[
ξ1,α1

ξ2,α1

ξ1,α2
ξ2,α2

]⎡⎢⎢⎣
∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎦ (18)
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being ξ i,αj = ∂ξ i/∂αj for i, j = 1, 2. From a comparison of Eqs. (17) and (18), it is possible to provide
the complete expression of ξ i,αj coefficients, leading to [21]:

ξ1,α1
= ∂ξ1

∂α1

= 1
det (J)

∂α2

∂ξ2

, ξ2,α1
= ∂ξ2

∂α1

= − 1
det (J)

∂α2

∂ξ1

,

ξ1,α2
= ∂ξ1

∂α2

= − 1
det (J)

∂α1

∂ξ2

, ξ2,α2
= ∂ξ2

∂α2

= 1
det (J)

∂α1

∂ξ1

(19)

Based on Eq. (18), it is possible to express the second order derivatives with respect to the principal
coordinate α1, α2 in terms of ξ1, ξ2. One gets:

∂2

∂α2
1

= ξ 2
1,α1

∂2

∂ξ 2
1

+ ξ2
2
,α1

∂2

∂ξ 2
2

+ 2ξ1,α1
ξ2,α1

∂2

∂ξ1∂ξ2

+ ξ1,α1α1

∂

∂ξ1

+ ξ2,α1α1

∂

∂ξ2

∂2

∂α2
2

= ξ 2
1,α2

∂2

∂ξ 2
1

+ ξ 2
2,α2

∂2

∂ξ 2
2

+ 2ξ1,α2
ξ2,α2

∂2

∂ξ1∂ξ2

+ ξ1,α2α2

∂

∂ξ1

+ ξ2,α2α2

∂

∂ξ2

∂2

∂α1∂α2

= ξ1,α1
ξ1,α2

∂2

∂ξ 2
1

+ ξ2,α1
ξ2,α2

∂2

∂ξ 2
2

+ (ξ1,α1
ξ2,α2

+ ξ1,α2
ξ2,α1

) ∂2

∂ξ1∂ξ2

+ ξ1,α1α2

∂

∂ξ1

+ ξ2,α1α2

∂

∂ξ2

(20)

Eq. (20) assesses the dependence of the second order derivatives with respect to α1, α2 in terms
of the first and second order derivatives with respect to ξ1, ξ2 natural coordinates. Accordingly, the
equation at issue is not bi-linear in the present formulation. In the following, the interested reader can
find the complete expression of coefficients introduced in Eq. (20):

ξ1,α1α1
= 1

det (J)
2

(
∂α2

∂ξ2

∂2α2

∂ξ1∂ξ2

−
(

∂α2

∂ξ2

)2 det (J)ξ1

det (J)
− ∂α2

∂ξ1

∂2α2

∂ξ 2
2

+ ∂α2

∂ξ1

∂α2

∂ξ2

det (J)ξ2

det (J)

)

ξ2,α1α1
= 1

det (J)
2

(
−∂α2

∂ξ2

∂2α2

∂ξ 2
1

+ ∂α2

∂ξ2

∂α2

∂ξ1

det (J)ξ1

det (J)
+ ∂α2

∂ξ1

∂2α2

∂ξ1∂ξ2

−
(

∂α2

∂ξ1

)2 det (J)ξ2

det (J)

)
(21)

ξ1,α2α2
= 1

det (J)
2

(
∂α1

∂ξ2

∂2α1

∂ξ1∂ξ2

−
(

∂α1

∂ξ2

)2 det (J)ξ1

det (J)
− ∂α1

∂ξ1

∂2α1

∂ξ 2
2

+ ∂α1

∂ξ1

∂α1

∂ξ2

det (J)ξ2

det (J)

)

ξ2,α2α2
= 1

det (J)
2

(
−∂α1

∂ξ2

∂2α1

∂ξ 2
1

+ ∂α1

∂ξ2

∂α1

∂ξ1

det (J)ξ1

det (J)
+ ∂α1

∂ξ1

∂2α1

∂ξ1∂ξ2

−
(

∂α1

∂ξ1

)2 det (J)ξ2

det (J)

)
(22)

ξ1,α1α2
= 1

det (J)
2

(
−∂α2

∂ξ2

∂2α1

∂ξ1∂ξ2

+ ∂α2

∂ξ2

∂α1

∂ξ2

det (J)ξ1

det (J)
+ ∂α2

∂ξ1

∂2α1

∂ξ 2
2

− ∂α2

∂ξ1

∂α1

∂ξ2

det (J)ξ2

det (J)

)

ξ2,α1α2
= 1

det (J)
2

(
−∂α2

∂ξ1

∂2α1

∂ξ1∂ξ2

+ ∂α1

∂ξ2

∂α1

∂ξ1

det (J)ξ1

det (J)
+ ∂α2

∂ξ2

∂2α1

∂ξ 2
1

− ∂α2

∂ξ1

∂α1

∂ξ1

det (J)ξ2

det (J)

)
(23)
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The first order derivatives det (J) ξ1
, det (J) ξ2

of the determinant det (J) of the Jacobian matrix
introduced in Eq. (16) with respect to ξ1 and ξ2, respectively, read as follows:

det (J) ξ1
= ∂α1

∂ξ1

∂2α2

∂ξ1∂ξ2

− ∂α2

∂ξ1

∂2α1

∂ξ1∂ξ2

+ ∂α2

∂ξ2

∂2α1

∂ξ 2
1

− ∂α1

∂ξ2

∂2α2

∂ξ 2
1

det (J) ξ2
= −∂α1

∂ξ2

∂2α2

∂ξ1∂ξ2

+ ∂α2

∂ξ2

∂2α1

∂ξ1∂ξ2

− ∂α2

∂ξ1

∂2α1

∂ξ 2
2

+ ∂α1

∂ξ1

∂2α2

∂ξ 2
2

(24)

A useful nomenclature is now introduced, so that the edges of the physical domain can be
univocally identified. Referring to the dimensionless rectangular parent element described in terms
of the natural coordinates ξ1, ξ2, the following definitions [21] are outlined (Fig. 2):

West edge (W) → ξ2 = −1 → (α1, α2) = (α1(1) (ξ1) , α2(1) (ξ1)
)

South edge (S) → ξ1 = 1 → (α1, α2) = (α1(2) (ξ2) , α2(2) (ξ2)
)

East edge (E) → ξ2 = 1 → (α1, α2) = (α1(3) (ξ1) , α2(3) (ξ1)
)

North edge (N) → ξ1 = −1 → (α1, α2) = (α1(4) (ξ2) , α2(4) (ξ2)
) (25)

3 Unified Formulations for Kinematic Relations

In the present section a unified assessment of the kinematic field variable is presented following the
LW methodology. Referring to a generic k-th lamina of the laminate, each component U (k)

1

(
α1, α2, ζ (k)

)
for i = 1, . . . , 3 of the three-dimensional displacement field column vector U(k)

(
α1, α2, ζ (k)

)
can be

expanded up to an arbitrary N-th order, thus introducing for each τ = 0, . . . , N +1 a generic function
Fα i(k)

τ
for i = 1, . . . , 3 dependent from the local thickness coordinate ζ (k) [24]:⎡

⎢⎣U (k)

1

U (k)

2

U (k)

3

⎤
⎥⎦ =

N+1∑
τ=0

⎡
⎢⎣Fα1(k)

τ
0 0

0 Fα2(k)

τ
0

0 0 Fα3(k)

τ

⎤
⎥⎦
⎡
⎢⎣u(kτ)

1

u(kτ)

2

u(kτ)

3

⎤
⎥⎦↔ U(k)

(
α1, α2, ζ (k)

) =
N+1∑
τ=0

F(k)

τ
u(kτ) (26)

where u(kτ)

1 , u(kτ)

2 , u(kτ)

3 are the generalized displacement field components defined for each τ -th kinematic
expansion order lying on the r(k) (α1, α2) reference surface of the k-th lamina. In Fig. 1, one can find a
graphic representation of Eq. (26).

Since a laminated doubly-curved shell structure is considered with k = 1, . . . , l, where l is the
total number of superimposed laminae, the displacement field variable should fulfil the interlaminar
compatibility conditions. To this purpose, an interpolation methodology based on higher order
polynomials is followed for the definition of Fαi(k)

τ
for τ = 0, . . . , N +1. Accordingly, the dimensionless

thickness coordinate zk introduced in Eq. (9) is considered:

Fαi(k)

τ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − zk

2
for τ = 0

Lτ (zk) for τ = 1, . . . , N
1 + zk

2
for τ = N + 1

i = 1, 2, 3 (27)

where Lτ (zk) for τ = 1, . . . , N is defined employing various interpolating polynomials. As can be
seen, Eq. (27) refers to the three-dimensional displacement distribution throughout the thickness.
As a consequence, the interlaminar compatibility conditions are directly satisfied by the axiomatic
assumptions of the unknown field variable itself. The first order derivative of the generalized thickness
functions introduced in Eq. (27) with respect to ζ (k) can be computed as:
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∂Fαi(k)

τ

∂ζ (k)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1
2

∂zk

∂ζ (k)
for τ = 0

∂Lτ (zk)

∂zk

∂zk

∂ζ (k)
for τ = 1, . . . , N

1
2

∂zk

∂ζ (k)
for τ = N + 1

(28)

As can be seen, the derivatives ∂zk/∂ζ (k) occurring in Eq. (28) are calculated according to Eq. (10).

If power functions are introduced in Eqs. (27) and (28), the following expressions should be
adopted for each τ = 1, . . . , N [24]:

Lτ (zk) = zτ+1
k − zτ−1

k → ∂Lτ (zk)

∂zk

= (τ + 1) zτ

k − (τ − 1) zτ−2
k (29)

On the other hand, a formulation based on higher order Lagrange interpolating polynomials reads
as follows:

Lτ (zk) =
N+1∏

m=0,m�=τ

(zk − zkm)

(zkτ − zkm)
→ ∂Lτ (zk)

∂zk

=

N+1∑
r=0,r �=τ

N+1∏
m=0,m�=r,τ

(zk − zkm)

N+1∏
m=0,m�=τ

(zkτ − zkm)

(30)

If trigonometric functions are adopted in Eq. (27), Fαi(k)

τ
= Lτ (zk) for each τ = 1, . . . , N reads as:

Lτ (zk) = cos
(
− (−1)

τ τπ

2
zk + π

4

(
1 − (−1)

τ+1
))→ ∂Lτ (zk)

∂zk

= (−1)
τ τπ

2
sin
(
− (−1)

τ τπ

2
zk + π

4

(
1 − (−1)

τ+1
))

(31)

Furthermore, the Jacobi orthogonal polynomials J (γ ,δ)
τ

(
ζ (k)
)

can be employed to define the LW
thickness function Fαi(k)

τ
for τ = 1, . . . , N, leading to:

Fαi(k)

τ
= Lτ (zk) = J (γ ,δ)

τ+2 (zk) − J (γ ,δ)
τ−2 (zk) − (J (γ ,δ)

τ+2 (−1) −J (γ ,δ)
τ−2 (−1)

)
zk + (J (γ ,δ)

τ+2 (1) − J (γ ,δ)
τ−2 (1)

)
zk (32)

where J (γ ,δ)
τ

(
ζ (k)
)

of characteristic parameters γ , δ are calculated employing a recursive procedure:

J (γ ,δ)
1

(
ζ (k)
) = 1, J (γ ,δ)

2

(
ζ (k)
) = 1

2
(2 (γ + 1) + (γ + δ + 2) (zk − 1))

J (γ ,δ)
τ

(
ζ (k)
) = C

(
ABzk + γ 2 − δ2

)
J (γ ,δ)

τ−1

(
ζ (k)
)− 2 (τ + γ − 2) (τ + δ − 2) AJ (γ ,δ)

τ−2

(
ζ (k)
)

D
(33)

setting A = 2τ +γ +δ−2, B = A−2, C = A−1 and D = 2 (τ − 1) (τ + γ + δ − 1) B. Accordingly, the
first order derivative of Lτ (zk) of Eq. (32) with respect to ζ (k) occurring in Eq. (28) can be computed as:

∂Lτ (zk)

∂zk

= ∂J (γ ,δ)
τ+2

∂zk

− ∂J (γ ,δ)
τ−2

∂zk

− (J (γ ,δ)
τ+2 (−1) − J (γ ,δ)

τ−2 (−1)
)+ (J (γ ,δ)

τ+2 (1) − J (γ ,δ)
τ−2 (1)

)
(34)

Based on a LW higher order approach (26), the kinematic relations are derived starting from those
referred to the three-dimensional solid described in Eq. (9), which are briefly recalled for the sake of
completeness:

ε(k) = D(k)

ζ

(
3∑

i=1

D(k)αi



)
U(k) for k = 1, 2, . . . , l (35)
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where ε(k) = [
ε

(k)

1 ε
(k)

2 γ
(k)

12 γ
(k)

13 γ
(k)

23 ε
(k)

3

]T
are the three-dimensional strain vector referred to the k-th

layer. Furthermore, the kinematic through-the-thickness differential operator D(k)

ζ
is defined as:

D(k)

ζ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

H (k)

1

0 0 0 0 0 0 0 0

0
1

H (k)

2

0 0 0 0 0 0 0

0 0
1

H (k)

1

1

H (k)

2

0 0 0 0 0

0 0 0 0
1

H (k)

1

0
∂

∂ζ (k)
0 0

0 0 0 0 0
1

H (k)

2

0
∂

∂ζ (k)
0

0 0 0 0 0 0 0 0
∂

∂ζ (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

whereas D(k)α i



for i = 1, 2, 3 are defined so that they embed all the in-plane coordinates α1, α2

derivatives:

D(k)α1



=
[
D

(k)α1



0 0
]

D(k)α2



=
[
0 D

(k)α2



0
]

D(k)α3



=
[
0 0 D

(k)α3




]
(37)

In Eq. (37) the differential vectors D
(k)αi



have been introduced, whose extended version accounts

as follows:

D
(k)α1

 =

[(
D

(k)α1



)
1

(
D

(k)α1



)
2

(
D

(k)α1



)
3

(
D

(k)α1



)
4

(
D

(k)α1



)
5

(
D

(k)α1



)
6

(
D

(k)α1



)
7

(
D

(k)α1



)
8

(
D

(k)α1



)
9

]T
D

(k)α2

 =

[(
D

(k)α2



)
1

(
D

(k)α2



)
2

(
D

(k)α2



)
3

(
D

(k)α2



)
4

(
D

(k)α2



)
5

(
D

(k)α2



)
6

(
D

(k)α2



)
7

(
D

(k)α2



)
8

(
D

(k)α2



)
9

]T
D

(k)α3

 =

[(
D

(k)α3



)
1

(
D

(k)α3



)
2

(
D

(k)α3



)
3

(
D

(k)α3



)
4

(
D

(k)α3



)
5

(
D

(k)α3



)
6

(
D

(k)α3



)
7

(
D

(k)α3



)
8

(
D

(k)α3



)
9

]T
(38)

Accordingly, coefficients
(

D
(k)αi




)
j
with j = 1, . . . , 9 and α i = α1, α2, α3 read as:

(
D(k)α1




)
1

=
(

D(k)α2



)
3

=
(

D(k)α3



)
5

= 1

A(k)
1

∂

∂α1
,
(

D(k)α1



)
4

=
(

D(k)α2



)
2

=
(

D(k)α3



)
6

= 1

A(k)
2

∂

∂α2
,

(
D(k)α1




)
3

=
(

D(k)α2



)
1

= − 1

A(k)
1 A(k)

2

∂A(k)
1

∂α2
,
(

D(k)α1



)
2

= −
(

D(k)α2



)
4

= 1

A(k)
1 A(k)

2

∂A(k)
2

∂α1
,

(
D(k)α1




)
5

= −
(

D(k)α3



)
1

= − 1

R(k)
1

,
(

D(k)α2



)
6

= −
(

D(k)α3



)
2

= − 1

R(k)
2

,
(

D(k)α1



)
7

=
(

D(k)α2



)
8

=
(

D(k)α3



)
9

= 1,

(
D(k)α1




)
6

=
(

D(k)α1



)
8

=
(

D(k)α1



)
9

=
(

D(k)α2



)
5

=
(

D(k)α2



)
7

=
(

D(k)α2



)
9

=
(

D(k)α3



)
3

=
(

D(k)α3



)
4

=
(

D(k)α3



)
7

=
(

D(k)α3



)
8

= 0

(39)
The kinematic relation of the three-dimensional solid reported in Eq. (35), can be arranged if the

unified LW displacement field assessment of Eq. (26) is substituted, leading to the introduction of the
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LW generalized strain vector ε(kτ)αi (α1, α2) =
[
ε

(kτ)αi
1 ε

(kτ)αi
2 γ

(kτ)αi
1 γ

(kτ)αi
2 γ

(kτ)αi
13 γ

(kτ)αi
23 ω

(kτ)αi
13 ω

(kτ)αi
23 ε

(kτ)αi
3

]T

,

defined for each τ = 0, . . . , N + 1 and α i = α1, α2, α3 [24]:

ε(k) =
N+1∑
τ=0

D(k)

ζ

(
3∑

i=1

D(k)α i



)
F(k)

τ
u(kτ) =

N+1∑
τ=0

3∑
i=1

D(k)

ζ
Fαi(k)

τ
D(k)αi



u(kτ) for k = 1, . . . , l (40)

It is useful to introduce, for each α i = α1, α2, α3, the vector Z (kτ)αi referred to the τ -th kinematic
expansion order, setting τ = 0, . . . , N + 1:

Z (kτ)αi = D(k)

ζ
Fαi(k)

τ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fαi(k)

τ

H (k)

1

0 0 0 0 0 0 0 0

0
Fαi(k)

τ

H (k)

2

0 0 0 0 0 0 0

0 0
Fαi(k)

τ

H (k)

1

Fαi(k)

τ

H (k)

2

0 0 0 0 0

0 0 0 0
Fαi(k)

τ

H (k)

1

0
∂Fαi(k)

τ

∂ζ (k)
0 0

0 0 0 0 0
Fαi(k)

τ

H (k)

2

0
∂Fαi(k)

τ

∂ζ (k)
0

0 0 0 0 0 0 0 0
∂Fαi(k)

τ

∂ζ (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

Eventually, Eq. (40) turns into:

ε(k) =
N+1∑
τ=0

3∑
i=1

Z (kτ)αiε(kτ)αi for k = 1, 2, . . . , l (42)

being ε(kτ)α i = D(k)α i
Ω

u(kτ).

4 Anisotropic Constitutive LW Relations

We now focus on the elastic constitutive behaviour of a generic doubly-curved laminated structure.
Thus, each k-th layer of the stacking sequence, for k = 1, . . . , l, is modelled by means of a
three-dimensional relationship valid for generally anisotropic materials. In this perspective, a local
reference system denoted with O′α̂(k)

1 α̂
(k)

2 ζ̂ (k) is derived from the direct application of the Neumann’s
Principle to the periodic unit volume of each lamina. As a matter of fact, such material axes are
intended to be featured so that one axis is parallel to the shell outward normal direction, namely
ζ̂ (k) = ζ . If we denote with E(k)

ij for i, j = 1, . . . , 6 the generic stiffness constant linking the
i-th component of the three-dimensional stress vector σ̂

(k) = [
σ̂

(k)

1 σ̂
(k)

2 τ̂
(k)

12 τ̂
(k)

13 τ̂
(k)

23 σ̂
(k)

3

]T
referred to

the material reference system to the corresponding j-th element of the three-dimensional strain
vectorε̂(k) = [ε̂(k)

1 ε̂
(k)

2 γ̂
(k)

12 γ̂
(k)

13 γ̂
(k)

23 ε̂
(k)

3

]T
, the generally anisotropic behaviour of the k-th layer can be

expressed as [21]:
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σ̂
(k) = E(k)

ε̂
(k) ↔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̂
(k)

1

σ̂
(k)

2

τ̂
(k)

12

τ̂
(k)

13

τ̂
(k)

23

σ̂
(k)

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(k)

11 E(k)

12 E(k)

16 E(k)

14 E(k)

15 E(k)

13

E(k)

12 E(k)

22 E(k)

26 E(k)

24 E(k)

25 E(k)

23

E(k)

16 E(k)

26 E(k)

66 E(k)

46 E(k)

56 E(k)

36

E(k)

14 E(k)

24 E(k)

46 E(k)

44 E(k)

45 E(k)

34

E(k)

15 E(k)

25 E(k)

56 E(k)

45 E(k)

55 E(k)

35

E(k)

13 E(k)

23 E(k)

36 E(k)

34 E(k)

35 E(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε̂
(k)

1

ε̂
(k)

2

γ̂
(k)

12

γ̂
(k)

13

γ̂
(k)

23

ε̂
(k)

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for k = 1, . . . , l (43)

A key aspect of the present LW formulation is the assessment of all the fundamental governing
relations into the geometric reference system of each layer oriented alongside the reference surface
principal directions. To this purpose, an angle ϑk is identified in each k-th layer accounting for the
deviation between α̂

(k)

1 and α1 material and geometric directions, respectively. If we denote with T(k)
(ϑk)

the rotation orthogonal matrix referred to each lamina of the structure, the constitutive relationship of
Eq. (43) can be rotated with the following linear transformation so that it is referred to the geometric
coordinate axes O′α1α2ζ of the reference surface of the structure thus leading to the rotated stiffness
matrix E

(k) = T(k)E(k)
(
T(k)
)T

for each k = 1, . . . , l, whose generic component is denoted with E
(k)

ij for
i, j = 1, .., 6:

σ (k) = E
(k)

ε(k) ⇔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(k)

1

σ
(k)

2

τ
(k)

12

τ
(k)

13

τ
(k)

23

σ
(k)

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
(k)

11 E
(k)

12 E
(k)

16 E
(k)

14 E
(k)

15 E
(k)

13

E
(k)

12 E
(k)

22 E
(k)

26 E
(k)

24 E
(k)

25 E
(k)

23

E
(k)

16 E
(k)

26 E
(k)

66 E
(k)

46 E
(k)

56 E
(k)

36

E
(k)

14 E
(k)

24 E
(k)

46 E
(k)

44 E
(k)

45 E
(k)

34

E
(k)

15 E
(k)

25 E
(k)

56 E
(k)

45 E
(k)

55 E
(k)

35

E
(k)

13 E
(k)

23 E
(k)

36 E
(k)

34 E
(k)

35 E
(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(k)

1

ε
(k)

2

γ
(k)

12

γ
(k)

13

γ
(k)

23

ε
(k)

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for k = 1, . . . , l (44)

being σ (k) = [σ (k)

1 σ
(k)

2 τ
(k)

12 τ
(k)

13 τ
(k)

23 σ
(k)

3

]T
and ε(k) = [ε(k)

1 ε
(k)

2 γ
(k)

12 γ
(k)

13 γ
(k)

23 ε
(k)

3

]T
the three-dimensional

stress and strain vectors, respectively, referred to the shell geometric reference system. Referring to
the anisotropic stiffness matrix E(k) occurring in Eq. (43), it usually consists in the three-dimensional
elastic coefficients E(k)

ij = C(k)

ij for i, j = 1, . . . , 6. In plane stress conditions
(
σ̂

(k)

3 = 0
)

within the two-
dimensional model in Eq. (43), the reduced elastic coefficients E(k)

ij = Q(k)

ij are adopted. In particular,
they are derived from a correction of the three-dimensional stiffness matrix, as follows:

Q(k)

ij = C(k)

ij − C(k)

j3 C(k)

i3

C(k)

33

for i, j = 1, . . . , 6, k = 1, . . . , l (45)

It should be remarked that the constitutive relationship of Eq. (44), expressed for each k-th layer,
has a three-dimensional connotation. As a matter of fact, it should be reduced to the local reference
surface introduced in Eq. (4). From the computation of the variation δ �k of the elastic strain energy
of the doubly-curved solid for each k = 1, . . . , l, one gets [21]:

δ �k =
∫
α1

∫
α2

ζk+1∫
ζk

(
δε(k)
)T

σ (k)A1A2H1H2dα1dα2 for k = 1, . . . , l (46)

Introducing in the previous relation the unified assessment of the displacement field variable
of Eq. (26) and the LW kinematic relation of Eq. (42), for each τ -th kinematic expansion order with

τ = 0, . . . , N + 1 the generalized stress resultant vector S(kτ)αi (α1, α2) =
[

N (kτ)αi
1 N (kτ)αi

2
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N (kτ)α i
12 N (kτ)αi

21 T (kτ)αi
1 T (kτ)α i

2 P(kτ)αi
1 P(kτ)αi

2 S(kτ)αi
3

]T

is introduced, with αi = α1, α2, α3:

S(kτ)αi =
N+1∑
η=0

3∑
j=1

A(kτη)αiαjε(kη)αj for τ = 0, . . . , N + 1, αi = α1, α2, α3 (47)

being A(kτη)αiαj the generalized constitutive operator, computed for each τ , η = 0, . . . , N + 1 and αi =
α1, α2, α3 according to the following definition:

A(kτη)αiαj =
ζk+1∫
ζk

(
Z(kτ)αi

)T
E

(k)

Z(kη)αj H1H2dζ (48)

In a more expanded form, A(kτη)αiαj matrix introduced in the previous equation reads, for each k-th
layer, as:

A(kτη) αiαj =
[

A(kτη)[00]αiαj A(kτη)[01]αiαj

A(kτη)[10]αiαj A(kτη)[11]αiαj

]
(49)

setting sub-matrices A(kτη)[00]αiαj , A(kτη)[01]αiαj , A(kτη)[10]αiα j , A(kτη)[11]αiαj as follows:

A(kτη)[00]αiαj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(kτη)[00]αiαj
11(20)11 A

(kτη)[00]αiαj
12(11)12 A

(kτη)[00]αiαj
16(20)13 A

(kτη)[00]αiαj
16(11)14 A

(kτη)[00]αiαj
14(20) A

(kτη)[00]αiαj
15(11)

A
(kτη)[00]αiαj
12(11) A

(kτη)[00]αiαj
22(02) A

(kτη)[00]αiαj
26(11) A

(kτη)[00]αiαj
26(02) A

(kτη)[00]αiαj
24(11) A

(kτη)[00]αiαj
25(02)

A
(kτη)[00]αiαj
16(20) A

(kτη)[00]αiαj
26(11) A

(kτη)[00]αiαj
66(20) A

(kτη)[00]αiαj
66(11) A

(kτη)[00]αiαj
46(20) A

(kτη)[00]αiαj
56(11)

A
(kτη)[00]αiαj
16(11) A

(kτη)[00]αiαj
26(02) A

(kτη)[00]αiαj
66(11) A

(kτη)[00]αiαj
66(02) A

(kτη)[00]αiαj
46(11) A

(kτη)[00]αiαj
56(02)

A
(kτη)[00]αiαj
14(20) A

(kτη)[00]αiαj
24(11) A

(kτη)[00]αiαj
46(20) A

(kτη)[00]αiαj
46(11) A

(kτη)[00]αiαj
44(20) A

(kτη)[00]αiαj
45(11)

A
(kτη)[00]αiαj
15(11) A

(kτη)[00]αiαj
25(02) A

(kτη)[00]αiαj
56(11) A

(kτη)[00]αiαj
56(02) A

(kτη)[00]αiαj
45(11) A

(kτη)[00]αiαj
55(02)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

A(kτη)[01]αiαj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(kτη)[01]αiαj
14(10) A

(kτη)[01]αiαj
15(10) A

(kτη)[01]αiαj
13(10)

A
(kτη)[01]αiαj
24(01) A

(kτη)[01]αiαj
25(01) A

(kτη)[01]αiαj
23(01)

A
(kτη)[01]αiαj
46(10) A

(kτη)[01]αiαj
56(10) A

(kτη)[01]αiαj
36(10)

A
(kτη)[01]αiαj
46(01) A

(kτη)[01]αiαj
56(01) A

(kτη)[01]αiαj
36(01)

A
(kτη)[01]αiαj
44(10) A

(kτη)[01]αiαj
45(10) A

(kτη)[01]αiαj
34(10)

A
(kτη)[01]αiαj
45(01) A

(kτη)[01]αiαj
55(01) A

(kτη)[01]αiαj
35(01)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(51)

A(kτη)[10]αiαj =

⎡
⎢⎢⎢⎣

A
(kτη)[10]αiαj
14(10) A

(kτη)[10]αiαj
24(01) A

(kτη)[10]αiαj
46(10) A

(kτη)[10]αiαj
46(01) A

(kτη)[10]αiαj
44(10) A

(kτη)[10]αiαj
45(01)

A
(kτη)[10]αiαj
15(10) A

(kτη)[10]αiαj
25(01) A

(kτη)[10]αiαj
56(10) A

(kτη)[10]αiαj
56(01) A

(kτη)[10]αiαj
45(10) A

(kτη)[10]αiαj
55(01)

A
(kτη)[10]αiαj
13(10) A

(kτη)[10]αiαj
23(01) A

(kτη)[10]αiαj
36(10) A

(kτη)[10]αiαj
36(01) A

(kτη)[10]αiαj
34(10) A

(kτη)[10]αiαj
35(01)

⎤
⎥⎥⎥⎦ (52)
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A(kτη)[11]αiαj =

⎡
⎢⎢⎢⎣

A
(kτη)[11]αiαj
44(00) A

(kτη)[11]αiαj
45(00) A

(kτη)[11]αiαj
34(00)

A
(kτη)[11]αiαj
45(00) A

(kτη)[11]αiαj
55(00) A

(kτη)[11]αiαj
35(00)

A
(kτη)[11]αiαj
34(00) A

(kτη)[11]αiαj
35(00) A

(kτη)[11]αiαj
33(00)

⎤
⎥⎥⎥⎦ (53)

The generic component of Eqs. (50)–(53) are obtained from a through-the-thickness homogeniza-
tion of the mechanical properties of each k-th lamina according to the following expression, setting
∂0Fαi(k)

τ
/∂ζ (k)0 = Fαi(k)

τ
and ∂0F

αj (k)

η /∂ζ (k)0 = F
αj (k)

η [21]:

A
(kτη)[fg]αiαj
nm (pq) = ∫ hk/2

−hk/2
B

(k)

nm

∂ f F
αj (k)

η

∂ζ (k)f

∂gFαi(k)

τ

∂ζ (k)g

H (k)

1 H (k)

2(
H (k)

1

)p (
H (k)

2

)q dζ (k)

for τ , η = 0, . . . , N + 1

for n, m = 1, . . . , 6

for p, q = 0, 1, 2

for k = 1, . . . , l

for αi, αj = α1, α2, α3

for f , g = 0, 1

(54)

In the previous relation, coefficient B
(k)

nm is defined so that B
(k)

nm = E
(k)

nm for each n, m = 1, .., 6.
Accordingly, if the LW definition of the displacement field of Eq. (26) accounts for a constant out-of-
plane displacement field assumption, such quantity should be corrected by means of the well-known
shear correction factor κ (ζ ) = 5/6, namely:

B
(k)

nm =
⎧⎨
⎩E

(k)

nm for n, m = 1, 2, 3, 6

κ (ζ ) E
(k)

nm for n, m = 4, 5
(55)

Referring to a generic τ = 0, . . . , N + 1 and αi = α1, α2, α3, it is possible to express the higher
order LW constitutive relationship of Eq. (47) in terms of the generalized displacement field vector
u(kη) = [u(kη)

1 u(kη)

2 u(kη)

3

]T
introduced in Eq. (26) for each reference surface of the k-th layer, taking into

account the kinematic relation (40):

S(kτ)αi =
N+1∑
η=0

3∑
j=1

A(kτη)αiαj D
(k)αj

 u(kη) =

N+1∑
η=0

3∑
j=1

O(kτη)αiαj u(kη) for
τ = 0, . . . , N + 1,

αi = α1, α2, α3

(56)

In Appendix A, an extended version of the components of the previously-introduced matrix
O(kτη)αiαj can be found. It will be seen that the present version of the generalized elastic law is a key for the
definition of both static and kinematic boundary conditions within the higher order LW framework.

5 Governing Equations

In the present section the fundamental relations of the static problem for a laminated doubly-
curved structure are derived in the LW framework employing a higher order displacement field
assumption. In particular, an energy approach will be followed, accounting for the curvature effects
of the geometry. A generalized methodology is proposed for the assessment of surface loads acting
on the structure, and an effective solution is provided for the implementation of concentrated loads.



CMES, 2023, vol.134, no.2 1409

A consistent form of the fundamental governing equations is provided, together with the natural and
non-conventional boundary conditions, characterized by three-dimensional capabilities.

5.1 External Loads
The present LW formulation considers a two-dimensional structural assessment for each layer of

the laminated structure. Accordingly, a generic k-th lamina of constant thickness hk, with k = 1, . . . , l,
is intended to be loaded at its intrados

(
ζ (k) = −hk/2

)
by the static loads q(k−)

1 , q(k−)

2 , q(k−)

3 , along α1, α2, α3

principal directions, whereas the tractions q(k+)

1 , q(k+)

2 , q(k+)

3 are applied at the extrados
(
ζ (k) = +hk/2

)
.

For the sake of conciseness, the vector q(k±) = [
q(k±)

1 q(k±)

2 q(k±)

3

]T
is introduced. Thus, its components

assume the following general form so that a general load case φ(k±) (α1, α2) can be assigned to the
structure [21]:

q(k±)

i = q(k±)

i φ(k±) (α1, α2) for i = 1, 2, 3, k = 1, . . . , l (57)

Accordingly, if a uniform load is applied to the arbitrary k-th lamina, Eq. (57) is computed so
that:

φ(k±) (α1, α2) = 1 (58)

In addition, a Gaussian function has been implemented in the two-dimensional model, setting
α

(k)

1m , α(k)

2m the position parameters, �
(k)

1 , �(k)

2 > 0 the variances of the bivariate distribution and
ρ

(k)

12 ∈ [−1, 1] the correlation factor:

φ(k±) (α1, α2) = exp

⎛
⎝− 1

2
(

1 − (ρ(k)

12

)2)
⎛
⎝( α1 − α

(k)

1m(
α1

1 − α0
1

)
�

(k)

1

)2

+
(

α2 − α
(k)

2m(
α1

2 − α0
2

)
�

(k)

2

)2

−2ρ(k)

12

α1 − α
(k)

1m(
α1

1 − α0
1

)
�

(k)

1

α2 − α
(k)

2m(
α1

2 − α0
2

)
�

(k)

2

))
(59)

Furthermore, a Super-Elliptic shape of surface loads is introduced so that �
(k)

1 , �(k)

2 are the shape
factors of the distribution of power coefficient n(k), whereas α

(k)

1m , α(k)

2m assume the role of position
parameters and β(k) accounts for the orientation of the principal axes with dispersion:

φ(k±) (α1, α2) = exp

⎛
⎜⎜⎜⎜⎜⎝−

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣

α1 − α
(k)
1m

α1
1 − α0

1

cos β(k) + α2 − α
(k)
2m

α1
2 − α0

2

sin β(k)

�
(k)
1

∣∣∣∣∣∣∣∣∣∣

n(k)

+

∣∣∣∣∣∣∣∣∣∣
−α1 − α

(k)
1m

α1
1 − α0

1

sin β(k) + α2 − α
(k)
2m

α1
2 − α0

2

cos β(k)

�
(k)
2

∣∣∣∣∣∣∣∣∣∣

n(k)⎞⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

(60)

As a matter of fact, for n(k) = 2, Eq. (60) provides the well-known elliptic distribution. A general
surface loading can be modelled also by means of a bivariate Fourier series in which n(k)

1 = n(k)

2 terms
are assigned to the α1 and α2 direction, so that:

φ(k±) (α1, α2) =
(∑n(k)

1
l=1 2 sin

(
lπ

α
(k)
1m − α0

1

α1
1 − α0

1

)
sin

(
lπ

α1 − α0
1

α1
1 − α0

1

))(∑n(k)
2

r=1 2 sin

(
rπ

α
(k)
2m − α0

2

α1
2 − α0

2

)
sin

(
rπ

α2 − α0
2

α1
2 − α0

2

))

(61)
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If the Jacobi polynomials J(γ (k) ,δ(k))
l of governing parameters γ (k), δ(k) are employed for the assess-

ment of general loads within each k-th lamina, the bivariate load distribution of Eq. (57) assumes the
following form, setting k = 1, . . . , l:

φ(k±) (α1, α2) = φ(k±)

1 (α1) φ(k±)

2 (α2) (62)

with φ
(k±)

i (α i), for i = 1, 2, reading as:

φ(k±)

i (αi) =
⎛
⎝n(k)

i +1∑
l=1

p(k)

0i

ε
(k)

li

J

(
γ
(k)
i , δ(k)

i

)
l

(
2
α

(k)

im − α0
i

α1
i − α0

i

− 1
)

J

(
γ
(k)
i , δ(k)

i

)
l

(
2

αi − α0
i

α1
i − α0

i

− 1
)⎞⎠ for i = 1, 2 (63)

The complete expression of p(k)

01 , p(k)

02 , ε(k)

l1 , ε(k)

l2 can be computed as:

p(k)

0i =
(

1 −
(

2
α

(k)

im − α0
i

α1
i − α0

i

− 1
))γ

(k)
i (

1 +
(

2
α

(k)

im − α0
i

α1
i − α0

i

− 1
))δ

(k)
i

for i = 1, 2 (64)

ε(k)

li = 2γ
(k)
i +δ

(k)
i +1�

(
(l − 1) + γ

(k)

i + 1
)
�
(
(l − 1) + δ

(k)

i + 1
)(

2 (l − 1) + γ
(k)

i + δ
(k)

i + 1
)
� ((l − 1) + 1) �

(
(l − 1) + γ

(k)

i + δ
(k)

i + 1
) for i = 1, 2 (65)

Following the approach outlined in Eq. (57), a concentrated load can be embedded within the
two-dimensional LW formulation by properly setting a load distribution. Let us consider for a
generic k-th layer a concentrated load vector Q(k+) = [

Q(k+)

1 Q(k+)

2 Q(k+)

3

]T
of magnitude Q(k+) applied

at ζ (k) = +hk/2 and a vector Q(k−) = [Q(k−)

1 Q(k−)

2 Q(k−)

3

]T
referred to the layer bottom surface located

at ζ (k) = −hk/2 of magnitude Q(k−). For the sake of conciseness, we will adopt the compact notation
Q(k±) = [Q(k±)

1 Q(k±)

2 Q(k±)

3

]T
. Accordingly, the deviation of the vector at issue from α1, α2, ζ shell principal

directions is identified by means of the angles ϕ
(k±)

1 , ϕ(k±)

2 , ϕ(k±)

3 , respectively. As a matter of fact, each
component Q(k±)

i of Q(k±), is derived as follows [21]:

Q(k±)

i = Q(k±) cos ϕ(k±)

i for i = 1, 2, 3 (66)

Thus, an equivalent surface traction q̃(k±)

i is provided for each i = 1, 2, 3, defining the effects of the
concentrated load components of Eq. (66):

q̃(k±)

i = Q(k±)

i φ̃(k±) (α1, α2) for i = 1, 2, 3, k = 1, . . . , l (67)

The surface tractions of Eq. (67) are conveniently arranged in the vector q̃(k±) = [q̃(k±)

1 q̃(k±)

2 q̃(k±)

3

]T
.

Generally speaking, the bivariate function φ̃(k±) (α1, α2) occurring in the previous equation consists of
the well-known Dirac-Delta function δ, namely:

φ̃(k±) (α1, α2) = δ
(
α1 − α(k)

1m , α2 − α(k)

2m

) = δ
(
α1 − α(k)

1m

)
δ
(
α2 − α(k)

2m

)
(68)

The function at issue has a singularity for
(
α

(k)

1m , α(k)

2m

)
, accounting for the following properties:

δ
(
α1 − α(k)

1m , α2 − α(k)

2m

) = 0 for (α1, α2) �= (α(k)

1m , α(k)

2m

)
+∞∫

−∞

+∞∫
−∞

δ
(
α1 − α(k)

1m , α2 − α(k)

2m

)
H (k±)

1 H (k±)

2 A(k)

1 A(k)

2 dα1dα2

=
α1

1∫
α0

1

α1
2∫

α0
2

δ
(
α1 − α(k)

1m , α2 − α(k)

2m

)
H (k±)

1 H (k±)

2 A(k)

1 A(k)

2 dα1dα2 = 1 (69)
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On the other hand, the numerical modelling of the δ function in the continuum smooth model
can be quite difficult because no closed-form analytical expressions can be provided in Eq. (69). As
a consequence, the physical meaning of concentrated load could be not properly interpreted. For this
reason, the concentrated load is modelled as a particular case of surface load according to Eq. (57), as
here applied to a very small area. Furthermore, the distribution is normalized with respect to the area
of the extrados or intrados of the shell so that it perfectly fulfils the main properties of the Dirac-Delta
function in Eq. (69).

When an arbitrary bivariate distribution φ(k±) (α1, α2) is selected for the description of a concen-
trated load among those reported in Eqs. (58)–(62), the following relation should be considered:

q̃(k±)

i = Q(k±)

i φ̃(k±) (α1, α2) = Q(k±)

i

φ(k±) (α1, α2)

I (k±)

φ

for i = 1, 2, 3, k = 1, . . . , l (70)

where I (k±)

φ denotes the surface integral of φ(k±) (α1, α2) performed on the top (+) or bottom (−) surface
of the k-th layer calculated by means of the rectangular domain

[
α0

1 , α1
1

]× [α0
2 , α1

2

]
:

I (k±)

φ
=

α1
1∫

α0
1

α1
2∫

α0
2

φ(k±) (α1, α2) A(k)

1 A(k)

2 H (k±)

1 H (k±)

2 dα1dα2 (71)

In this way, the surface integral of φ̃(k±) (α1, α2) distribution employed in Eq. (67) fits the main
features of the Dirac-Delta function already outlined in Eq. (69), thus giving:

α1
1∫

α0
1

α1
2∫

α0
2

φ̃(k±) (α1, α2) A(k)

1 A(k)

2 H (k±)

1 H (k±)

2 dα1dα2 = 1 (72)

In other words, Eq. (72) requires that the resultant of the corresponding pressure associated to the
concentrated load should be equal to the three-dimensional applied vector Q(k±) in all its components.

A surface pressure
�

q
(k±) =

[
�

q
(k±)

1

�

q
(k±)

2

�

q
(k±)

3

]T

is introduced for each αi = α1, α2, α3 principal direction,

consisting in a contribution referred to the generally-shaped load q(k±) = [q(k±)

1 q(k±)

2 q(k±)

3

]T
assessed in

Eq. (57) and the vector q̃(k±) = [q̃(k±)

1 q̃(k±)

2 q̃(k±)

3

]T
embedding the effects of concentrated loads:

�

q
(k±) = q(k±) + q̃(k±) (73)

Since a higher order displacement field assumption has been considered according to Eq. (26) in
each layer of the structure, the Static Equivalence Principle is applied so that the computation of the

virtual work associated to the vectors
�

q
(k+) =

[
�

q
(k+)

1

�

q
(k+)

2

�

q
(k+)

3

]T

and
�

q
(k+) =

[
�

q
(k−)

1

�

q
(k−)

2

�

q
(k−)

3

]T

gets into

the derivation of a generalized surface load vector q(kτ) = [q(kτ)

1 q(kτ)

2 q(kτ)

3

]T
defined within the reference

surface of all the layers of the stacking sequence for k = 1, . . . , l. One gets:

q(kτ)

i = �

q
(k−)

i Fαi(k−)

τ
H (k−)

1 H (k−)

2 + �

q
(k+)

i Fαi(k+)

τ
H (k+)

1 H (k+)

2 for i = 1, 2, 3 (74)

In the previous equation, Fαi(k±)

τ
refers to the computation of the thickness function Fαi(k)

τ
at the

top and bottom, respectively, of the k-th layer. In the same way, the main curvature parameters H (k±)

1

and H (k±)

2 are introduced within the generic lamina. As a matter of fact, in all the simulations reported
in the present manuscript, a perfect bonding between two adjacent laminae is assumed, therefore the
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structure can be loaded, according to Eq. (74), only at its top and bottom surfaces, located at ζ = +h/2
and ζ = −h/2, respectively.

5.2 Fundamental Relations
We now account for the energy procedure employing the well-known Minimum Potential Energy

Principle [21] for the determination of the static response of the structure under the action of static
loads. According to the LW approach, a stationary configuration of the potential energy � of the shell
is computed, taking into account the variation of the total elastic strain energy δ Φ and virtual external
work δ Le:

δ� = δ� − δLe = 0 (75)

Integrating by parts, the following equilibrium relations are derived in terms of S(kτ)α i and q(kτ),
reading as [21]:

3∑
i=1

D∗(k)αi



S(kτ)αi + q(kτ) = 0 for τ = 0, . . . , N + 1, k = 1, . . . , l (76)

The differential operators D∗(k)α i



= D∗(k)α1



, D∗(k)α2



, D∗(k)α3



are defined for each k-th layer as:

D∗(k)α1



=

⎡
⎢⎢⎢⎣

D
∗(k)α1




0

0

⎤
⎥⎥⎥⎦ , D∗(k)α2



=

⎡
⎢⎢⎢⎣

0

D
∗(k)α2




0

⎤
⎥⎥⎥⎦ , D∗(k)α3



=

⎡
⎢⎢⎢⎣

0

0

D
∗(k)α3




⎤
⎥⎥⎥⎦ (77)

setting the following definitions:

D
∗(k)α1



=
[(

D
∗(k)α1



)
1

(
D

∗(k)α1



)
2

(
D

∗(k)α1



)
3

(
D

∗(k)α1



)
4

(
D

∗(k)α1



)
5

(
D

∗(k)α1



)
6

(
D

∗(k)α1



)
7

(
D

∗(k)α1



)
8

(
D

∗(k)α1



)
9

]

D
∗(k)α2



=
[(

D
∗(k)α2



)
1

(
D

∗(k)α2



)
2

(
D

∗(k)α2



)
3

(
D

∗(k)α2



)
4

(
D

∗(k)α2



)
5

(
D

∗(k)α2



)
6

(
D

∗(k)α2



)
7

(
D

∗(k)α2



)
8

(
D

∗(k)α2



)
9

]

D
∗(k)α3



=
[(

D
∗(k)α3



)
1

(
D

∗(k)α3



)
2

(
D

∗(k)α3



)
3

(
D

∗(k)α3



)
4

(
D

∗(k)α3



)
5

(
D

∗(k)α3



)
6

(
D

∗(k)α3



)
7

(
D

∗(k)α3



)
8

(
D

∗(k)α3



)
9

]
(78)

An extended version of the components of the vectors introduced in Eq. (78) has been now
reported:

(
D

∗(k)α1



)
1

=
(

D
∗(k)α2



)
3

=
(

D
∗(k)α3



)
5

= 1

A(k)
1

∂

∂α1
+ 1

A(k)
1 A(k)

2

∂A(k)
2

∂α1
,
(

D
∗(k)α1



)
4

=
(

D
∗(k)α2



)
2

=
(

D
∗(k)α3



)
6

= 1

A(k)
2

∂

∂α2
+ 1

A(k)
1 A(k)

2

∂A(k)
1

∂α2
,

(
D

∗(k)α1



)
3

= −
(

D
∗(k)α2



)
1

= 1

A(k)
1 A(k)

2

∂A(k)
1

∂α2
,
(

D
∗(k)α1



)
2

= −
(

D
∗(k)α2



)
4

= − 1

A(k)
1 A(k)

2

∂A(k)
2

∂α1
,

(
D

∗(k)α1



)
5

= −
(

D
∗(k)α3



)
1

= 1

R(k)
1

,
(

D
∗(k)α2



)
6

= −
(

D
∗(k)α3



)
2

= 1

R(k)
2

,
(

D
∗(k)α1



)
7

=
(

D
∗(k)α2



)
8

=
(

D
∗(k)α3



)
9

= −1,

(
D

∗(k)α1



)
6

=
(

D
∗(k)α1



)
8

=
(

D
∗(k)α1



)
9

=
(

D
∗(k)α2



)
5

=
(

D
∗(k)α2



)
7

=
(

D
∗(k)α2



)
9

=
(

D
∗(k)α3



)
3

=
(

D
∗(k)α3



)
4

=
(

D
∗(k)α3



)
7

=
(

D
∗(k)α3



)
8

= 0

(79)
The fundamental relations for the static assessment of an anisotropic doubly-curved shell in terms

of generalized displacement components u(kτ)

1 , u(kτ)

2 , u(kτ)

3 are easily derived from Eq. (76) combined with
Eq. (42) and (47), leading to an expression referred to a generic τ -th kinematic expansion order [21]:
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N+1∑
η=0

L(kτη)u(kη) + q(kτ) = 0 for τ = 0, . . . , N + 1, k = 1, . . . , l (80)

where the fundamental operator L(kτη) is defined for each τ , η-th in a generic k-th layer with k = 1, . . . , l
as follows:

L(kτη) =
3∑

i=1

3∑
j=1

D∗(k)αi



A(kτη)αiαj D
(k)αj

 =

⎡
⎢⎢⎢⎣

L(kτη)α1α1
11 L(kτη)α1α2

12 L(kτη)α1α3
13

L(kτη)α2α1
21 L(kτη)α2α2

22 L(kτη)α2α3
23

L(kτη)α3α1
31 L(kτη)α3α2

32 L(kτη)α3α3
33

⎤
⎥⎥⎥⎦ (81)

The complete expression of L
(kτη)αiαj
ij with τ , η = 0, . . . , N + 1 and i, j = 1, 2, 3 can be found in

Appendix B.

Starting from the physical interpretation of the kinematic variables introduced in Eq. (27), it
should be recalled that the generalized displacement field vectors corresponding to τ = 0 and
τ = N +1 are defined in such a way that the compatibility conditions that should be enforced between
two adjacent layers are implicitly enforced, namely:

u(k(N+1)) = u((k+1)0) for τ = 0, . . . , N + 1, k = 1, . . . , l − 1 (82)

being u(k(N+1)) and u((k+1)0) the generalized displacement field vectors associated to the extrados and
intrados of the k-th and the (k + 1)-th layer, respectively. Furthermore, Eq. (80) is assembled so that
all the expansion orders of the kinematic assumption in Eq. (26) are considered, leading to the final
fundamental relation:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(k00) · · · L(k0(N+1)) 0 0 0
...

. . .
... 0 0 0

L(k(N+1)0) · · · L(k(N+1)(N+1)) 0 0 0

0 0 I −I 0 0

0 0 0 L((k+1)00) · · · L((k+1)0(N+1))

0 0 0
...

. . .
...

0 0 0 L((k+1)(N+1)0) · · · L((k+1)(N+1)(N+1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k0)

...

u(k(N+1))

u((k+1)0)

...

u((k+1)(N+1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(k0)

...

q(k(N+1))

q((k+1)0)

...

q((k+1)(N+1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(83)

Note that the interlaminar compatibility conditions of Eq. (82) are modelled in Eq. (83) by means
of the identity matrix I located in the proper position of the fundamental operator. In this way, an
independent equation is added for each k-th layer so that the generalized displacement field associated
to τ = 0 is the same to the (k + 1)-th lamina, referred to a kinematic expansion order τ = N + 1.

From the present energy formulation it is also possible to derive the conventional external
constraints associated to the boundaries of the physical domain. If a generalized displacement field
component is assigned within each k-th layer of the laminate, the following relations should be
enforced at the shell edges [21]:
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u(kτ)
1 = u(kτ)

1 , u(kτ)
2 = u(kτ)

2 , u(kτ)
3 = u(kτ)

3 at α1 = α0
1 or α1 = α1

1
u(kτ)

1 = u(kτ)
1 , u(kτ)

2 = u(kτ)
2 , u(kτ)

3 = u(kτ)
3 at α2 = α0

2 or α2 = α1
2

for τ = 0, . . . , N+1, k = 1, . . . , l

(84)

where u(kτ)

1 , u(kτ)

2 , u(kτ)

3 are the prescribed values of the generalized displacement components. On the
other hand, a prescribed set of generalized stress resultants leads to the definition of the following
boundary conditions within each k-th layer, for k = 1, . . . , l [21]:

N(kτ)
1 = N(kτ)

1 , N(kτ)
12 = N(kτ)

12 , T(kτ)
1 = T(kτ)

1 at α1 = α0
1 or α1 = α1

1
N(kτ)

21 = N(kτ)
21 , N(kτ)

2 = N(kτ)
2 , T(kτ)

2 = T(kτ)
2 at α2 = α0

2 or α2 = α1
2

for τ = 0, . . . , N+1, k = 1, . . . , l (85)

with N
(kτ)

1 , N
(kτ)

12 , T
(kτ)

1 enforced at α1 = αi
1 with i = 0, 1, whereas N

(kτ)

21 , N
(kτ)

2 , T
(kτ)

2 are referred to α2 = αi
2

for i = 0, 1. As a particular case of what exerted in Eq. (84), a fully clamped (C) configuration is
outlined when all the generalized displacement field components are neglected for each k = 1, . . . , l
and τ = 0, . . . , N + 1:

u(kτ)

1 = u(kτ)

2 = u(kτ)

3 = 0 at α1 = α0
1 or α1 = α1

1

u(kτ)

1 = u(kτ)

2 = u(kτ)

3 = 0 at α2 = α0
2 or α2 = α1

2

for τ = 0, . . . , N + 1, k = 1, . . . , l (86)

In a similar way, the free (F) edge boundary condition moves from Eq. (85) as follows:

N (kτ)

1 = 0, N (kτ)

12 = 0, T (kτ)

1 = 0 at α1 = α0
1 or α1 = α1

1

N (kτ)

21 = 0, N (kτ)

2 = 0, T (kτ)

2 = 0 at α2 = α0
2 or α2 = α1

2

for τ = 0, . . . , N+1, k = 1, . . . , l (87)

Referring to Eq. (85), the generalized stress resultants employed for the assessment of boundary
conditions are enforced if the components of a boundary stress vector σ

(k) = [σ (k)

1 σ
(k)

2 τ
(k)

12 τ
(k)

13 τ
(k)

23 σ
(k)

3

]T
are applied at the edges of the structure. Accordingly, σ

(k) is intended to be obtained from

the sum of a prescribed stress vector σ̃
(k) = [

σ̃
(k)

1 σ̃
(k)

2 τ̃
(k)

12 τ̃
(k)

13 τ̃
(k)

23 σ̃
(k)

3

]T
and a vector

�

σ
(k) =[

�

σ
(k)

1

�

σ
(k)

2

�

τ
(k)

12

�

τ
(k)

13

�

τ
(k)

23

�

σ
(k)

3

]T

dependent from the three-dimensional displacement field vector U(k) =[
U (k)

1 U (k)

2 U (k)

3

]T
:

σ
(k) = σ̃

(k) + �

σ
(k) (

U (k)

1 , U (k)

2 , U (k)

3

)
for k = 1, . . . , l (88)

Referring to the shell sides located at α1 = αs
1 for s = 0, 1 within the physical domain, the following

definitions can be outlined in each k-th layer of the stacking sequence [21]:

N
(kτ)α1

1

(
αs

1, α2

) = β
(
αs

1, α2

) ζk+1∫
ζk

σ
(k)

1 λFα1(k)

τ
H (k)

2 dζ

N
(kτ)α2

12

(
αs

1, α2

) = β
(
αs

1, α2

) ζk+1∫
ζk

τ
(k)

12 λFα2(k)

τ
H (k)

2 dζ for k = 1, . . . , l, s = 0, 1

T
(kτ)α3

1

(
αs

1, α2

) = β
(
αs

1, α2

) ζk+1∫
ζk

τ
(k)

13 λFα3(k)

τ
H (k)

2 dζ

(89)

where λ = λ (ζ ) accounts for a generalized through-the-thickness normalized distribution of stress
components, whereas β

(
αs

1, α2

)
denotes the in-plane distribution of prescribed stresses. In the same
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way, the static boundary conditions are applied at α2 = αs
2 for s = 0, 1 and α1 ∈ [α0

1 , α1
1

]
at each k-th

lamina, with k = 1, . . . , l, according to the following expressions:

N
(kτ)α1

21

(
α1, αs

2

) = β
(
α1, αs

2

) ζk+1∫
ζk

τ
(k)

12 λFα1(k)

τ
H (k)

1 dζ

N
(kτ)α2

2

(
α1, αs

2

) = β
(
α1, αs

2

) ζk+1∫
ζk

σ
(k)

2 λFα2(k)

τ
H (k)

1 dζ for k = 1, . . . , l, s = 0, 1

T
(kτ)α3

2

(
α1, αs

2

) = β
(
α1, αs

2

) ζk+1∫
ζk

τ
(k)

23 λFα3(k)

τ
H (k)

1 dζ

(90)

being β
(
α1, αs

2

)
the axiomatic assumed in-plane stress distribution. In the present formulation, a

general distribution λ of applied stresses has been considered for each shell edge acting along the
thickness h of the structure according to Eq. (2). For instance, a constant dispersion has been modelled
so that λ = 1. Moreover, a linear dispersion can be assessed as:

λ (ζ ) = 2
h
ζ (91)

Furthermore, a parabolic stress distribution accounts for a polynomial expression of λ:

λ (ζ ) = 1 −
(

2
h
ζ

)2

(92)

Starting from Eqs. (89) and (90), a generalized set of non-conventional boundary conditions and
prescribed stresses is developed if general in-plane univariate distributions β

(
αs

1, α2

) = βs (α2) and
β
(
α1, αs

2

) = βs (α1) with s = 0, 1, are associated to the components of the applied stresses vector σ
(k)

for k = 1, . . . , l. To this purpose, a dimensionless coordinate ξ r with r = 1, 2 is introduced within the
closed interval [0, 1] for a smart assessment of general boundary conditions, namely:

ξ r = αr − α0
r

α1
r − α0

r

for r = 1, 2 (93)

In the case of constant in-plane distribution of stresses, the relation βs (αr) = 1 for r = 1, 2 is
assumed. Furthermore, two different analytical univariate expressions for
βs (αr) = βs

((
α1

r − α0
r

)
ξ r

) = βs

(
ξ r

)
have been provided. A Double–Weibull (W) distribution accounts

as follows:

βs

(
ξ r

) = 1 − e

−

⎛
⎜⎜⎜⎝
ξ r

ξm

⎞
⎟⎟⎟⎠

p

+ e

−

⎛
⎜⎜⎜⎝
ξ̃r

ξ̃m

⎞
⎟⎟⎟⎠

p

(94)

where ξ̃r = 1−ξ r, whereas ξm, ξ̃m ∈ [0, 1] and p refer to the position and shape parameters, respectively.
In addition, a Super-Elliptic (S) dispersion has been modelled according to the following expression:

βs

(
ξ r

) = e

−

∣∣∣∣∣∣∣∣∣
ξ r − ξm

ξ̃m

∣∣∣∣∣∣∣∣∣

p

(95)

By the way, based on Eqs. (89) and (90) a set of non-conventional constraints can be enforced to

the model if the stress components of
�

σ
(k)

are provided in each point of the three-dimensional shell
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edge by a series of linear elastic springs. Referring to the regions located at α1 = αs
1 for s = 0, 1, it can

be said that [21]:
�

σ
(k)

1

(
αs

1, α2, ζ (k)
) = −k

(k)αs
1

1f U (k)

1

(
αs

1, α2, ζ (k)
)

�

τ
(k)

12

(
αs

1, α2, ζ (k)
) = −k

(k)αs
1

2f U (k)

2

(
αs

1, α2, ζ (k)
)

�

τ
(k)

13

(
αs

1, α2, ζ (k)
) = −k

(k)αs
1

3f U (k)

3

(
αs

1, α2, ζ (k)
) for s = 0, 1 (96)

where k
(k)αs

1
1f , k

(k)αs
1

2f and k
(k)αs

1
3f are the stiffness of the springs in the α1, α2, α3 directions, respectively.

Accordingly, the corresponding relations for α2 = αs
2 for s = 0, 1 read as:

�

τ
(k)

12

(
α1, αs

2, ζ
(k)
) = −k

(k)αs
2

1f U (k)

1

(
α1, αs

2, ζ
(k)
)

�

σ
(k)

2

(
α1, αs

2, ζ
(k)
) = −k

(k)αs
2

2f U (k)

2

(
α1, αs

2, ζ
(k)
)

�

τ
(k)

23

(
α1, αs

2, ζ
(k)
) = −k

(k)αs
2

3f U (k)

3

(
α1, αs

2, ζ
(k)
) for s = 0, 1 (97)

being U (k)

1 , U (k)

2 , U (k)

3 the three-dimensional displacement field associated to the k-th layer with respect
to the geometric principal reference system. Eqs. (96) and (97) are, thus, embedded in the LW
framework if the unified assessment of the displacement field of Eq. (26) with higher order theories is
taken into account. Eq. (96) turns into:

�

σ
(k)

1

(
αs

1, α2, ζ (k)
) = −k

(k)αs
1

1f

N+1∑
η=0

Fα1(k)

η

(
ζ (k)
)

u(kη)

1

(
αs

1, α2

)
�

τ
(k)

12

(
αs

1, α2, ζ (k)
) = −k

(k)αs
1

2f

N+1∑
η=0

Fα2(k)

η

(
ζ (k)
)

u(kη)

2

(
αs

1, α2

)
�

τ
(k)

13

(
αs

1, α2, ζ (k)
) = −k

(k)αs
1

3f

N+1∑
η=0

Fα3(k)

η

(
ζ (k)
)

u(kη)

3

(
αs

1, α2

)
for s = 0, 1 (98)

whereas Eq. (97) assumes the following form:

�

τ
(k)

12

(
α1, αs

2, ζ
(k)
) = −k

(k)αs
2

1f

N+1∑
η=0

Fα1(k)

η

(
ζ (k)
)

u(kη)

1

(
α1, αs

2

)
�

σ
(k)

2

(
α1, αs

2, ζ
(k)
) = −k

(k)αs
2

2f

N+1∑
η=0

Fα2(k)

η

(
ζ (k)
)

u(kη)

2

(
α1, αs

2

)
�

τ
(k)

23

(
α1, αs

2, ζ
(k)
) = −k

(k)αs
2

3f

N+1∑
η=0

Fα3(k)

η

(
ζ (k)
)

u(kη)

3

(
α1, αs

2

)
for s = 0, 1 (99)

As a consequence, for each τ -th kinematic expansion order with
τ = 0, . . . , N + 1, two different sets of generalized stress resultants are derived which are associated

to σ̃
(k) and

�

σ
(k)

stress components, according to the following definitions:

N
(kτ)α1

1

(
αs

1, α2

) = Ñ (kτ)α1
1 + �

N
(kτ)α1

1

(
U(k)
)

N
(kτ)α2

12

(
αs

1, α2

) = Ñ (kτ)α2
12 + �

N
(kτ)α2

12

(
U(k)
)

for τ = 0, . . . , N + 1, s = 0, 1

T
(kτ)α3

1

(
αs

1, α2

) = T̃ (kτ)α3
1 + �

T
(kτ)α3

1

(
U(k)
) (100)
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The generalized boundary stress resultants acting at α2 = αs
2 for s = 0, 1 read as follows:

N
(kτ)α1

21

(
α1, αs

2

) = Ñ (kτ)α1
21 + �

N
(kτ)α1

21

(
U(k)
)

N
(kτ)α2

2

(
α1, αs

2

) = Ñ (kτ)α2
2 + �

N
(kτ)α2

2

(
U(k)
)

for τ = 0, . . . , N + 1, s = 0, 1

T
(kτ)α3

2

(
α1, αs

2

) = T̃ (kτ)α3
2 + �

T
(kτ)α3

2

(
U(k)
) (101)

Referring to Eq. (100), the contribution coming from the applied stresses and linear springs can
be arranged in the following compact matrix form:⎡
⎢⎢⎢⎣

N
(kτ)α1

1

N
(kτ)α2

12

T
(kτ)α3

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ñ (kτ)α1
1

Ñ (kτ)α2
12

T̃ (kτ)α3
1

⎤
⎥⎥⎥⎦+

N+1∑
η=0

⎡
⎢⎢⎢⎣

Lfb(kτη)α1
1(2)αs

1
0 0

0 Lfb(kτη)α2
2(2)αs

1
0

0 0 Lfb(kτη)α2
3(2)αs

1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

u(kη)

1

u(kη)

2

u(kη)

3

⎤
⎥⎥⎥⎦ for s = 0, 1 (102)

In the same way, the following relation for α2 = αs
2 can be assessed starting from Eq. (101):⎡

⎢⎢⎢⎣
N

(kτ)α1

21

N
(kτ)α2

2

T
(kτ)α3

2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Ñ (kτ)α1
21

Ñ (kτ)α2
2

T̃ (kτ)α3
2

⎤
⎥⎥⎥⎦+

N+1∑
η=0

⎡
⎢⎢⎢⎣

Lfb(kτη)α1
1(1)αs

2
0 0

0 Lfb(kτη)α2
2(1)αs

2
0

0 0 Lfb(kτη)α3
3(1)αs

2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

u(kη)

1

u(kη)

2

u(kη)

3

⎤
⎥⎥⎥⎦ for s = 0, 1 (103)

Fundamental coefficients Lfb(kτη)αi
i(p)αs

n
occurring in Eqs. (102) and (103) are computed for each k-th

layer and τ , η = 0, . . . , N + 1, according to the following effective expression:

Lfb(kτη)α i
i(p)αs

n
= −

ζk+1∫
ζk

k(k)αs
n

if Fαi(k)

η
Fαi(k)

τ
H (k)

p dζ for m = 0, 1, i = 1, 2, 3, n, p = 1, 2 (104)

In the case of arbitrarily-shaped domains, the application of the blending functions of Eqs. (11)
and (12) requires a rearrangement of natural boundary conditions assessed in Eqs. (86) and (87). To
this purpose, a right-handed reference system is introduced from the geometric properties of a generic
curve lying on the r (α1, α2) reference surface. The corresponding unit vectors, denoted with n n, n s and
n ζ , read as [21]:

nn = [nn1 nn2 nn3

]T
ns = [ns1 ns2 ns3

]T
nζ = [nζ1 nζ2 nζ3

]T
(105)

where nri for i = 1, 2, 3 and with r = n, s, ζ are the components of the vectors at issue with respect to
the shell geometric reference system O′α1α2ζ . In particular, since n r with r = n, s, ζ stands for the local
principal directions of an arbitrary curve belonging to the reference surface r (α1, α2), it should be said
that nn3 = ns3 = nζ1 = nζ2 = 0 and nζ3 = 1. Referring to a particular τ -th kinematic expansion order,
for τ = 0, . . . , N + 1, the generalized displacement field vector u(τ ) can be expressed with respect to
such coordinate system according to the following transformation relation:

u(kτ)

n = nn1u(kτ)

1 + nn2u(kτ)

2

u(kτ)

s = ns1u(kτ)

1 + ns2u(kτ)

2

u(kτ)

ζ
= u(kτ)

3 (106)
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being u(kτ)

n , u(kτ)

s , u(kτ)

ζ the components of u(τ ) referred to n n, n s and n ζ directions, respectively. In the same
way, static boundary conditions can be enforced on a distorted domain in terms of generalized higher
order stresses N (kτ)α1

n , N (kτ)α2
ns and T (kτ)α3

ζ referred to the local coordinate system at issue:

N (kτ)α1
n = N (kτ)α1

1 n2
n1 + N (kτ)α1

2 n2
n2 + N (kτ)α1

12 nn1nn2 + N (kτ)α1
21 nn1nn2

N (kτ)α2
ns = N (kτ)α2

1 nn1ns1 + N (kτ)α2
2 nn2ns2 + N (kτ)α2

12 nn1ns2 + N (kτ)α2
21 nn2ns1

T (kτ)α3
ζ = T (kτ)α3

1 nn1 + T (kτ)α3
2 nn2 (107)

For prescribed displacements u(kτ)

n , u(kτ)

s , u(kτ)

ζ
or stresses N

(kτ)α1

n , N
(kτ)α2

ns , T
(kτ)α3

ζ
alongside the edges of

an arbitrarily-shaped shell, the mechanical and kinematic constraints reported in the following are
derived from the minimum potential energy principle [21]:

N (kτ)α1
n = N

(kτ)α1

n or u(kτ)

n = u(kτ)

n

N (kτ)α2
ns = N

(kτ)α2

ns or u(kτ)

s = u(kτ)

s for τ = 0, . . . , N + 1, k = 1, . . . , l

T (kτ)α3
ζ = T

(kτ)α3

ζ
or u(kτ)

ζ
= u(kτ)

ζ
(108)

6 Equivalent Single Layer Theory

In the present manuscript a LW formulation is presented for laminated anisotropic doubly-curved
shells. Since a generalized approach has been followed, the structure can be geometrically described
in terms of r (α1, α2) referring to the global curvilinear coordinate system O′α1, α2ζ assessed in Eq. (1).
As a consequence, the three-dimensional position vector can be expressed as [21]:

R (α1, α2, ζ ) = r (α1, α2) + ζn (α1, α2) (109)

where r (α1, α2) is located in the middle thickness of the entire structure. The geometric Lamè
parameters A1 (α1, α2) , A2 (α1, α2), of the shell, as well as the main curvature radii R1 (α1, α2), R2 (α1, α2),
are thus calculated by means of Eq. (8).

As far as the unified formulation of the displacement field is concerned, a set of u(τ ) generalized
vectors for τ = 0, . . . , N + 1 is defined on the reference surface r (α1, α2), thus turning Eq. (26) into
the following one:

U (α1, α2, ζ ) =
N+1∑
τ=0

Fτ u(τ ) (110)

The thickness function matrix F(τ ) is defined employing a power expansion for the displacement
field. In the case of laminated structures, the Murakami’s function is adopted. For more details on the
topic, the interested reader can refer to reference [24]. For concentrated and surface loads within the
ESL formulation, the generalized distributions of Eqs. (58)–(62) become independent from the k-th
lamina.

7 Numerical Implementation with the GDQ Method

In the present section the LW model for anisotropic doubly-curved shells outlined in the
manuscript is numerically tackled by means of the GDQ method. Belonging to the class of spectral
collocation algorithms, the GDQ approach represents a quadrature procedure to discretize the n-th



CMES, 2023, vol.134, no.2 1419

order derivatives of an arbitrary function. Referring to a generic univariate function f = f (x) with
x ∈ [a, b], it gives [21]:

f (n) (xi) = ∂nf (x)

∂xn

∣∣∣∣
x=xi

∼=
IN∑
j=1

ς(n)

ij f
(
xj

)
i = 1, 2, . . . , IN (111)

where N > n due to the consequences of the Weierstrass Interpolation Theorem. The weighting
coefficients occurring in Eq. (111) are calculated from the following recursive procedure:

ς
(1)

ij = L(1) (xi)(
xi − xj

)
L(1)
(
xj

) , ς
(n)

ij = n
(

ς
(1)

ij ς
(n−1)

ii − ς
(n−1)

ij

xi − xj

)
i �= j

ς
(n)

ii = −
IN∑

j=1j �=i

ς
(n)

ij i = j
(112)

Accordingly, in the present manuscript the computational domain has been discretized in IN and IM

points along α1, α2 principal directions, respectively, according to the non-uniform Chebyshev-Gauss-
Lobatto (CGL) harmonic distribution [21]. Referring to a dimensionless domain [−1, 1], the generic
point xi of the distribution with i = 1, . . . IQ is introduced so that:

xi = − cos
(

i − 1
IQ − 1

π

)
, i = 1, . . . , IQ, for xi ∈ [−1, 1] (113)

Starting from the GDQ rule in Eq. (111), the well-known GIQ method is assessed so that
integrations restricted to a generic interval

[
xi, xj

]
of a univariate function f = f (x) can be numerically

tackled, setting xk discrete points, with k = 1, . . . , l:
xj∫

xi

f (x) dx =
IN∑

k=1

wij
kf (xk) (114)

GIQ weighting coefficients wij
k = wjk − wik are computed following the procedure reported

in reference [21]. We now focus on the numerical assessment of the concentrated loads within the
computational domain by means of the Dirac-Delta function according to what exerted in Eq. (69).
Following the procedure suggested by references [90,91], the GDQ and GIQ rules are adopted for the
implementation of the concentrated load in the present strong form problem according to Eq. (69),
assuming that the vector at issue is applied in one of the selected discrete computational points. The
GDQ algorithm of Eq. (111) for the discretization of the fundamental differential relations of Eq. (83)
is adopted for all the internal discrete points of the computational domain, whereas the static and
kinematic external constraints are numerically enforced at boundaries. Referring to the inner nodes of
the IN × IM two-dimensional grid, it gives for r = 2, . . . , IN − 1 and s = 2, . . . , IM − 1:

q(k±)

i(rs) = Q(k±)

i

wα1
r wα2

s A(k)

1(rs)A
(k)

2(rs)

for r �= s

q(k±)

i(rs) = 0 for r = s
(115)

where A(k)

1(rs), A(k)

2(rs) are evaluated in each point of the computational grid according to Eq. (7), whereas
the integral properties of the Dirac-Delta function of Eq. (69) are then adopted for the discretization of
the fundamental governing equations in the computational point corresponding to that of the physical
domain, denoted with

(
α

(k)

1m , α(k)

2m

)
, where the concentrated load has been applied according to Eq. (66).

Some remarks are reported in references [85,90] for more details.
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Furthermore, the Dirac-Delta function of Eq. (68) has been also implemented according to the
generalized approach in reference [89]. Moving from the methodology presented in Eq. (115), the con-
centrated load application point

(
α

(k)

1m , α(k)

2m

)
can be selected regardless the nature of the computational

grid. In particular, a procedure based on the Lagrange interpolating Polynomials is followed so that
the applied load is transferred to the IN × IM discrete set of point starting from an arbitrary location
within the physical domain. One gets for r = 2, . . . , IN − 1 and s = 2, . . . , IM − 1 [90]:

q(k±)

i(rs) = Q(k±)

i

lα1
r

(
α

(k)

1m

)
lα2
s

(
α

(k)

1m

)
wα1

r wα2
s A(k)

1(rs)A
(k)

2(rs)

for n �= m

q(k±)

i(rs) = 0 for n = m

(116)

being

lα1
r

(
α

(k)

1m

) =
IN∏

q=1,q�=n

α
(k)

1m − α1q

α1r − α1q

for r = 2, . . . , IN − 1

lα2
s

(
α

(k)

2n

) =
IM∏

q=1,q�=n

α
(k)

2n − α2q

α1s − α2q

for s = 2, . . . , IM − 1
(117)

Once the fundamental differential problem outlined in Eq. (83) has been implemented by means
of the GDQ method according to Eq. (111), the overcoming computational problem is efficiently
solved by means of a proper condensation of the linear system. To this purpose, the unknown DOFs,
embedded in the vector δ, are arranged so that δb and δd are referred to the boundary (“b” points) and
the inner nodes (“d” points), respectively [21]. One gets:⎡
⎣Kbb Kbd

Kdb Kdd

⎤
⎦
⎡
⎣δb

δd

⎤
⎦−

⎡
⎣fb

fd

⎤
⎦ =

⎡
⎣0

0

⎤
⎦ (118)

where fb, fd are the external load vectors associated to the “b” and “d” points, respectively. If Eq. (118)
is expressed only in terms of δd vector, the following reduced linear system is obtained:(

Kdd − Kdb (Kbb)
−1 Kbd

)
δd = fd − Kdb (Kbb)

−1 fb → Kδd = f (119)

8 Post-Processing

The present formulation accounts the static structural assessment of laminated doubly-curved
shell structures employing a two-dimensional formulation by LW approach. Since the solution is
located at the middle surface of each k-th layer, the higher order displacement field assumption of
Eq. (26) can be adopted for the derivation of the three-dimensional response of the solid. On the other
hand, the results may not fulfil the external tractions applied at the intrados and the extrados of each
lamina. For this reason, a correction of stresses should be performed.

From the closed interval [−hk/2, hk/2], representing the k-th lamina thickness, a set of IT points
is selected, whose generic one ζ

(k)

(g) with g = 1, . . . , IT is derived from the CGL harmonic distribu-
tion of Eq. (113). Then, the three-dimensional displacement field vector is U(k)

(ijg)
evaluated in each(

α1(i), α2(j), ζ
(k)

(g)

)
point of the three-dimensional solid, for i = 1, . . . , IN, j = 1, . . . , IM and g = 1, . . . , IT ,

employing the unified approach of Eq. (26):



CMES, 2023, vol.134, no.2 1421

U
(k)

(ijg) =∑N+1

τ=0 F
(k)

τ (g)u
(τ )

(ij) ⇔
⎡
⎣U(k)

1(ijg)

(
α1(i), α2(j), ζ

(k)
(g)

)
U(k)

2(ijg)

(
α1(i), α2(j), ζ

(k)
(g)

)
U(k)

3(ijg)

(
α1(i), α2(j), ζ

(k)
(g)

)
⎤
⎦ =

N+1∑
τ=0

⎡
⎣Fα1(k)

τ (g)

(
ζ

(k)
(g)

)
0 0

0 Fα2(k)
τ (g)

(
ζ

(k)
(g)

)
0

0 0 Fα3(k)
τ (g)

(
ζ

(k)
(g)

)
⎤
⎦[u(τ )

1(ij)

(
α1(i), α2(j)

)
u(τ )

2(ij)

(
α1(i), α2(j)

)
u(τ )

3(ij)

(
α1(i), α2(j)

)
]

(120)

In the same way, the discrete form ε
(k)

(ijg) = [
ε

(k)

1(ijg) ε
(k)

2(ijg) γ
(k)

12(ijg) γ
(k)

13(ijg) γ
(k)

23(ijg) ε
(k)

3(ijg)

]T
of the three-

dimensional strain vector is calculated according to Eq. (35), setting i = 1, . . . , IN, j = 1, . . . , IM and
g = 1, . . . , IT :

ε(k)

(ijg)
= D(k)

ζ (ijg)

(
3∑

i=1

D(k)αi

(ijg)

)
U(k)

(ijg)
(121)

Starting from the previous equation, it is possible to derive in the arbitrary point located at(
α1(i), α2(j), ζ

(k)

(g)

)
the corresponding membrane stresses σ

(k)

1(ijg), σ
(k)

2(ijg), τ
(k)

12(ijg), for each k-th layer, according
to the elastic constitutive law of Eq. (44), leading to:

⎡
⎢⎢⎢⎣

σ
(k)

1(ijg)

σ
(k)

2(ijg)

τ
(k)

12(ijg)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

E
(k)

11(ijg)
E

(k)

12(ijg)
E

(k)

16(ijg)
E

(k)

14(ijg)
E

(k)

15(ijg)
E

(k)

13(ijg)

E
(k)

12(ijg)
E

(k)

22(ijg)
E

(k)

26(ijg)
E

(k)

24(ijg)
E

(k)

25(ijg)
E

(k)

23(ijg)

E
(k)

16(ijg)
E

(k)

26(ijg)
E

(k)

66(ijg)
E

(k)

46(ijg)
E

(k)

56(ijg)
E

(k)

36(ijg)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(k)

1(ijg)

ε
(k)

2(ijg)

γ
(k)

12(ijg)

γ
(k)

13(ijg)

γ
(k)

23(ijg)

ε
(k)

3(ijg)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(122)

At this point, the three-dimensional equilibrium equations of a doubly-curved solid written in
curvilinear principal coordinates should be recalled, remembering that dζ = dζ (k):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂ζ
+ 1

R(k)
1 + ζ (k)

+ 1

R(k)
2 + ζ (k)

0 0

0
∂

∂ζ
+ 1

R(k)
1 + ζ (k)

+ 1

R(k)
2 + ζ (k)

0

0 0
∂

∂ζ
+ 1

R(k)
1 + ζ (k)

+ 1

R(k)
2 + ζ (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣τ

(k)
13

τ
(k)
23

σ
(k)
3

⎤
⎥⎦ =

⎡
⎢⎣a(k)

b(k)

c(k)

⎤
⎥⎦

(123)

with a(k), b(k), c(k) reading as:

a(k) = − 1

A(k)

1

(
1 + ζ (k)/R(k)

1

) ∂σ
(k)

1

∂α1

+ σ
(k)

2 − σ
(k)

1

A(k)

1 A(k)

2

(
1 + ζ (k)/R(k)

2

) ∂A(k)

2

∂α1

+

− 1

A(k)

2

(
1 + ζ (k)/R(k)

2

) ∂τ
(k)

12

∂α2

− 2τ
(k)

12

A(k)

1 A(k)

2

(
1 + ζ (k)/R(k)

1

) ∂A(k)

1

∂α2

b(k) = − 1

A(k)

2

(
1 + ζ (k)/R(k)

2

) ∂σ
(k)

2

∂α2

+ σ
(k)

1 − σ
(k)

2

A(k)

1 A(k)

2

(
1 + ζ (k)/R(k)

1

) ∂A(k)

1

∂α2

+
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− 1

A(k)

1

(
1 + ζ (k)/R(k)

1

) ∂τ
(k)

12

∂α1

− 2τ
(k)

12

A(k)

1 A(k)

2

(
1 + ζ (k)/R(k)

2

) ∂A(k)

2

∂α1

c(k) = − 1

A(k)

1

(
1 + ζ (k)/R(k)

1

) ∂τ
(k)

13

∂α1

− τ
(k)

13

A(k)

1 A(k)

2

(
1 + ζ (k)/R(k)

2

) ∂A(k)

2

∂α1

+

− 1

A(k)

2

(
1 + ζ (k)/R(k)

2

) ∂τ
(k)

23

∂α2

− τ
(k)

23

A(k)

1 A(k)

2

(
1 + ζ (k)/R(k)

1

) ∂A(k)

1

∂α2

+ σ
(k)

1

R(k)

1 + ζ (k)
+ σ

(k)

2

R(k)

2 + ζ (k)
(124)

From the three-dimensional relations reported in Eq. (123), the out-of-plane stress components
τ

(k)

13(ijg), τ
(k)

23(ijg) are derived for each
(
α1(i), α2(j), ζ

(k)

(g)

)
point, once the in-plane stresses are computed in

Eq. (122), and their first order derivatives are calculated by means of the GDQ method of Eq. (111).
Furthermore, two different loading conditions have been considered for each k-th lamina, leading to
prescribed values of τ

(k)

13 , τ (k)

23 at the top and the bottom surfaces of the layer. Nevertheless, only the
tractions referred to ζ (k) = +hk/2 can be enforced. With particular reference to the first lamina k = 1,

if
�

q
(1−)

1(ij) ,
�

q
(1−)

2(ij) denote the in-plane components of the load vector already defined in Eq. (73) for each(
α1(i), α2(j)

)
, applied at ζ (1) = −h1/2, one gets:

τ̃
(1)

13(ij1) = �

q
(1−)

1(ij)

τ̃
(1)

23(ij1) = �

q
(1−)

2(ij)

(125)

Since a perfect bonding has been considered at the interlaminar level, the following relations
should be considered too:

τ̃
(k)

13(ijIT)
= τ̃

(k+1)

13(ij1)

τ̃
(k)

23(ijIT)
= τ̃

(k+1)

23(ij1)

for k = 1, . . . , l − 1 (126)

The values of τ
(k)

13 , τ (k)

23 shear stresses obtained from Eq. (123) can now be corrected so that the

in-plane loading conditions referred to the l-th lamina are fulfilled, namely τ
(l)

13(ijI T)
= �

q
(l+)

1(ij) and

τ
(l)

23(ijI T)
= �

q
(l+)

2(ij). To this end, two vectors τ̃ 13(ij), τ̃ 23(ij) of IL = l · IT components are introduced at each(
α1(i), α2(j)

)
point with i = 1, . . . , IN and j = 1, . . . , IM , setting s = k · g:

τ̃ 13(ij) =
[
τ̃

(1)

13(ij1) · · · τ̃
(1)

13(ijIT)
τ̃

(2)

13(ij1) · · · τ̃
(2)

13(ijIT)
· · · τ̃ (k)

13(ij1) · · · τ̃
(k)

13(ijIT)
· · · τ̃ (l)

13(ij1) · · · τ̃
(l)

13(ijIT)

]T

τ̃ 23(ij) =
[
τ̃

(1)

23(ij1) · · · τ̃
(1)

23(ijIT)
τ̃

(2)

23(ij1) · · · τ̃
(2)

23(ijIT)
· · · τ̃ (k)

23(ij1) · · · τ̃
(k)

23(ijI T)
· · · τ̃ (l)

23(ij1) · · · τ̃
(l)

23(ijIT)

]T (127)

Each element of the vectors at issue can now be corrected so that out-of-plane shear stresses fulfil
the in-plane loading conditions at the top surface of the shell [21]:

τ13(ijs) = τ̃13(ijs) +
(

ζs + h
2

) �

q
(l+)

1(ij) − τ̃13(ijIL)

h

τ23(ijs) = τ̃23(ijs) +
(

ζs + h
2

) �

q
(l+)

2(ij) − τ̃23(ijIL)

h

for s = 1, . . . , IL (128)

where τ̃
(k)

13(ijg) = τ̃13(ijs) and τ̃
(k)

23(ijg) = τ̃23(ijs). Taking into account the recovered stress of Eq. (128), from the
third relation of Eq. (123) the actual dispersion of the pressure along ζ direction is provided, enforcing
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the compatibility conditions between two adjacent laminae σ̃
(k)

3(ijIT)
= σ̃

(k+1)

3(ij1) for k = 1, . . . , l−1, together

with the loading conditions at the intrados of the structure:

σ̃ (1)

3(ij1)
= �

q
(1−)

3(ij) (129)

In the same way of what defined in Eq. (127), the vector σ̃ 3 of normal stresses is introduced:

σ̃ 3 =
[
σ̃

(1)

3(ij1) · · · σ̃
(1)

3(ijIT)
σ̃

(2)

3(ij1) · · · σ̃
(2)

3(ijIT)
· · · σ̃ (k)

3(ij1) · · · σ̃
(k)

3(ijIT)
· · · σ̃ (l)

3(ij1) · · · σ̃
(l)

3(ijIT)

]T

(130)

If the notation σ̃
(l)
3(ijg) = σ̃3(ijs) is adopted with s = k · g = 1, . . . , IL = l · IT , the out-of-plane normal

stress satisfies the load boundary condition enforced at the shell top surface if the following correction
of σ̃ 3 components is performed [21]:

σ3(ijs) = σ̃3(ijg) +
(

ζs + h
2

) �

q
(l+)

3(ij) − σ̃3(ijIL)

h
for s = 1, . . . , IL (131)

Furthermore, the out-of-plane three-dimensional strain components profile can now be adjusted
employing the recovered distributions of out-of-plane stresses τ̃13(ijs), τ̃23(ijs), σ̃3(ijs) for s = 1, . . . , IL. The
following relations are adopted for each k-th layer:

γ (k)

13(ijg)
= 1

det A(k)

(ijg)

(
E

(k)

33(ijg)
E

(k)

55(ijg)
−
(

E
(k)

35(ijg)

)2
)(

τ (k)

13(ijg)
− E

(k)

14(ijg)
ε(k)

1(ijg)
− E

(k)

24(ijg)
ε(k)

2(ijg)
− E

(k)

46(ijg)
γ (k)

12(ijg)

)
+

+ 1

det A(k)

(ijg)

(
E

(k)

34(ijg)
E

(k)

35(ijg)
− E

(k)

33(ijg)
E

(k)

45(ijg)

) (
τ (k)

23(ijg)
− E

(k)

15(ijg)
ε(k)

1(ijg)
− E

(k)

25(ijg)
ε(k)

2(ijg)
− E

(k)

56(ijg)
γ (k)

12(ijg)

)
+

+ 1

det A(k)

(ijg)

(
E

(k)

35(ijg)
E

(k)

45(ijg)
− E

(k)

34(ijg)
E

(k)

55(ijg)

) (
σ (k)

3(ijg)
− E

(k)

13(ijg)
ε(k)

1(ijg)
− E

(k)

23(ijg)
ε(k)

2(ijg)
− E

(k)

36(ijg)
γ (k)

12(ijg)

)

γ (k)

23(ijg)
= 1

det A(k)

(ijg)

(
E

(k)

34(ijg)
E

(k)

35(ijg)
− E

(k)

33(ijg)
E

(k)

45(ijg)

) (
τ (k)

13(ijg)
− E

(k)

14(ijg)
ε(k)

1(ijg)
− E

(k)

24(ijg)
ε(k)

2(ijg)
− E

(k)

46(ijg)
γ (k)

12(ijg)

)
+

+ 1

det A(k)

(ijg)

(
E

(k)

33(ijg)
E

(k)

44(ijg)
−
(

E
(k)

34(ijg)

)2
)(

τ (k)

23(ijg)
− E

(k)

15(ijg)
ε(k)

1(ijg)
− E

(k)

25(ijg)
ε(k)

2(ijg)
− E

(k)

56(ijg)
γ (k)

12(ijg)

)
+

+ 1

det A(k)

(ijg)

(
E

(k)

34(ijg)
E

(k)

45(ijg)
− E

(k)

35(ijg)
E

(k)

44(ijg)

) (
σ (k)

3(ijg)
− E

(k)

13(ijg)
ε(k)

1(ijg)
− E

(k)

23(ijg)
ε(k)

2(ijg)
− E

(k)

36(ijg)
γ (k)

12(ijg)

)

ε(k)

3(ijg)
= 1

det A(k)

(ijg)

(
E

(k)

35(ijg)
E

(k)

45(ijg)
− E

(k)

34(ijg)
E

(k)

55(ijg)

) (
τ (k)

13(ijg)
− E

(k)

14(ijg)
ε(k)

1(ijg)
− E

(k)

24(ijg)
ε(k)

2(ijg)
− E

(k)

46(ijg)
γ (k)

12(ijg)

)
+

+ 1

det A(k)

(ijg)

(
E

(k)

34(ijg)
E

(k)

45(ijg)
− E

(k)

35(ijg)
E

(k)

44(ijg)

) (
τ (k)

23(ijg)
− E

(k)

15(ijg)
ε(k)

1(ijg)
− E

(k)

25(ijg)
ε(k)

2(ijg)
− E

(k)

56(ijg)
γ (k)

12(ijg)

)
+

+ 1

det A(k)

(ijg)

(
E

(k)

44(ijg)
E

(k)

55(ijg)
−
(

E
(k)

45(ijg)

)2
)(

σ (k)

3(ijg)
− E

(k)

13(ijg)
ε(k)

1(ijg)
− E

(k)

23(ijg)
ε(k)

2(ijg)
− E

(k)

36(ijg)
γ (k)

12(ijg)

)
(132)
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where det A(k)

(ijg)
reads as:

det A(k)

(ijg)
= E

(k)

33(ijg)
E

(k)

44(ijg)
E

(k)

55(ijg)
+ 2E

(k)

34(ijg)
E

(k)

35(ijg)
E

(k)

45(ijg)
− E

(k)

44(ijg)

(
E

(k)

35(ijg)

)2

− E
(k)

33(ijg)

(
E

(k)

45(ijg)

)2

− E
(k)

55(ijg)

(
E

(k)

34(ijg)

)2

(133)

The complete procedure for the derivation of the recovered γ
(k)

13(ijg), γ
(k)

23(ijg), ε
(k)

3(ijg) strain profiles is
explained in reference [21].

9 Applications and Results

In the present section the LW formulation presented in the manuscript is applied to some
structures of different curvature and materials, subjected to various load cases. In particular, the
advantages of the present formulation compared with other trustworthy models are outlined. At a first
stage, a fully-clamped beam subjected to a central concentrated load is considered, and the governing
parameters of the load distributions presented in Eqs. (58)–(70) are calibrated with respect to a closed-
form analytical solution. After that, the static deflection of some thick shells characterized by zero,
single and double curvature are calculated under different kinds of loads and boundary conditions.
Furthermore, different kinds of lamination schemes have been considered, accounting for various
numbers of laminae with both softcore and hardcore behaviours. In this way, the inconsistency of
higher order ESL theories is outlined when such structures are employed, whereas the proposed higher
order LW formulation provides very good performances with respect to three-dimensional refined
solutions.

9.1 Validation for Concentrated Load Distributions
Let us consider a beam of length Lx = 10 m characterized by a rectangular cross section of dimen-

sions b = 1 m and h = 0.1 m made of isotropic Aluminium
(
E = 70 GPa, ν = 0.3, ρ = 2707 kg/m3

)
.

The structure is clamped at its extremities, and it is subjected to a concentrated vertical load
Q(+)

3 = −1000 N applied at its mid-span (Fig. 3). A reference value for the maximum deflection
of the structure has been calculated from the well-known Euler-Bernoulli Theory (EBT) according to
the following expression:

wEBT
max = FL3

x

192EI
(134)

being I = bh3/12 the moment of inertia of the rectangular cross section. The same structure has been
analysed with the GDQ method by means of Eq. (83) employing in Eq. (110) the FSDT kinematic
field assumptions. In this way, the structure has been investigated based on the ESL two-dimensional
approach. For each investigation, the percentage error e% of the solution with respect to wEBT

max has been
plotted, computed by means of the following expression:

e% =
∣∣u(0)

3 − wEBT
max

∣∣
wEBT

max

· 100% (135)

As a matter of fact, in this case the boundary conditions are assigned so that a FCFC configuration
is obtained according to Eqs. (86) and (87), following the nomenclature of Eq. (25). Thus, a parametric
study has been performed so that the sensitivity of the main governing parameters of the concentrated
load distributions presented in this manuscript is shown.
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Figure 3: (Continued)
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Figure 3: (Continued)
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Figure 3: Calibration of the parameters of the distribution employed for the assessment of concentrated
loads on the two-dimensional physical domain starting from a clamped beam subjected to a concen-
trated force at the middle span. A reference value of the maximum deflection has been calculated with
the EBT closed-form solution. Accuracy of the numerical assessment of the Dirac-Delta function and
the Generalized Dirac-Delta function (a). Accuracy of the results obtained when the Gaussian and
the Super-Elliptic distribution are employed (b). Sensitivity analysis of a Jacobi polynomials-based
modelling of the concentrated load (c). In (d), the precision of a two-dimensional model employing
various numbers of Fourier series terms is outlined

In Fig. 3a, the Dirac-Delta function of Eq. (68) has been adopted for the two-dimensional
simulations according to the GDQ approach presented in Eq. (115). Moreover, the generalized version
of the dispersion at issue has been studied employing the reduction to the computational nodes of the
applied load according to the procedure of Eq. (116). Setting IM = 31 for the numerical assessment of
the two-dimensional model, the number IN of points along the beam length has been varied, showing
that an increased grid dimension leads to more accurate results. More specifically, when a specific
point of the computational grid is located in the middle span of the structure, i.e., an even number IN is
adopted, a percentage error (135) lower than 1% is obtained with a very reduced number of points. On
the other hand, when a higher order interpolation procedure is required, at least IN = 24 discrete points
are required to obtain stable and accurate results. This is due to the fact that the procedure based on
a higher order interpolation of the Dirac-Delta function performs a reduction of the applied load to
the adopted grid points, therefore a small accuracy loss is noticed. On the other hand, the GDQ-based
integral-differential procedure for the numerical implementation of the Dirac-Delta function do not
require any interpolation since the load is applied directly at the grid points.

In Figs. 3b–3d, the sensitivity of the continuous distribution parameters is checked, setting
IN = IM = 31. In particular, it has been shown that the Gaussian distribution of Eq. (59) provides
a very good agreement with analytical solutions if the variance parameters �

(k)

1 = �
(k)

2 are set equal to
2%. In the case of Super-Elliptic distributions (60) of various power exponents (Fig. 3b), an increase
of n(k) does not lead to an improvement of precision of the simulation. In any case, stable results are
reached if �

(k)

1 = �
(k)

2 = 3%. This means that concentrated loads can be effectively described without
any loss of accuracy if an equivalent pressure is applied to an area with a radius smaller than 3% of one
edge of the physical domain. The efficiency of the formulation for concentrated loads by means of the



1428 CMES, 2023, vol.134, no.2

Jacobi polynomials of Eq. (63) is shown in Fig. 3c, where the percentage error of Eq. (135) is shown
for different γ (k) and δ(k) so that various polynomials belonging to the class at issue are employed. A
sensitivity analysis with respect to n(k)

1 = n(k)

2 is shown in Fig. 3c. In particular, it is shown that for
γ (k) = δ(k) = −0.5 stable results with negligible errors are reached for n(k)

1 = n(k)

2 = 70, whereas other
polynomials require higher order polynomials. When γ (k) = δ(k) = 1, the proposed formulation is not
capable of providing good results in any case. When the concentrated loads are implemented by means
of a Fourier series expansion according to Eq. (61), at least 300 terms are required in the truncated
series, as it has been shown in Fig. 3d, telling that the singularity can be properly modelled with the
superimposition of at least 300 sinusoidal functions.

Once the distribution of the main governing parameters are checked in Fig. 3, the percentage error
of Eq. (135) has been computed with respect to the discretization of the physical domain for all the
continuous distributions presented in this manuscript (Fig. 4). As it has been shown in the previous
simulations, the employment of the Dirac-Delta function in its discrete form for the assessment
of concentrated loads provides an excellent agreement with closed-form solutions even though a
significative reduced number of DOFs are employed in the model. Among continuous functions, if
the Super-Elliptic distribution of Eq. (60) is adopted, a fast stabilization of results with an excellent
level of accuracy is seen regardless the selection of the distribution governing parameter. For this
case, a constant value δ = 0.02 has been selected, whereas the order of the distribution has been
varied from n(k) = 2 to n(k) = 10. In a similar way, the Gaussian distribution of Eq. (59), corrected
according to Eq. (70), provides very good results even with IN = 11 grid points. The employment of
the Fourier function of Eq. (61) with n(k) = 315 terms rapidly leads to reduced values of e% even though
an oscillation is seen by varying the dimension IN of the discrete computational grid. Furthermore, for
a Jacobi distribution, high values of IN are required to obtain a stable behaviour. The sensitivity of the
computational grid has been checked for two different Jacobi polynomials of order n(k) = 71, namely
the Legendre polynomials

(
γ (k) = δ(k) = 0

)
, and the Chebyshev polynomials of I kind, characterized

by γ (k) = δ(k) = −0.5. As can be seen, the best agreement with respect to the closed-form solution of
Eq. (134) is achieved when the Legendre polynomials are employed.

Figure 4: Parametric investigation of a clamped beam subjected to a concentrated load applied at
the middle span of the structure. The discrepancy error has been calculated between the maximum
deflection provided by the closed-form EBT and the numerical implementation proposed in the
manuscript. The sensitivity of the computational grid has been outlined with respect to each load
distribution
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9.2 Validation of the LW Formulation
Once the governing parameters of the load distributions have been validated, the proposed LW

methodology has been employed for the analysis of some structures of different features subjected to
various loads and non-conventional boundary conditions. Accordingly, the examples of investigations
have been selected so that the main advantages of the LW solutions are checked with respect to more
simplified two-dimensional ESL methodologies.

In all simulations presented in this section, concentrated loads have been modelled by means of
the Dirac-Delta function in Eq. (68), according to the numerical GDQ procedure. Furthermore, the
three-dimensional static response of the structures at issue has been calculated from refined three-
dimensional simulations employing a classical 3D FEM. In this way, a reference solution is provided
for validation purposes of the proposed methodology. The results have been provided in terms of
the through-the-thickness dispersion of the three-dimensional kinematic and mechanical quantities in
some points of the structure.

Different laminated structures have been considered, accounting for various stacking sequences
with both hardcore and softcore behaviours. To this end, different classes of materials have been
employed, i.e., anisotropic, orthotropic and isotropic materials. For the first class we consider a
Triclinic material [95], whose stiffness matrix is defined with respect to the material symmetry planes
according to conventions Eq. (43):

E(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(k)

11 E(k)

12 E(k)

16 E(k)

14 E(k)

15 E(k)

13

E(k)

12 E(k)

22 E(k)

26 E(k)

24 E(k)

25 E(k)

23

E(k)

16 E(k)

26 E(k)

66 E(k)

46 E(k)

56 E(k)

36

E(k)

14 E(k)

24 E(k)

46 E(k)

44 E(k)

45 E(k)

34

E(k)

15 E(k)

25 E(k)

56 E(k)

45 E(k)

55 E(k)

35

E(k)

13 E(k)

23 E(k)

36 E(k)

34 E(k)

35 E(k)

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

98.84 53.92 0.03 1.05 −0.1 50.78

53.92 99.19 0.03 0.55 −0.18 50.87

0.03 0.03 22.55 −0.04 0.25 0.02

1.05 0.55 −0.04 21.1 0.07 1.03

−0.1 −0.18 0.25 0.07 21.14 −0.18

50.78 50.87 0.02 1.03 −0.18 87.23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

GPa

(136)

For the sake of completeness, the density of the material has been taken equal to
ρ(k) = 7750 kg/m3. In order to provide a generally anisotropic material with softcore features, the
so-called Triclinic-Soft material has been derived from Eq. (136), setting each stiffness constants
equal to 1/1000 of the original one.

Referring to the group of orthotropic materials, the material stiffness properties have been
expressed employing the well-known engineering constants, namely the three elastic moduli
E(k)

1 , E(k)

2 , E(k)

3 , the shear moduli G(k)

12 , G(k)

13 , G(k)

23 and the Poisson coefficients ν
(k)

12 , ν(k)

13 , ν(k)

23 . The relationship
between the quantities at issue and the three-dimensional stiffness constants E(k)

ij for i, j = 1, . . . , 6 can
be found in reference [21]. In the following, the material properties of an orthotopic Carbon Fibre
Reinforced Polymer (CFRP) of density ρ(k) = 1824 kg/m3 have been collected [95]:

E(k)

1 = 138.90 GPa

E(k)

2 = 8.27 GPa

E(k)

3 = 8.27 GPa

G(k)

12 = 4.12 GPa

G(k)

13 = 4.96 GPa

G(k)

23 = 4.96 GPa

ν
(k)

12 = 0.26

ν
(k)

13 = 0.26

ν
(k)

23 = 0.34

(137)
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The orthotropic Graphite-Carbon Epoxy
(
ρ(k) = 1760 kg/m3

)
reads as follows:

E(k)

1 = 173.06 GPa

E(k)

2 = 33.09 GPa

E(k)

3 = 33.50 GPa

G(k)

12 = 9.38 GPa

G(k)

13 = 8.27 GPa

G(k)

23 = 3.24 GPa

ν
(k)

12 = 0.036

ν
(k)

13 = 0.250

ν
(k)

23 = 0.171

(138)

In addition, the following lattice material named 3D Augmented Re-entrant Cellular Structure
(3D ARCS), with density ρ(k) = 66.468 kg/m3, has been considered:

E(k)

1 = 0.179 GPa

E(k)

2 = 0.179 GPa

E(k)

3 = 0.654 GPa

G(k)

12 = 0.408 MPa

G(k)

13 = 0.773 MPa

G(k)

23 = 0.773 MPa

ν
(k)

12 = −0.27

ν
(k)

13 = 0.124

ν
(k)

23 = 0.124

(139)

Among the isotropic materials, a foam of density ρ(k) = 320 kg/m3 has been considered
characterized by an elastic modulus E(k) = 0.232 GPa and a Poisson’s coefficient ν(k) = 0.2. Moreover,
the Aluminium-Soft elastic modulus is E(k) = 70 MPa, whereas the Poisson’s coefficient is ν(k) = 0.3
and the density has been set equal to ρ(k) = 2707 kg/m3.

The first example consists of a squared plate of dimensions Lx = Ly = 1 m composed by five
laminates of equal thickness hk = 0.02 m for k = 1, . . . , 5 made of Triclinic material (first, third
and fifth lamina) and Triclinic-Soft material (second and fourth lamina) of general orientations,
namely (30/45/65/90). A concentrated load of reference value Q(5+) = −1500 N and orientations
ϕ

(5+)

1 = ϕ
(5+)

2 = π/2 and ϕ
(5+)

3 = 0 is applied at the top surface of the structure at the point located
at
(
0.25

(
α1

1 − α0
1

)
, 0.50

(
α1

2 − α0
2

))
. The external constraints have been defined so that the West edge is

fully-clamped, whereas the East one is constrained only for a half, setting a three-dimensional linear

springs dispersion characterized by k
(k)ξ1

2
1f = k

(k)ξ1
2

2f = k
(k)ξ1

2
3f = 1 · 1021 N/m3 with λ = 1 and an in-plane

Super-Elliptic distribution with ξm = 1, ξ̃m = 0.53, n = 1000, according to what exerted in Eq. (95).
The static response of the structure has been calculated by means of the well-known FSDT and TSDT
theories following the ESL approach of Eq. (110), together with the EDZ4 theory. Moreover, the
employment of the Murakami’s zigzag function [21] has been checked too. Then, the analysis has
been performed with the present LW formulation, accounting for various kinematic expansion orders
employing Legendre polynomials. The choice of such interpolating function is based on the main
outcomes of reference [24], where the sensitivity of the interpolating polynomials has been investigated
with respect to the free vibration analysis. For an effective identification of the assumed thickness
function, the nomenclature LD − N is adopted, where “L” tells identify the LW approach, “D” refers
to the fact that the present formulation is displacement-based, whereas “N” denotes the maximum
expansion order within Eq. (26).

In Figs. 5–7, the through-the thickness dispersions of the three-dimensional displacement field
components, strains and stresses has been reported, respectively. These results refer to the point of the
reference surface located at

(
0.75

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))
within the physical domain. Accordingly,

the quantities at issue all refer to the previously discussed geometric reference system O′α1α2ζ .
Referring to Fig. 5, it can be seen that the behaviour of the lamination scheme at issue cannot be
well predicted by classical ESL approaches for both in-plane and out-of-plane coordinates. The EDZ4
theory provides a good agreement with the 3D FEM outcomes for the in-plane displacement field, but
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only the LD3 and LD4 are capable of best matching the previsions of the 3D FEM regarding vertical
deflections. Similar considerations can be repeated for the strain components plotted in Fig. 6.

Figure 5: (Continued)
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Figure 5: Through-the-thickness dispersion of the three-dimensional displacement field components
Ui (α1, α2, ζ ) for i = 1, 2, 3 of a laminated anisotropic rectangular plate subjected to a concen-
trated load equal to Q(+)

3 = −1500 N and enforced with non-conventional boundary conditions.
The results have been provided employing classical ESL theories and LW formulations of vari-
ous orders. Thickness plots have been provided for the point of the reference surface located at(
0.75

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))

Figure 6: (Continued)
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Figure 6: Through-the-thickness dispersion of the three-dimensional strain vector ε (α1, α2, ζ ) of a
laminated anisotropic rectangular plate subjected to a concentrated load equal to Q(+)

3 = −1500 N
and enforced with non-conventional boundary conditions. The results have been provided employing
classical ESL theories and LW formulations of various orders. Thickness plots have been provided for
the point of the reference surface located at

(
0.75

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))
Despite a higher order displacement field assumption (EDZ4) well predicts the in-plane axial and

shear deformation unlike classical FSDT theory, a higher order LW theory is needed for the out-
of-plane distortions. The coupling effects and non-conventional behaviour of the selected stacking
sequence is very clear in Fig. 7, where the three-dimensional stress components are collected. As
can be seen, all the simulation based on the LW model are capable, with a reduced number of
DOFs, to predict the three-dimensional response of the structure provided by a huge computationally
demanding formulation. In this way, very accurate results are provided for both in-plane and out-of-
plane three-dimensional stress components starting from a two-dimensional formulation. It is also
shown that higher order ESL theories with refined thickness functions does not lead good results,
due to the complexity of the lamination scheme that can be found in the structure. Furthermore, the
averaging method embedded in the 3D FEM for the extraction of the σ3 out-of-plane normal pressure
lead to a dispersion of results, whereas the proposed post-processing methodology provides a perfect
fulfilment of the three-dimensional loading conditions.

Figure 7: (Continued)
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Figure 7: Through-the-thickness dispersion of the three-dimensional stress vector σ (α1, α2, ζ ) of a
laminated anisotropic rectangular plate subjected to a concentrated load equal to Q(+)

3 = −1500 N
and enforced with non-conventional boundary conditions. The results have been provided employing
classical ESL theories and LW formulations of various orders. Thickness plots have been provided for
the point of the reference surface located at

(
0.75

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))
Another simulation has been performed on an arbitrarily-shaped plate of five generally oriented

layers composed by two external orthotropic sheets of Graphite-Carbon Epoxy material and a soft
region characterized by two layers of Triclinic-Soft material and a central part made of isotropic foam.
The distortion of the physical domain has been assessed by means of the blending functions presented
in Eqs. (11) and (12), in which the boundary edges have been described by means of NURBS curves
according to Eq. (13). The complete set of knots, weights and control points is reported in Fig. 8.
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Figure 8: Geometric and mechanical properties of an arbitrarily-shaped plate composed by five
anisotropic layers subjected to a surface load and a prescribed set of boundary stress. A three-
dimensional set of linear elastic springs has been adopted for the assessment of non-conventional
external constraints
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The structure is loaded from its top by a constant surface load and a distribution of stresses applied
from one of its edges. The thickness distributions of the three-dimensional displacement field, strain
and stress components have been depicted in Figs. 9–11.

Figure 9: Through-the-thickness dispersion of the three-dimensional displacement field components
Ui (α1, α2, ζ ) for i = 1, 2, 3 of a laminated anisotropic rectangular plate of arbitrary shape subjected
to a uniformly distributed load q(+)

3 = −5000 Pa and a uniform distribution of boundary stress
τ̃

(k)

13 = −5000 Pa for k = 1, . . . , 5 applied at the South (S) side of the physical domain. The structure has
been enforced with non-conventional boundary conditions. The results have been provided employing
classical ESL theories and LW formulations of various orders. Thickness plots have been provided for
the point of the reference surface located at

(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
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Figure 10: Through-the-thickness dispersion of the three-dimensional strain vector ε (α1, α2, ζ ) of a
laminated anisotropic rectangular plate of arbitrary shape subjected to a uniformly distributed load
q(+)

3 = −5000 Pa and a uniform distribution of boundary stress τ̃
(k)

13 = −5000 Pa for k = 1, . . . , 5
applied at the South (S) side of the physical domain. The structure has been enforced with non-
conventional boundary conditions. The results have been provided employing classical ESL theories
and LW formulations of various orders. Thickness plots have been provided for the point of the
reference surface located at

(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
As can be seen, the in-plane displacement components are characterized by a zigzag effect,

whereas the out-of-plane one accounts for a constant through-the-thickness behaviour, as can be seen
from Fig. 9. Moreover, the LD4 two-dimensional approach best fits the previsions of the 3D FEM
simulations in both in-plane and out-of-plane variables. If one refers to the strain components of
Fig. 10, is evident that the ESL approach is not capable of predicting the out-of-plane deformation and
distortions of the central soft area of the laminated structure. In the same way, the three-dimensional
stresses reported in Fig. 11 provided by 3D FEM are well predicted for both in-plane and out-of-
plane components if a higher order displacement field assumption is taken, due to the complexity of
the lamination scheme, as well as the relative thickness of the structure. Furthermore, the results also
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show a perfect fulfilment of stress compatibility conditions at the interlaminar stage, even for the cases
of adjacent layers of different stiffnesses.

Figure 11: Through-the-thickness dispersion of the three-dimensional stress vector σ (α1, α2, ζ ) of a
laminated anisotropic rectangular plate of arbitrary shape subjected to a uniformly distributed load
q(+)

3 = −5000 Pa and a uniform distribution of boundary stress τ̃
(k)

13 = −5000 Pa for k = 1, . . . , 5
applied at the South (S) side of the physical domain. The structure has been enforced with non-
conventional boundary conditions. The results have been provided employing classical ESL theories
and LW formulations of various orders. Thickness plots have been provided for the point of the
reference surface located at

(
0.50

(
ξ 1

1 − ξ 0
1

)
, 0.50

(
ξ 1

2 − ξ 0
2

))
Two validation examples are now presented (Fig. 12) in which the accuracy of the present LW

theory has been checked also for the presence of the structural curvature. Accordingly, a singly-curved
and a doubly-curved thick shell, namely a cylindrical and a spherical panel have been investigated.
Referring to the cylindrical structure, the following parametrization of the global reference surface
r (α1, α2) has been adopted [21]:
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r (α1, α2) = a tan α1√
1 + tan2 α1

e1 − α2e2 + b

(
1 − 1√

1 + tan2 α1

)
e3 (140)

with a = b = 1 m. Thus, the physical domain has been described in principal coordinates so that
(α1, α2) ∈ [α0

1 , α1
1

] × [α0
2 , α1

2

]
, setting α0

1 = π/6, α1
1 = 3α0

1 , α0
2 = 0 and α1

2 = 1. The structure is made
by three layers, with a lamination scheme defined according to the (45/0/30) orientation sequence.
In particular, the two external layers of constant thickness h1 = h3 = 0.03 m are made of a Triclinic
material as presented in Eq. (136), whereas the central thick layer of thickness h2 = 0.05 m is composed
by Triclinic-Soft material.

Figure 12: Geometric and mechanical main features of a singly-curved circular cylinder and a doubly-
curved spherical panel made of generally anisotropic materials of softcore and hardcore behaviour
subjected to general loads and boundary conditions
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A concentrated load with a reference value equal to Q(3+) = −2000 N has been applied at
the central point of the physical domain, located at

(
0.50

(
α1

1 − α0
1

)
, 0.50

(
α1

2 − α0
2

))
. Its orientation

with respect to α1, α2, ζ has been defined so that ϕ
(3+)

1 = ϕ
(3+)

2 = π/2 and ϕ
(3+)

3 = 0. The external
constraints, denoted with BK

SSSCBK
SSSF employing a condensed notation, account for the adoption of the

in-plane Super-Elliptic distribution of Eq. (95), setting n = 1000 and the position parameters equal to
ξm = 0, ξ̃m = 0.25 for the West edge, whereas ξm = 0, ξ̃m = 0.53 is adopted in the East side of
the structure. A CGL two-dimensional grid has been adopted, setting IN = IM = 31. The three-
dimensional response of the structure has been reported in Figs. 13–15. It is evident that the predictions
of the 3D FEM model regarding the displacement field can be matched only by LW approaches, among
the two-dimensional formulations considered in this work (Fig. 13). Moreover, an increased accuracy
can be seen if the kinematic expansion order gets higher, especially for the out-of-plane displacement
field components. Fig. 14 shows the inconsistency of both classical and higher order ESL theories for
the prediction of the three-dimensional strain components. Accordingly, the EDZ4 simulation does
not fit the 3D FEM solution in the soft layer of the stacking sequence, whereas a perfectly matching
can be seen when the LD4 theory is adopted for the out-of-plane elongation. Similar considerations
can be made for the three-dimensional stress profiles, which have been all collected in Fig. 15. Classical
approaches like FSDT and TSDT do not provide good results with respect to the reference solution
in any case, whereas for the in-plane stress components the higher order ESL theory can be adopted.
However, for a correct prediction of the out-of-plane stress components in both hardcore and softcore
layers the LW theory with N = 4 is required.

Figure 13: (Continued)
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Figure 13: Through-the-thickness dispersion of the three-dimensional displacement field components
Ui (α1, α2, ζ ) for i = 1, 2, 3 of a laminated anisotropic circular cylinder subjected to a concen-
trated load equal to Q(+)

3 = −2000 N and enforced with non-conventional boundary conditions.
The results have been provided employing classical ESL theories and LW formulations of vari-
ous orders. Thickness plots have been provided for the point of the reference surface located at(
0.25

(
α1

1 − α0
1

)
, 0.25

(
α1

2 − α0
2

))

Figure 14: (Continued)
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Figure 14: Through-the-thickness dispersion of the three-dimensional strain vector ε (α1, α2, ζ ) of a
laminated anisotropic circular cylinder subjected to a concentrated load equal to Q(+)

3 = −2000 N
and enforced with non-conventional boundary conditions. The results have been provided employing
classical ESL theories and LW formulations of various orders. Thickness plots have been provided for
the point of the reference surface located at

(
0.25

(
α1

1 − α0
1

)
, 0.25

(
α1

2 − α0
2

))

Figure 15: (Continued)
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Figure 15: Through-the-thickness dispersion of the three-dimensional stress vector σ (α1, α2, ζ ) of a
laminated anisotropic circular cylinder subjected to a concentrated load equal to Q(+)

3 = −2000 N
and enforced with non-conventional boundary conditions. The results have been provided employing
classical ESL theories and LW formulations of various orders. Thickness plots have been provided for
the point of the reference surface located at

(
0.25

(
α1

1 − α0
1

)
, 0.25

(
α1

2 − α0
2

))
The structural response of the spherical panel has been collected in Figs. 16–18. Accordingly, the

geometry of the structure (Fig. 12) has been obtained from a parametrization of the shell reference
surface r (α1, α2) obtained from the expression of a revolution surface characterized by a circular
meridian [21], reading as:

r (α1, α2) = (R0 (α1) cos α2) e1 − (R0 (α1) sin α2) e2 +
(

a −
√

a2 − (R0 (α1) − Rb)
2

)
e3 (141)

where R0 (α1) is defined for this example according to the following expression:

R0 (α1) = Rb + a tan α1√
1 + tan2 α1

(142)

being α1 ∈ [α0
1 , α1

1

]
and α2 ∈ [α0

2 , α1
2

]
. In the present simulation, the parameters a = 1 m and Rb = 0 m

have been selected. Moreover, the physical domain has been defined so that α0
1 = π/9, α1

1 = π/2, α0
2 = 0

and α1
2 = 2π/3. Four layers of equal thickness h1 = h2 = h3 = h4 = 0.04 m are considered. In particular,

the two external layers are made of Triclinic material, whereas the second and the third layers are
obtained from isotropic Aluminium-soft and foam, respectively. The external load, applied at the top
surface of the shell, has been obtained from the superimposition of a distributed and a concentrated
load. In particular, we consider a concentrated load applied at

(
0.50

(
α1

1 − α0
1

)
, 0.50

(
α1

2 − α0
2

))
with

the reference value equal to Q(4+) = −2000 N. The external load components are calculated from
Eq. (66) assuming ϕ

(4+)

1 = ϕ
(4+)

2 = π/2, ϕ
(4+)

3 = 0. A surface load is then applied to a specific
region of the structure according to the Super-Elliptic distribution of Eq. (60). The spherical shell
has been constrained with non-conventional boundary conditions, defined by means of the in-plane
Super-Elliptic distribution. The thickness plots calculated at

(
0.50

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))
within

the physical domain have been reported in Figs. 16–18. A reference solution has been calculated from
the 3D FEM model from Fig. 12. Referring to the three-dimensional displacement field components
of Fig. 16, it is shown that the LD4 theory perfectly matches the results provided by the high
computationally demanding simulation in both in-plane and out-of-plane directions, showing the
complex zigzag dispersion occurring for each component. The present LW formulation is capable
of giving proper results for both in-plane and out-of-plane deformations with respect to 3D FEM
collected in Fig. 17, with the advantage of a very reduced number of DOFs. Moreover, the out-of-
plane strain components are predicted, among two-dimensional theories, only by higher order LW
simulations, since classical approaches and the EDZ4 theory do not predict the actual structural
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behaviour of the soft layers of the selected shell. Referring to the three-dimensional stress components
of Fig. 18, it is clear that the coupling effects occurring along the thickness of the shell cannot be
predicted by higher order ESL theories, due to the fact that the lamination scheme is characterized by
the superimposition of layers of different stiffnesses and equal thickness.

Figure 16: Through-the-thickness dispersion of the three-dimensional displacement field components
Ui (α1, α2, ζ ) for i = 1, 2, 3 of a laminated anisotropic spherical panel subjected to a concentrated
load equal to Q(+)

3 = −2000 N and a surface pressure q(+)

3 = −5000 Pa applied in a specified
region of the physical domain. Non-conventional boundary conditions have been enforced to the
structure. The results have been provided employing classical ESL theories and LW formulations of
various orders. Thickness plots have been provided for the point of the reference surface located at(
0.50

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))
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Figure 17: Through-the-thickness dispersion of the three-dimensional strain vector ε (α1, α2, ζ ) of a
laminated anisotropic spherical panel subjected to a concentrated load equal to Q(+)

3 = −2000 N
and a surface pressure q(+)

3 = −5000 Pa applied in a specified region of the physical domain. Non-
conventional boundary conditions have been enforced to the structure. The results have been provided
employing classical ESL theories and LW formulations of various orders. Thickness plots have been
provided for the point of the reference surface located at

(
0.50

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))
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Figure 18: Through-the-thickness dispersion of the three-dimensional stress vector σ (α1, α2, ζ ) of a
laminated anisotropic spherical panel subjected to a concentrated load equal to Q(+)

3 = −2000 N
and a surface pressure q(+)

3 = −5000 Pa applied in a specified region of the physical domain. Non-
conventional boundary conditions have been enforced to the structure. The results have been provided
employing classical ESL theories and LW formulations of various orders. Thickness plots have been
provided for the point of the reference surface located at

(
0.50

(
α1

1 − α0
1

)
, 0.75

(
α1

2 − α0
2

))
The last simulation has been performed on a doubly-curved shell structure, namely a Super-

Elliptic panel, a revolution surface whose parametrization has been reported in Fig. 19. Five layers
of different thicknesses have been superimposed, accounting for two hardcore external laminae
of orthotropic and generally anisotropic syngonies. The softcore area has been obtained with
an isotropic foam, a Triclinic-soft material and an orthotropic pantographic layer of 3D ARCS,
whose homogenized engineering constants have been reported in Eq. (139). The structure is loaded
with a concentrated load pressure applied at the centre of the structure, namely at the point(
0.50

(
α1

1 − α0
1

)
, 0.50

(
α1

2 − α0
2

))
of the physical domain. A Super-Elliptic distribution of linear elastic

springs is applied so that a portion of the East side of the structure is clamped. In Fig. 19 the deflection
of the structure along some meaningful parametric lines have been reported employing a CGL grid
with IN = IM = 25 point and a LD4 displacement field assumption.
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Figure 19: (Continued)
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Figure 19: Geometric representation and mechanical properties of an anisotropic thick Super-Elliptic
Panel subjected to a concentrated load and to non-conventional external constraints. Representation
of the deflection of the structure under a concentrated static load
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The three-dimensional response of the structure has been obtained employing the equilibrium-
based recovery procedure for the point located at

(
0.25

(
α1

1 − α0
1

)
, 0.25

(
α1

2 − α0
2

))
, and it has been

collected in Figs. 20–22. The employment of different kinematic expansion orders within the present
LW formulation does not significantly affect the results in terms of displacement field components
as it is evident from Fig. 20, unlike classical and higher order ESL theories which are significantly
affected by the selection of the field variable within the unified formulation. Similar considerations
can be made for the three-dimensional strain components collected in Fig. 21, where the LW results
are in perfect agreement with each other, whereas the ESL approach is subjected to a certain instability
in the results. In Fig. 22, the results in terms of stress components have been provided, showing that the
LW methodology provides an accurate description of the zigzag curve. In particular, referring to the
out-of-plane shear components, the softcore region, characterized by three different parts, provides a
change in the inclination that ESL theories are not capable of predicting at all.

Figure 20: (Continued)
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Figure 20: Through-the-thickness dispersion of the three-dimensional displacement field components
Ui (α1, α2, ζ ) for i = 1, 2, 3 of a laminated anisotropic Super-Elliptic Panel subjected to a concentrated
load equal to Q(+)

3 = −5000 N applied at the central point of the physical domain. Non-conventional
boundary conditions have been enforced to the structure. The results have been provided employing
classical ESL theories and LW formulations of various orders. Thickness plots have been provided for
the point of the reference surface located at

(
0.25

(
α1

1 − α0
1

)
, 0.25

(
α1

2 − α0
2

))

Figure 21: (Continued)
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Figure 21: Through-the-thickness dispersion of the three-dimensional strain vector ε (α1, α2, ζ ) of a
laminated anisotropic Super-Elliptic Panel subjected to a concentrated load equal to Q(+)

3 = −5000 N
applied at the central point of the physical domain. Non-conventional boundary conditions have been
enforced to the structure. The results have been provided employing classical ESL theories and LW
formulations of various orders. Thickness plots have been provided for the point of the reference
surface located at

(
0.25

(
α1

1 − α0
1

)
, 0.25

(
α1

2 − α0
2

))

Figure 22: (Continued)
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Figure 22: Through-the-thickness dispersion of the three-dimensional stress vector σ (α1, α2, ζ ) of a
laminated anisotropic Super-Elliptic Panel subjected to a concentrated load equal to Q(+)

3 = −5000 N
applied at the central point of the physical domain. Non-conventional boundary conditions have been
enforced to the structure. The results have been provided employing classical ESL theories and LW
formulations of various orders. Thickness plots have been provided for the point of the reference
surface located at

(
0.25

(
α1

1 − α0
1

)
, 0.25

(
α1

2 − α0
2

))
To sum up, it is clear that in the case of lamination scheme employing a meaningful number of

superimposed laminae, the static deflection is characterized by a non-conventional behaviour due to a
series of warping and coupling effects occurring between two adjacent laminae. For this reason, among
two-dimensional theories, the LW implementation turns out to be a key for the determination of the
three-dimensional response of the structure object of investigation.

10 Conclusions

In the present work, an innovative two-dimensional formulation has been proposed, based on
the LW approach, for the linear static assessment of laminated doubly-curved shell structures made
of generally anisotropic materials with arbitrary orientation. The displacement field variable has
been described based on a unified formulation and higher order expansion employing different
interpolating polynomials. An effective procedure has been provided for the assessment of general
dispersions of surface loads applied at each layer of the laminated structure. Furthermore, the
concentrated load has been successfully modelled with the Dirac-Delta function, accounting for the
shell curvature effects. Moreover, a normalization of an arbitrary smooth function has been proposed,
so that the singularities can be effectively simulated within the continuum model. The fundamental
governing equations, derived by means of the Minimum Potential Energy Principle, have been tackled
numerically in the strong form with the GDQ procedure. Then, the three-dimensional response of
the structure has been recovered starting from the three-dimensional equilibrium equations. Some
examples of investigations have been explored in the manuscript, in which the validity of the proposed
LW approach has been validated with respect to refined three-dimensional trustworthy simulations
based on the FEM, showing an excellent accuracy. Moreover, the present LW approach has allowed
to properly catch a series of interlaminar coupling effects occurring in the lamination scheme, as
well as several issues related to the presence of the curvature, employing a significantly reduced
computational cost.
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Appendix A. Generalized coefficients for the assessment of boundary conditions

We report the complete expression for coefficients of matrix O(kτη)αiαj employed in Eq. (56), defined
for each k-th layer of the laminated structure, setting k = 1, . . . , l and αi, αj = α1, α2. Accordingly,
they relate the generalized stress resultants referred to the τ -th kinematic expansion order to the
displacement field components of the η-th higher order assumptions, accounting for the anisotropic
behaviour of each lamina and the shell curvature effects.
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Appendix B. Higher order fundamental operator of the governing equations

Referring to a generic τ -th and η-th kinematic expansion order, the interested reader can find
the complete expression of components L

(kτη)αiαj
ij for i, j = 1, 2, 3 of operator L(kτη) referred to the k-th

layer of the stacking sequence, with k = 1, . . . , l, occurring in the fundamental governing relations of
Eq. (80), according to the notation introduced in Eq. (81). Accordingly, the coefficients at issue have
been collected by row.
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∂A(kτη)[00]α2α1
24(11)
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(A.31)

L(kτη)α2α2
22 = A(kτη)[00]α2α2
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− A(kτη)[00]α2α2
16(20)
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1
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(
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2
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1
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2

∂α2
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1
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2
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2
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2
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2
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1 A(k)
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2
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2

∂α1
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1
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2
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∂α1
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2
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2
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25(02)
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2
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2

)
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1

∂α2

+
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1
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2
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1
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2

∂α1
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1
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2
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(
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2

∂α1
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1
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2

)2
(
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1

∂α2
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− A(kτη)[00]α2α2
55(02)(
R(k)

2
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2
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A(k)
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2
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25(02)

∂α2
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2

∂A(kτη)[01]α2α2
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∂α2
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1 R(k)

2

∂A(kτη)[00]α2α2
56(11)

∂α1
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1

∂A(kτη)[01]α2α2
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∂α1
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(
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2
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1

(
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2
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2

∂α1

(A.32)

L(kτη)α2α3
23 = A(kτη)[00]α2α3

46(20)(
A(k)

1

)2 ∂2

∂α2
1

+ A(kτη)[00]α2α3
25(02)(
A(k)

2

)2 ∂2

∂α2
2

+ A(kτη)[00]α2α3
24(11) + A(kτη)[00]α2α3

56(11)
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2

∂2

∂α1∂α2

+

+
(

A(kτη)[00]α2α3
16(20)
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1 R(k)

1

+ A(kτη)[00]α2α3
26(11) + A(kτη)[00]α2α3

45(11)

A(k)

1 R(k)

2

+ A(kτη)[01]α2α3
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45(10)

A(k)

1
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14(20)(

A(k)

1
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A(k)

2

∂A(k)

1

∂α2

+

+A(kτη)[00]α2α3
46(20) + A(kτη)[00]α2α3

46(11)(
A(k)

1

)2
A(k)

2

∂A(k)

2

∂α1

− A(kτη)[00]α2α3
46(20)(
A(k)

1
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1

∂α1
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A(k)
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2
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∂α2
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1
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46(20)
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+
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1
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55(02)
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2
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A(k)

2
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56(02)

A(k)
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2
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∂α1

+

+A(kτη)[00]α2α3
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+
(

A(kτη)[00]α2α3
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(A.33)
Third row of the fundamental operator

L(kτη)α3α1
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26(11) + A(kτη)[00]α3α2

45(11)

A(k)

1 R(k)

2

+ A(kτη)[10]α3α2
36(10) − A(kτη)[01]α3α2

45(10)

A(k)

1

+ A(kτη)[00]α3α2
46(20)(
A(k)

1

)3 ∂A(k)

1

∂α1

+

−A(kτη)[00]α3α2
14(20)(

A(k)

1

)2
A(k)

2

∂A(k)

1

∂α2

+ A(kτη)[00]α3α2
46(11) − A(kτη)[00]α3α2

46(20)(
A(k)

1

)2
A(k)

2

∂A(k)

2

∂α1

− 1(
A(k)

1

)2 ∂A(kτη)[00]α3α2
46(20)

∂α1

− 1

A(k)

1 A(k)

2

∂A(kτη)[00]α3α2
56(11)

∂α2

)
∂

∂α1

+

−
(

A(kτη)[00]α3α2
12(11)

A(k)

2 R(k)

1

+ A(kτη)[00]α3α2
22(02) + A(kτη)[00]α3α2

55(02)

A(k)

2 R(k)

2

+ A(kτη)[10]α3α2
23(01) − A(kτη)[01]α3α2

55(01)

A(k)

2

+ A(kτη)[00]α3α2
56(02)

A(k)

1

(
A(k)

2

)2 ∂A(k)

2

∂α1

+

−A(kτη)[00]α3α2
25(02) + A(kτη)[00]α3α2

15(11)

A(k)

1

(
A(k)

2

)2 ∂A(k)

1

∂α2

+ A(kτη)[00]α3α2
25(02)(
A(k)

2

)3 ∂A(k)

2

∂α2

− 1

A(k)

1 A(k)

2

∂A(kτη)[00]α3α2
24(11)

∂α1

− 1(
A(k)

2

)2 ∂A(kτη)[00]α3α2
25(02)

∂α2

)
∂

∂α2

+

+
(

A(kτη)[00]α3α2
16(11)

A(k)

1 A(k)

2 R(k)

1

+ A(kτη)[00]α3α2
26(02) − A(kτη)[00]α3α2

45(11)

A(k)

1 A(k)

2 R(k)

2

+ A(kτη)[01]α3α2
45(10) + A(kτη)[10]α3α2

36(01)

A(k)

1 A(k)

2

− 1(
A(k)

1

)2
A(k)

2

∂A(kτη)[00]α3α2
46(11)

∂α1

− 1

A(k)

1

(
A(k)

2

)2 ∂A(kτη)[00]α3α2
56(02)

∂α2

)
∂A(k)

2

∂α1

+

+
(

− A(kτη)[00]α3α2
11(20)

A(k)

1 A(k)

2 R(k)

1

− A(kτη)[00]α3α2
12(11) + A(kτη)[00]α3α2

55(02)

A(k)

1 A(k)

2 R(k)

2

+ A(kτη)[01]α3α2
55(01) − A(kτη)[10]α3α2

13(10)

A(k)

1 A(k)

2

+ 1(
A(k)

1

)2
A(k)

2

∂A(kτη)[00]α3α2
14(20)

∂α1

+ 1

A(k)

1

(
A(k)

2

)2 ∂A(kτη)[00]α3α2
15(11)

∂α2

)
∂A(k)

1

∂α2

+

− A(kτη)[00]α3α2
14(20)(

A(k)

1

)3
A(k)

2

∂A(k)

1

∂α1

∂A(k)

1

∂α2

+ A(kτη)[00]α3α2
46(11)(

A(k)

1

)3
A(k)

2

∂A(k)

1

∂α1

∂A(k)

2

∂α1

− A(kτη)[00]α3α2
15(11)

A(k)

1

(
A(k)

2

)3 ∂A(k)

1

∂α2

∂A(k)

2

∂α2

+ A(kτη)[00]α3α2
56(02)

A(k)

1

(
A(k)

2

)3 ∂A(k)

2

∂α2

∂A(k)

2

∂α1

+



1468 CMES, 2023, vol.134, no.2

+ A(kτη)[00]α3α2
14(20)(

A(k)

1

)2
A(k)

2

∂2A(k)

1

∂α1∂α2

− A(kτη)[00]α3α2
56(02)

A(k)

1

(
A(k)

2

)2 ∂2A(k)

2

∂α1∂α2

+ A(kτη)[00]α3α2
15(11)

A(k)

1

(
A(k)

2

)2 ∂2A(k)

1

∂α2
2

− A(kτη)[00]α3α2
46(11)(

A(k)

1

)2
A(k)

2

∂2A(k)

2

∂α2
1

+

− 1

A(k)

1 R(k)

2

∂A(kτη)[00]α3α2
45(11)

∂α1

+ 1

A(k)

1

∂A(kτη)[01]α3α2
45(10)

∂α1

− 1

A(k)

2 R(k)

2

∂A(kτη)[00]α3α2
55(02)

∂α2

+ 1

A(k)

2

∂A(kτη)[01]α3α2
55(01)

∂α2

+ A(kτη)[00]α3α2
45(11)

A(k)

1

(
R(k)

2

)2 ∂R(k)

2

∂α1

+ A(kτη)[00]α3α2
55(02)

A(k)

2

(
R(k)

2

)2 ∂R(k)

2

∂α2

+ A(kτη)[00]α3α2
15(11)

R(k)

1 R(k)

2

− A(kτη)[01]α3α2
15(10)

R(k)

1

+ A(kτη)[00]α3α2
25(02)(
R(k)

2

)2 − A(kτη)[01]α3α2
25(01)

R(k)

2

+ A(kτη)[10]α3α2
35(01)

R(k)

2

− A(kτη)[11]α3α2
35(00)

(A.35)

L(kτη)α3α3
33 = A(kτη)[00]α3α3

44(20)(
A(k)

1

)2 ∂2

∂α2
1

+ 2A(kτη)[00]α3α3
45(11)

A(k)

1 A(k)

2

∂2

∂α1∂α2

+ A(kτη)[00]α3α3
55(02)(
A(k)

2

)2 ∂2

∂α2
2

+

+
(

−A(kτη)[00]α3α3
44(20)(
A(k)

1

)3 ∂A(k)

1

∂α1

+ A(kτη)[00]α3α3
44(20)(

A(k)

1

)2
A(k)

2

∂A(k)

2

∂α1

+ 1(
A(k)

1

)2 ∂A(kτη)[00]α3α3
44(20)

∂α1

+ 1

A(k)

1 A(k)

2

∂A(kτη)[00]α3α3
45(11)

∂α2

+A(kτη)[01]α3α3
34(10) − A(kτη)[10]α3α3

34(10)

A(k)

1

)
∂

∂α1

+

+
(

−A(kτη)[00]α3α3
55(02)(
A(k)

2

)3 ∂A(k)

2

∂α2

+ A(kτη)[00]α3α3
55(02)

A(k)

1

(
A(k)

2

)2 ∂A(k)

1

∂α2

+ 1(
A(k)

2

)2 ∂A(kτη)[00]α3α3
55(02)

∂α2

+ 1

A(k)

1 A(k)

2

∂A(kτη)[00]α3α3
45(11)

∂α1

+A(kτη)[01]α3α3
35(01) − A(kτη)[10]α3α3

35(01)

A(k)

2

)
∂

∂α2

+

+
(

A(kτη)[00]α3α3
14(20)

A(k)

1 A(k)

2 R(k)

1

+ A(kτη)[00]α3α3
24(11)

A(k)

1 A(k)

2 R(k)

2

+ A(kτη)[01]α3α3
34(10)

A(k)

1 A(k)

2

)
∂A(k)

2

∂α1

+
(

A(kτη)[00]α3α3
15(11)

A(k)

1 A(k)

2 R(k)

1

+ A(kτη)[00]α3α3
25(02)

A(k)

1 A(k)

2 R(k)

2

+ A(kτη)[01]α3α3
35(01)

A(k)

1 A(k)

2

)
∂A(k)

1

∂α2

+

+ 1

A(k)

1

∂A(kτη)[01]α3α3
34(10)

∂α1

+ 1

A(k)

2

∂A(kτη)[01]α3α3
35(01)

∂α2

+ 1

A(k)

1 R(k)

1

∂A(kτη)[00]α3α3
14(20)

∂α1

+ 1

A(k)

1 R(k)

2

∂A(kτη)[00]α3α3
24(11)

∂α1

+ 1

A(k)

2 R(k)

1

∂A(kτη)[00]α3α3
15(11)

∂α2

+ 1

A(k)

2 R(k)

2

∂A(kτη)[00]α3α3
25(02)

∂α2

+ −A(kτη)[00]α3α3
14(20)

A(k)

1

(
R(k)

1

)2 ∂R(k)

1

∂α1

− A(kτη)[00]α3α3
15(11)

A(k)

2

(
R(k)

1

)2 ∂R(k)

1

∂α2

− A(kτη)[00]α3α3
24(11)

A(k)

1

(
R(k)

2

)2 ∂R(k)

2

∂α1

− A(kτη)[00]α3α3
25(02)

A(k)

2

(
R(k)

2

)2 ∂R(k)

2

∂α2

+ −A(kτη)[00]α3α3
11(20)(
R(k)

1

)2 − A(kτη)[00]α3α3
22(02)(
R(k)

2

)2 − 2A(kτη)[00]α3α3
12(11)

R(k)

1 R(k)

2

− A(kτη)[01]α3α3
13(10) + A(kτη)[10]α3α3

13(10)

R(k)

1

− A(kτη)[01]α3α3
23(01) + A(kτη)[10]α3α3

23(01)

R(k)

2

− A(kτη)[11]α3α3
33(00) (A.36)


	Static Analysis of Anisotropic Doubly-Curved Shell Subjected to Concentrated Loads Employing Higher Order Layer-Wise Theories
	1 Introduction
	2 Doubly-Curved Shell Geometry
	3 Unified Formulations for Kinematic Relations
	4 Anisotropic Constitutive LW Relations
	5 Governing Equations
	6 Equivalent Single Layer Theory
	7 Numerical Implementation with the GDQ Method
	8 Post-Processing
	9 Applications and Results
	10 Conclusions
	Appendix A. Generalized coefficients for the assessment of boundary conditions
	Appendix B. Higher order fundamental operator of the governing equations


