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ABSTRACT

The aims of this study were threefold: 1) study the research gap in carpark and price index via big data and natural
language processing, 2) examine the research gap of carpark indices, and 3) construct carpark price indices via
repeat sales methods and predict carpark indices via the AutoML. By researching the keyword “carpark” in Google
Scholar, the largest electronic academic database that covers Web of Science and Scopus indexed articles, this study
obtained 999 articles and book chapters from 1910 to 2019. It confirmed that most carpark research threw light on
multi-storey carparks, management and ventilation systems, and reinforced concrete carparks. The most common
research method was case studies. Regarding price index research, many previous studies focused on consumer,
stock, press and futures, with many keywords being related to finance and economics. These indicated that there
is no research predicting carpark price indices based on an AutoML approach. This study constructed repeat sales
indices for 18 districts in Hong Kong by using 34,562 carpark transaction records from December 2009 to June
2019. Wanchai’s carpark price was about four times that of Yuen Long’s carpark price, indicating the considerable
carpark price differences in Hong Kong. This research evidenced the features that affected the carpark price indices
models most: gold price ranked the first in all 19 models; oil price or Link stock price ranked second depending on
the district, and carpark affordability ranked third.
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1 Introduction

Parking a car is routine for many drivers [1]. Many modern cities have limited carparks despite
increasing the number of vehicles [2,3]. Some US cities have implemented a clear policy to manage off-
street parking [4]. The demand has led to a sharp rise in car parking fees. Previous research [5–8] showed
that parking costs in the city, transit time via public transport, and transport times at the station were
essential factors that affected driving behaviour. Indeed, in response to the high demand for parking,
the Victorian State Government provided 5,000 additional parking spaces at railway stations within
the regional and metropolitan rail networks in 2006 [9]. In Hong Kong, many carparks locate beneath
towers of residential buildings to meet residents’ needs [10].

As carpark availability impacts drivers’ time, some research investigated carpark management
systems. It mainly includes parking management, user management, spatial allocation, and route
distribution. An automatic parking lot allocation mechanism was developed to ease the parking pro-
cess. The user management module provides users with registration information to address individual
parking needs [11], which is the basis for automatic parking allocation. The automatic parking lot
distribution mechanism, based on WiFi positioning technology [12], considers the individual needs
of the parking user in the allocation of parking spaces and the route distribution module, thereby
overcoming the problem of finding a parking lot and easing traffic congestion.

Some users have raised concerns regarding mobile apps that provide real-time parking informa-
tion. Automatically assigned carparks via algorithms could alleviate parking problems [13]. System
insecurity and privacy leakage that protect personal data were found to have room for improvement.
Moreover, a digital divide exists among disadvantaged groups, and the mere provision of Information
and Communication Technology (ICT) facilities cannot solve the problem. It is developing a suitable
way for ICTs that serves all citizens matters [14]. Overall, technologies alone cannot make a city smart
or more intelligent.

Another strand of carpark research mainly sheds light on environmental and sustainability issues.
Liquid fuel combustion in vehicles’ engines is the primary source of the emission of benzene, toluene,
ethylbenzene, and xylene (BTEX) compounds into the air in the underground car park. Marć et al. [15]
concluded that benzene concentration is considerably higher in an underground carpark than in an
above-ground carpark. It was found that air quality in a car park is affected by the number of cars
parking on the lower carpark level and the closest location of the exit/entrance of the car park.

Zhang et al. [16] threw light on electric vehicles; matching the vehicles and carpark locations
do concern renting price and time fit and how vehicles in the shared carparks may take part in
the electricity market according to the behaviour of typical electric vehicles (EVs). Furthermore, a
shared carpark system for multiple parking units in a power market can integrate multiple carpark
units. Each unit contains its position scenarios, power price, and independent power consumption.
To address the competition between units, a renting bids sequencing table could integrate the rental
price and the benefit that contribute to the units. A nesting optimization model was also built for
benefit contribution computation. To process the nesting optimization model, a modified Lagrangian
multiplier method was developed to establish an optimization model to solve various competing
concerns like rental price and power by a gradient-based algorithm.

In Hong Kong, carparks may be restricted to residents’ use, or they could be opened to the
public. 90% of the open space carpark is for the public. There are approximately 690,000 carparks in
Hong Kong, 195,000 designated for public use and 495,000 for private use in commercial, residential,
and industrial buildings [17]. According to the Estate Agents Authority [18], carpark conveyancing
involves (1) provisional agreement for sale and purchase, (2) formal agreement for sale and purchase,
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(3) redemption, (4) assignment, (5) mortgage, (6) stamp duty, (7) land registration, (8) completion, (9)
title, (10) sub-sale and sub-purchase.

The Rating and Valuation Department first introduced computer-assisted mass appraisal
(CAMA) techniques for assessing rates mid-1980s. CAMA has since been extensively applied to
systematically enable the valuation staff to assess large numbers of properties within a short time
frame and produce more accurate and consistent valuations [19]. While there are indices for most
property types such as residential, industrial and offices, the Rating and Valuation Department in
Hong Kong and academia have not yet constructed carpark price indices. Furthermore, predicting
carpark price indices via AutoML will be of great practical value, allowing officials to forecast future
prices better and provide valuable information to town planners.

2 Methods, Results and Discussion
2.1 Google Scholar Results from 1910 to 2019

This study reviewed carpark and price index research indexed in Google Scholar. Previous research
found that Google contained the most academic articles for each topic [20]. Google Scholar had
the most significant percentage of citations in all fields of research (93%–96%), substantially more
than Web of Science (WoS) (27%–73%) and Scopus (35%–77%) [21]. It then utilized the tokenization
method to parse the titles of the publications indexed on Google Scholar to identify the research
void [22].

Google Scholar may include articles outside the authoritative databases such as WoS and Scopus,
comprehensive coverage can reveal articles related to carparks, including those indexed in these
databases and outside this topic [23]. Using carpark as the keyword search in Google Scholar, this
study obtained 999 results from 1910 to 2019 with carpark in the title. It allowed us to find the latest
research about carpark quickly and confirmed carpark price index prediction as to the research gap.1

The results showed that the most used words in the title associated with carpark research include
“underground”, “system”, “fire”, “multi”, and “design” (Fig. 1). The results of tokenization, one
branch of natural language processing, showed that many of these studies focused on multi-storey
management and ventilation systems, multi-storey, and reinforced concrete case studies (Table 1). All
these factors indicated that popular studies of carparks were related to the built environment. There
was no carpark research with “index” in the title. The most relevant cited articles are “An intelligent car
park management system based on wireless sensor networks”, “Underground carpark at the House
of Commons, London: geotechnical aspects”, and “Influence of bus-based park and ride facilities on
users’ car traffic” (Table 2). However, one notable characteristic of carpark research is that many of
these are conference articles rather than peer-reviewed journal articles.
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Figure 1: Major words used in carpark research titles for research work indexed in Scholar Google
results from 1910 to 2019

1 When we used “carpark price” as the keyword, there were two results only which did not indicate research on carpark price prediction. In contrast, there were 999 results
of carpark price (the quotation marks were removed), which consisted of far more irrelevant results due to different types of asset prices.
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Table 1: Articles published 1910–2019 indexed in Scholar Google with the most significant number of
citations

Phrase Count N Phrase Count N Phrase Count N
multi-storey 60 2 fire scenarios 7 2 3 d 5 2
case study 19 2 networked wireless 7 2 active RFID 5 2
management system 14 2 Marlowe car park and surrounding 6 5 air quality 5 2
ventilation system 13 2 case of fire 6 3 concrete structure 5 2
reinforced concrete 12 2 carbon monoxide 6 2 district council 5 2
Pipers row 9 2 multi-story 6 2 fire resistance 5 2
wireless sensor 9 2 reservation system 6 2 Horsham district 5 2
design and construction 8 3 steel structure 6 2 large scale 5 2
archaeological evaluation 8 2 surrounding areas 6 2 large underground 5 2
electric vehicles 8 2 pipers row car park Wolverhampton 5 5 multi-level 5 2
fire tests 8 2 management with networked wireless 5 4 Richard iii 5 2
impulse ventilation 8 2 row car park Wolverhampton 5 4 sensor networks 5 2
information system 8 2 Horsham district council 5 3 smoke movement 5 2
jet fan 8 2 management with networked 5 3 watching brief 5 2
smoke control 8 2 networked wireless sensors 5 3 wireless sensors 5 2
excavations in the Marlowe 7 4 wireless sensor networks 5 3

Table 2: The top 12 articles published from 1910 to 2019 indexed in Scholar Google with the largest
number of citations

Cites Authors Title Year Source Publisher

226 Tang et al. [26] An intelligent car park
management system based
on wireless sensor networks

2006 2006 First
International
Symposium on
Pervasive
Computing and
Applications

IEEE

155 Burland et al. [27] Underground car park at
the House of Commons,
London: geotechnical
aspects

1977 Structural
Engineer

Researchgate

148 Parkhurst [28] Influence of bus-based park
and ride facilities on users’
car traffic

2000 Transport
policy

Elsevier

138 Connell et al. [29] Exploring the spatial
patterns of car-based
tourist travel in Loch
Lomond and Trossachs
National Park, Scotland

2008 Tourism
Management

Elsevier

124 Parkhurst [30] Park and ride: could it lead
to an increase in car traffic?

1995 Transport
policy

Elsevier

(Continued)
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Table 2 (continued)

Cites Authors Title Year Source Publisher

122 Ma et al. [31] Optimal charging of plug-in
electric vehicles for a
car-park infrastructure

2014 2012 IEEE
Industry
Applications
Society Annual
Meeting

IEEE

94 Benson et al. [32] Car-park management
using wireless sensor
networks

2006 31st IEEE
Conference on
Local
Computer
Networks

IEEE

91 Bong et al. [33] Integrated Approach in the
Design of Car Park
Occupancy Information
System (COINS)

2008 IAENG
International
Journal of
Computer
Science

Researchgate

90 Blockley et al. [34] Excavations in the Marlowe
car park and surrounding
areas

1995 Canterbury
(book)

openbibart.fr

77 Pinto et al. [35] Where did you park your
car? Analysis of a
naturalistic long-term
recency effect

1991 European
Journal of
Cognitive
Psychology

Taylor &
Francis

72 Buckley et al. [36] ‘The king in the car park’:
new light on the death and
burial of Richard III in the
Grey Friars church,
Leicester, in 1485

2013 Antiquity www.
cambridge.
org

69 Zhang et al. [37] Numerical simulations on
fire spread and smoke
movement in an
underground car park

2007 Building and
environment

Elsevier

2.2 Price Index: Scholar Google Results from 1988 to 2019
To quantify and compare price movements, different indices were developed. For example, the

Hang Seng Index is used to measure the movement of a basket of stock prices in Hong Kong, and the
World Development Index is used to compare the different levels of development Worldwide. Likewise,
there are many different ways to construct indices in academia [24].

There were 2982 articles in Google Scholar search results. Popular article titles were associated
with consumer, stock, press and futures (Fig. 2). Thus, many of these title keywords were related
to finance and economics. The study of natural language has been an area of research interest for
years, and tokenization is one of the methods that has been adopted [22,25]. However, this method is

www.cambridge.org
www.cambridge.org
www.cambridge.org
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rarely used in real estate research. This study obtained the highest frequency of phrases by utilizing
a tokenization approach, a natural language processing method. These included “New York”, “stock
index futures”, “neural network”, and “US consumer” (Table 3).

0
200
400
600
800

Figure 2: Major words used in price index research titles for research work indexed in Scholar Google
results from 1988 to 2019

Table 3: Key phrases

Phrase Count N Phrase Count N

New York 81 2 final report 17 2
stock index futures 67 3 South African 17 2
neural network 46 2 bias in the consumer 16 4
us consumer 43 2 Tehran stock exchange 16 3
stock exchange 40 2 quality-adjusted 16 2
cost of living 37 3 a measure of the cost 15 4
real estate 37 2 artificial neural networks 15 3
stock market 34 2 futures contract 15 2
exchange rate 33 2 quality change 15 2
neural networks 32 2 repeat sales 15 2
time series 32 2 Korea composite stock 14 3
study the consumer 29 2 Korea composite 14 2
futures market 29 2 serial services 14 2
futures markets 28 3 accurate measure of the cost 13 5
united states 28 2 accurate measure 13 2
artificial neural 27 2 effects associated 13 2
share price index futures 26 2 owner occupied 13 2
composite stock 25 2 press new 13 2
commission to study the
consumer

23 4 stock index futures markets 12 4

commission to study 23 2 tables price not reported 12 4
case study 23 5 artificial neural network 12 3
consumer price index cpi 21 4 owner occupied housing 12 3
advisory commission 21 2 us serial services 12 3
reported cloth 21 2 futures contracts 12 2
advisory commission to study 20 4 long run 12 2
theory and practice 20 3 occupied housing 12 2
Tehran stock 20 2 US serial 12 2
stock index futures market 18 4 stock price index using 11 4
forecasting stock 18 2 Australian all ordinaries 11 3
manual theory 18 2 press New York 11 3

(Continued)
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Table 3 (continued)

Phrase Count N Phrase Count N

S&P 500 18 2 relationship between stock 11 3
manual theory and practice 17 4 ordinaries share 11 2
empirical analysis 17 2 South Africa 11 2
empirical study 17 2 Swedish consumer 11 2

Besides, this study also threw light on these articles’ citations, that is, articles cited and referenced
by other research. Although criticisms exist regarding the use of citations to measure the impact of
the research, it remains one easy way to obtain a rough idea of the usefulness of the research within
the academic circle. This study found that the highest cited articles included “Genetic algorithms
approach to feature discretization in artificial neural networks for the prediction of stock price index”
(690 citations), “New evidence on stock price effects associated with changes in the S&P 500 index”
(667 citations) and “The price response to S&P 500 index additions and deletions: Evidence of
asymmetry and a new explanation” (Table 4). While there are articles related to real estate and housing
indices, none focused on the carpark price index. This study constructed a carpark index to fill the
research void.

Table 4: Articles with the highest number of citations

Cites Authors Title Year Source Publisher

690 Kim et al. [38] Genetic algorithms approach
to feature discretization in
artificial neural networks for
the prediction of stock price
index

2000 Expert Systems
with Applications

Elsevier

667 Lynch et al. [39] New evidence on stock price
effects associated with
changes in the S&P 500 index

1997 The Journal of
Business

JSTOR

606 Chen et al. [40] The price response to S&P 500
index additions and deletions:
Evidence of asymmetry and a
new explanation

2004 The Journal of
Finance

Wiley
Online
Library

537 Hasbrouck [41] Intraday price formation in
US equity index markets

2003 The Journal of
Finance

Wiley
Online
Library

504 Antoniou
et al. [42]

Futures trading, information
and spot price volatility:
evidence for the FTSE-100
stock index futures contract
using GARCH

1995 Journal of
Banking &
Finance

Elsevier

(Continued)
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Table 4 (continued)

Cites Authors Title Year Source Publisher

498 Boskin et al. [43] Consumer prices, the
consumer price index, and the
cost of living

1998 Journal of
Economic
Perspectives

aeaweb.org

476 Kara et al. [44] Predicting the direction of
stock price index movement
using artificial neural
networks and support vector
machines: The sample of the
Istanbul Stock Exchange

2011 Expert Systems
with Applications

Elsevier

472 Choi et al. [45] Why does the law of one price
fail? An experiment on index
mutual funds

2009 The Review of
Financial Studies

Oxford

434 Can et al.
[46]

Spatial dependence and house
price index construction

1997 The Journal of
Real Estate
Finance and
Economics

Springer

402 Wahab et al. [47] Price dynamics and error
correction in stock index and
stock index futures markets: A
cointegration approach

1993 Journal of
Futures Markets

Wiley
Online
Library

379 Tse [48] Price discovery and volatility
spillovers in the DJIA index
and futures markets

1999 Journal of
Futures Markets

Wiley
Online
Library

360 Booth et al. [49] Price discovery in the German
equity index derivatives
markets

1999 Journal of
Futures Markets

Wiley
Online
Library

2.3 Previous Research on Real Estate Indices
This study presented detailed information in indices allows readers to track price changes over

time [24] easily. Real estate price indices have been applied to test the efficiency of the housing market
[50], understand the role of housing in a mixed-asset portfolio [51], examine the hedging mechanism
for commercial real estate assets [42–54], estimate real estate derivatives and home equity insurance
[55], the relationship between house price and housing demand [56], and model the supply of housing
[57,58].

There is no consensus on the best method for constructing real estate indices [58]. Real estate
indices can generally be categorized into three groups: appraisal-based, stock market-based, and
transaction-based [53]. The appraisal-based indices are used for commercial properties, as the amount
of information available on transaction prices in the commercial property market is insufficient.
Appraisal data is also primarily used in an emerging housing market, where property transactions
are infrequent and are mainly completed in secret, meaning that transaction databases rarely exist
[58,59]. The appraisal indices are constructed as an average of the current appraised values of the
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properties for each period in which the indices are reported. Thus, the appraisal-based indices rely on
a sample of properties, and the appraisers have to ensure reliable results. However, the major drawback
of this approach is that regular estimation of the property values requires a large amount of work. The
following table presents some of the existing appraisal indices used around the world (Table 5).

Table 5: Global real estate indices

Country Indices

USA NCREIF Property Index (NPI) since 1977 [60–62]
UK Investment Property Databank Index (IPD) since 1984 [63]

Jones Lang Wootton (JLW) [58,64]
Investors Chronicle Hillier Parker Index (ICHP) [65,66]

Canada The Russell Canadian Property Index (RCPI) since 1985 [67,68]
Germany Deutsche Immobilien Index (DIX) since 1996 [69,70]
Hong Kong JLW Hong Kong Index [58,71]

2.3.1 Indirect Real Estate Indices

Indirect real estate includes listed property stock [72] refers to shares of real estate companies
listed on the stock exchanges [73]. It also includes REITs, publicly listed real estate stocks, and real
estate funds [74]. There are many indirect real estate indices globally. For example, The S&P/ASX 300
Property Index included 24 A-REITs with office, retail and industrial sectors [75].

The most direct and fundamental source of information about property asset prices is transaction
prices for individual assets. Derived from daily price changes of Real Estate Investment Trusts (REITs)
prices in the stock market, the REITs index reflects the implied valuations of the underlying property
assets held by the REITs [53]. The real estate transaction price index, which attempts to control the
heterogeneity issue, has recently become popular. It has primarily focused on single-family housing.
Two major different approaches to control for heterogeneity have characterized the development of
transaction price indices. The first is a hedonic index, and the other is repeat-sales regression [53].
Table 6 identifies the existing transactional indices adopted by various countries [58].

Table 6: Global indirect real estate indices

Country Indices

USA MSCI US REIT Index [76,77]
S&P 500 Index since 1997 [78,79]
Dow Jones U.S. Real Estate Index [80,81]
FTSE NAREIT US
Real Estate Index [82,83]

Australia S&P/ASX 200 A-REIT Index [82]
Hong Kong and China LINK REIT [84]
Japan Tokyo Stock Exchange

REIT Index [82]
Singapore FTSE Straits Times RE Invest Trust Index [82]

(Continued)
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Table 6 (continued)

Country Indices

RE Invest Trust Index [82]
France SIIC Index [85]
Italy IPD Fund Index,

Indice dei Fondi Immobiliari (IFI) [85]

2.3.2 Methods for Constructing Indices

There are three main quality-controlled index construction approaches used for the transaction
based index: the hedonic, repeat-sales and the hybrid, a combination of the first two approaches
(Table 7) [53,58,98,99]. The hedonic method constructs housing price indices using the time variable
hedonic and cross-sectional hedonic models [58]. In the hedonic model, property prices are regressed
according to the property’s characteristics, which are applied on a period-by-period basis or estimated
on pooled transaction data with time dummies as additional regressors [100].

Table 7: Selection of transactional indices

Country Indices

USA National Association of Realtors (NAR) since 1968
Census C-27 Index [58,86]
S&P/Case-Shiller Home Price Indices [87–90]

UK Halifax Index since 1984 [91–94]
Nationwide Indices since 1952 [95]

Sweden SCB index [96]
Nasdaq OMX Valueguard-KTH Housing Index since 2005(HOX) [58,97]

Germany Hypo Real Estate Index since 2009 [58]

There are two basic variations of the repeat-sales method: the original repeat-sales (ORS) model
and the weighted repeat-sales model [58].

The repeat-sales method standardizes properties’ characteristics regarding the transacted proper-
ties by confining the analysis to properties sold at least twice [101]. The repeat-sales method is a variant
of the hedonic model. The only difference is that hedonic characteristics are excluded as they assume
the properties’ characteristics are the same in different periods.

The hybrid method utilizes the desirable features of hedonic and repeat-sales techniques to esti-
mate real estate price indices [102]. The idea for this model development is credited to Case et al. [103],
with many improvements made since then. These include the Quigley (Q-hybrid) model, the Hill,
Knight and Sirmans (HKS-hybrid) model, and the Englund, Quigley and Redfearn (EQR-hybrid)
model [58].

Most regularly published indices have utilized the repeat sales method to construct indices.
Silverstein [104] explained that the repeat sales index of housing price is an OLS (ordinary least
square) panel regression of log house price over time fixed effects and house-specific fixed effects.
Wang et al. [105] pointed out that the repeat sales model estimated a price index by regressing the
price change of each item based on a set of dummy variables. The repeated sales method is relatively
robust regarding specification error and omitted variables, more transparent, and easier for industry
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practitioners and the public to understand [58]. Grimes et al. [106] suggested that the repeat-sales house
price index had the advantage of simplicity in analyzing the price change. Clapp et al. [107] suggested
that the repeat sales index could be better applied in real estate price estimation to control unchanged
quality between sales. Therefore, this model has been applied to construct real estate indices. However,
the repeat sales index also has disadvantages. For example, Wong et al. [108] indicated that the repeat
sales model could not adjust for depreciation because age and time between sales exhibited a linear
relationship.

There is no consensus regarding which index construction method performs best regarding accu-
racy. However, over the past two decades, the innovation and honing of the real estate transaction price
indexing method have been impressive. The index method has been greatly improved, but large-scale
transaction databases have been developed [53] (see Table 8). For example, van de Minne et al. [121]
suggested a structural time series model which can reduce overall index revisions by more than 50%,
and Zhang et al. [54] constructed the first quantile house price indices in China to provide insight into
the evolution of China’s house price distribution. The feature of a suitable property price index method
should include, but are not limited to the following [98]: 1) require fewer data in implementation; 2)
use data which is representative of the inventory; 3) standardize quality (constant-quality); 4) easy to
implement; 5) no need to change the index construction method when historical numbers are revised.

Table 8: Indices construction approaches (an updated version of [58])

Method Model

Quality-adjusted Hedonic regression [109–114] Explicit time variable
Strictly cross-sectional

Repeat-sales [98,114–116] Original repeat-sales
Weighted repeat-sales

Hybrid [117–120] Case and Quigley’s
Quigley
Hill, Knight and Sirman
Englund, Quigley and Redfearn

Non-quality-adjusted Average [58] Mean
Median

2.4 Carpark Index Construction
The 34,562 carpark transaction data from December 2009 to June 2019 obtained from

CarparkHK.com [122] were included in this research. The website included information about the
districts of the carparks, transaction price, date of the transaction and addresses of the carparks.

Firstly, the repeat sales index was used to analyze the carpark price of 18 districts in Hong Kong.
Secondly, these data were used to collect the date and the price of the first and second sales for the
carpark transaction. Thirdly, we calculated the log price of the difference for each carpark unit. Then,
a dummy matrix was created, defining December 2009 as the base period, and the index of this year
was equal to 1 (The last year of the research was June 2019). Finally, the number was put at “–1” if
the year of the first sale was equal to the current year, equal to “1” if the year of the second sale was
equal to the current year; otherwise, the number of as put at 0.
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The first step was to input the data of all 18 districts in Hong Kong (HK). After combining these
data into Excel, Rstudio was used to obtain the repeat sales index. Secondly, a linear regression model
was used to obtain the coefficient of the repeat sales index. The formula was as follows:

Index = lm (Logp ∼ 0 + Y201001 + Y201002 + Y201003 + Y201004 + . . . + Y201904 +
Y201905 + Y201906, data = Data). The exponents (unti-log the coefficient of the repeat sales index)
were then calculated and a code of “plot(exp(coef(index)))” was used to obtain the plot of the repeat
sales index.

The results are shown in Fig. 3 and the location of these 18 districts are depicted in Fig. 4. While
almost all of them oscillate around an increasing trend, the North district only displays a slight increase
in price index compared to other districts. The Wanchai district’s carpark price index does not have a
clear upward trend.

Figure 3: (Continued)
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Figure 3: (Continued)
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Figure 3: (Continued)
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Figure 3: Repeat sales indices in 18 districts in Hong Kong and overall index for Hong Kong in general
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Figure 4: 18 administrative regions in Hong Kong

2.5 Automatic Machine Learning (AutoML)
Today, the popularity of Web 2.0, such as Facebook and Linkedin [123] has increased data size

substantially; big data, artificial intelligence, data mining, machine learning, pattern recognition,
computational intelligence and other theories and technologies are applied in many aspects, such as:

1. image processing and classification: upsampling [124], facial recognition [125], crack detection
[126];

2. Natural language processing: sentiment classification [127–129], land use classification [130],
tokenisation [131], chatbots [132,133];

3. Numerical data handling and analysis: scheduling [134,135] and planning [136], data analytics
[137,138], forecasting [139], and inventory management [140].

Prediction using artificial intelligence is a key area in modern real estate research, apart from the
traditional econometrics models like the Autoregressive Moving Average model (ARMA) [141,142]
and the Autoregressive Integrated Moving Average model (ARIMA) for real estate time series
prediction, Li et al. [143] utilized State Space models for forecasting real estate stock prices. Various
types of AI and machine learning models have been used for real estate asset price predictions in recent
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years. For example, Li et al. [144] applied a long short term memory (LSTM) and an artificial neural
network [145] for housing price prediction, and a Group Method of Data Handling Neural Network
for forecasting real estate investment trusts and stock indices [75].

Most AI and machine learning approaches need fine-tuning. Automated machine learning
(AutoML) is a promising solution for building a deep learning system in the absence of human effort
and has been applied in many different fields [146], such as finance [147] and ICU (intensive care
unit) triage prediction [148]. The automated model selection method in AutoML includes feature
engineering and neural architecture searching; AutoML streamlines the construction and application
of machine learning models and significantly decreases the time, and improves the customized models’
accuracy by reducing human errors [149]. For example, Gerassis et al. [150] utilized AutoML to
study the impacts of mining activity on deterioration in ecosystems, including the secondary industry
pollution from natural slate manufacturing. Li et al. [151] utilized satellite data from 2014 to 2018
from the US Geological Survey as a proxy for the urban heat island effect. They then used that for
conducting housing price prediction via AutoML.

Our research used the Automatic Machine Learning (AutoML) model, utilizing automatic feature
selection, feature transformation and automatic hyper-parameter tuning [152,153], model generation
and model evaluation methods [146]. AutoML eases the application of machine learning [153], as it
automatically streamlines the whole machine learning process from data loading, modelling and model
picking. It ran through over 30 models and automatically picked the best model based on the lowest
error values: mean residual deviance, root mean square error (rmse), mean squared error (mse), mean
absolute error (mae), root mean squared logarithmic error (rmsle) (Table 10). For the best model, it
ranked different variables’ relative importance as features based on a top-down approach (Table 11).

The same dataset was run with 18 districts (Fig. 3) to discover the features that drove the carpark
price indices up and down most (Table 9). We included several variables which might correlate with
carpark price as per other types of property markets in Hong Kong, such as housing (direct real estate)
and real estate stock prices (indirect real estate): gold and oil price, Renminbi to Hong Kong dollars,
US dollar to Hong Kong dollar, and the Link’s price. Gold has been considered an investment tool
when many assets are risky, and oil price is related to the costs of using an automobile. When the cost
of oil is high, demand for cars decreases so does the price of the carparks. As many property investors
come from China, the carpark market is no exception. We speculated that, similar to other types of
property in Hong Kong [143], rises and falls in Renminbi affect our carpark prices. Lastly, The Link is
one most significant scale real estate investment trusts in Hong Kong and may be an indicator of the
real estate market in Hong Kong.

The Gold Price ranked first in all 19 models; oil price was the second most important variable in 14
models. Interestingly, there are three districts (Shum Shui Po, Wong Tai Sin, Shatin) where the second
important variable was the Link stock price. The Link has many carparks among the company’s assets,
especially in the three districts mentioned. There were five districts (Central and West, Kowloon City,
Southern, Taipo, Wong Tai Sin) in the carpark affordability ratio for the third important variable.
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Table 10: Errors of all the models in AutoML

Model_id Mean_residual_
deviance

rmse mse mae rmsle

StackedEnsemble_AllModels_AutoML_2019
1230_081612

0.0004 0.0210 0.0004 0.0135 0.0212

StackedEnsemble_BestOfFamily_AutoML
_20191230_081612

0.0005 0.0213 0.0005 0.0139 0.0214

GBM_1_AutoML_20191230_081612 0.0005 0.0227 0.0005 0.0146 0.0227
XGBoost_2_AutoML_20191230_081612 0.0005 0.0232 0.0005 0.0153 0.0234
XGBoost_1_AutoML_20191230_081612 0.0006 0.0236 0.0006 0.0151 0.0238
GBM_3_AutoML_20191230_081612 0.0006 0.0239 0.0006 0.0152 0.0252
GBM_2_AutoML_20191230_081612 0.0006 0.0239 0.0006 0.0157 0.0238
GBM_4_AutoML_20191230_081612 0.0006 0.0246 0.0006 0.0148 0.0247
XGBoost_3_AutoML_20191230_081612 0.0006 0.0252 0.0006 0.0172 0.0248
XGBoost_grid__1_AutoML_20191230_081612_
model_1

0.0007 0.0267 0.0007 0.0188 0.0262

GBM_grid__1_AutoML_20191230_081612_
model_2

0.0010 0.0313 0.0010 0.0227 0.0305

DRF_1_AutoML_20191230_081612 0.0010 0.0323 0.0010 0.0231 0.0300
GBM_grid__1_AutoML_20191230_081612_
model_1

0.0013 0.0361 0.0013 0.0231 0.0340

XRT_1_AutoML_20191230_081612 0.0013 0.0366 0.0013 0.0267 0.0332
GBM_5_AutoML_20191230_081612 0.0014 0.0378 0.0014 0.0281 0.0369
GBM_grid__1_AutoML_20191230_081612_
model_4

0.0018 0.0427 0.0018 0.0233 0.0435

XGBoost_grid__1_AutoML_20191230_081612_
model_2

0.0096 0.0982 0.0096 0.0748 0.1076

GLM_1_AutoML_20191230_081612 0.0164 0.1279 0.0164 0.0947 0.1215
DeepLearning_1_AutoML_20191230_081612 0.0177 0.1329 0.0177 0.1025 0.1256
GBM_grid__1_AutoML_20191230_081612_
model_6

0.0290 0.1704 0.0290 0.1343 0.1649

DeepLearning_grid__2_AutoML_20191230_
081612_model_1

0.0321 0.1792 0.0321 0.1410 0.1687

DeepLearning_grid__1_AutoML_20191230_
081612_model_1

0.0595 0.2440 0.0595 0.1857 0.2175

GBM_grid__1_AutoML_20191230_081612_
model_3

0.0670 0.2588 0.0670 0.2135 0.2408

GBM_grid__1_AutoML_20191230_081612_
model_5

0.0711 0.2666 0.0711 0.2204 0.2472
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Table 11: Model features

Priority Variable Relative
importance

Scaled
importance

Percentage Area

1.00 Gold Price 297.44 1.00 0.51 Central and
West

1.00 Gold Price 375.10 1.00 0.56 Kwoloon City
1.00 Gold Price 550.72 1.00 0.53 Eastern
1.00 Gold Price 515.96 1.00 0.53 KwaiTsing
1.00 Gold Price 889.48 1.00 0.60 Islands
1.00 Gold Price 531.90 1.00 0.59 KwunTong
1.00 Gold Price 857.46 1.00 0.58 North
1.00 Gold Price 485.20 1.00 0.52 ShamShuiPo
1.00 Gold Price 565.57 1.00 0.60 SaiKung
1.00 Gold Price 345.64 1.00 0.49 Southern
1.00 Gold Price 653.58 1.00 0.52 ShaTin
1.00 Gold Price 701.18 1.00 0.49 TaiPo
1.00 Gold Price 653.98 1.00 0.60 TsuenWan
1.00 Gold Price 547.22 1.00 0.50 WongTaiSin
1.00 Gold Price 1584.45 1.00 0.50 TuenMun
1.00 Gold Price 368.60 1.00 0.56 YauTsimMong
1.00 Gold Price 1346.83 1.00 0.44 WanChai
1.00 Gold Price 716.96 1.00 0.59 YuenLong
1.00 Gold Price 834.03 1.00 0.51 Allareas
2.00 Oil Price 139.60 0.47 0.24 Central and

West
2.00 Oil Price 172.62 0.46 0.26 Kwoloon City
2.00 Oil Price 273.88 0.50 0.26 Eastern
2.00 Oil Price 193.22 0.37 0.20 KwaiTsing
2.00 USDHKD_Price 225.67 0.25 0.15 Islands
2.00 Oil Price 179.86 0.34 0.20 KwunTong
2.00 Oil Price 300.21 0.35 0.20 North
2.00 The Link Close 159.04 0.33 0.17 ShamShuiPo
2.00 Oil Price 235.16 0.42 0.25 SaiKung
2.00 Oil Price 192.48 0.56 0.28 Southern
2.00 The Link Close 411.65 0.63 0.33 ShaTin
2.00 Oil Price 420.76 0.60 0.30 TaiPo
2.00 Oil Price 273.42 0.42 0.25 TsuenWan
2.00 The Link Close 347.74 0.64 0.32 WongTaiSin
2.00 Oil Price 830.84 0.52 0.26 TuenMun
2.00 Oil Price 134.01 0.36 0.20 YauTsimMong
2.00 CNYHKD 361.98 0.27 0.12 WanChai
2.00 Oil Price 248.57 0.35 0.20 YuenLong
2.00 Oil Price 425.53 0.51 0.26 Allareas

(Continued)
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Table 11 (continued)

Priority Variable Relative
importance

Scaled
importance

Percentage Area

3.00 Car Park Affordable
Ratio

45.04 0.15 0.08 Central and
West

3.00 Car Park Affordable
Ratio

52.19 0.14 0.08 Kwoloon City

3.00 The Link Close 94.72 0.17 0.09 Eastern
3.00 USDHKD_Price 69.36 0.13 0.07 KwaiTsing
3.00 Oil Price 158.32 0.18 0.11 Islands
3.00 The Link Close 73.41 0.14 0.08 KwunTong
3.00 The Link Close 123.00 0.14 0.08 North
3.00 Oil Price 157.64 0.32 0.17 ShamShuiPo
3.00 The Link Close 44.54 0.08 0.05 SaiKung
3.00 Car Park Affordable

Ratio
42.59 0.12 0.06 Southern

3.00 Oil Price 67.20 0.10 0.05 ShaTin
3.00 Car Park Affordable

Ratio
121.94 0.17 0.09 TaiPo

3.00 The Link Close 55.81 0.09 0.05 TsuenWan
3.00 Car Park Affordable

Ratio
105.43 0.19 0.10 WongTaiSin

3.00 The Link Close 243.21 0.15 0.08 TuenMun
3.00 The Link Close 59.68 0.16 0.09 YauTsimMong
3.00 USDHKD_Price 340.21 0.25 0.11 WanChai
3.00 The Link Close 105.86 0.15 0.09 YuenLong
3.00 The Link Close 171.36 0.21 0.10 Allareas

3 Conclusion

There has been researched on carparks’ impact on housing prices in the past. For example, a
one-unit increase in carparks caused housing prices to drop from $95,928 to $59,569, and ppsf (price
per square foot) decreased by $1.389658 [154]. However, no research has constructed the carpark
price index via repeated sales methods, not to mention predicting the carpark price index via an
AutoML approach. According to our big data and natural language processing results of articles
published between 1910 to 2019, indexed in Google, most threw light on multi-storey carparks,
management and ventilation systems, and reinforced concrete carparks. This study indicated that the
second transactions of Wanchai’s carpark price was about four times that of Yuen Long’s carpark
price.

Our novel research suggests new ways for determining car park indices in urban areas. It is the first
to construct carpark indices based on carparks with repeated sales from 1910 to 2019. It then used real
estate indices and AutoML, a type of artificial intelligence method to predict carpark indices in the
18 regions of Hong Kong. This research showed the features that affected the carpark price AutoML
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prediction model most: gold price ranked the first in all 19 models; oil price or Link stock price second
depending on district, and carpark affordability ratio third.

The results provide practical implications to allow us to know more about the price gap in carpark
markets in Hong Kong. As most types of properties, that is, residential, offices, industrial buildings
etc. have already constructed their indices by the Rating and Valuation Departments, with carparks as
an exception. Our research will be helpful to the government when they formulate the carpark price
indices and inform governments in other countries. It also fills the academic void of carpark price
prediction via AutoML and contributes to academia.
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