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ABSTRACT

The emergence of power dispatching automation systems has greatly improved the efficiency of power industry
operations and promoted the rapid development of the power industry. However, with the convergence and
increase in power data flow, the data dispatching network and the main station dispatching automation system have
encountered substantial pressure. Therefore, the method of online data resolution and rapid problem identification
of dispatching automation systems has been widely investigated. In this paper, we perform a comprehensive review
of automated dispatching of massive dispatching data from the perspective of intelligent identification, discuss
unresolved research issues and outline future directions in this area. In particular, we divide intelligent identification
over power big data into data acquisition and storage processes, anomaly detection and fault discrimination
processes, and fault tracing for dispatching operations during communication. A detailed survey of the solutions
to the challenges in intelligent identification over power big data is then presented. Moreover, opportunities and
future directions are outlined.
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1 Introduction

Recently, with the rapid development of the social economy and technology, the demand for a safe
and stable power supply has generated higher requirements [1]. The relevant power sector has also been
constantly improving its own ability to meet the increasing needs of people, gradually recognizing the
importance of safety in power production [2,3].

The emergence of power dispatching automation systems has greatly improved the efficiency of
power industry operations, solved many problems faced by the power system, and greatly promoted
the rapid development of the power industry [4,5]. Driven by the development level of the social
economy and science and technology, the development of power dispatching automation has strong
scientific and economic support, and the dispatching level has gradually improved [6]. With the
continuous development of teleoperation technology and improvement in the computer network
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level, the development of power grid dispatching automation systems has undergone qualitative
changes, from a single-function teleoperation telemetry device to the current multifunctional intelli-
gent microcomputer teleoperation system, and the popularity and stability of products, accuracy and
integrity of information have been greatly improved [7,8]. Currently, substations above 110 kV, most
35 kV substations and various types of power plants are equipped with corresponding dispatching
automation systems [9,10].

As the speed of power grid construction accelerates and its scale expands, various dispatching
automation systems are continuously built, and the business interaction applications between local
dispatching systems and county dispatching systems become more frequent, so the power dispatching
data network emerges [11–13]. The power dispatching data network is a special data network serving
power dispatching and production, and its safe, stable and reliable operation is a basic guarantee for the
safe production of the whole power grid [14–16]. The network has an important role in coordinating
the joint operation of power system components, such as generation, transmission, transformation,
distribution and consumption, and in ensuring the safe, economic, stable and reliable operation of the
power grid and strongly guarantees the communication needs of power production, power dispatch,
reservoir dispatch, fuel dispatch, relay protection, safety automatic devices, remote operation and
power grid dispatch automation [17,18].

With the construction of a power supply company’s power dispatching data network, the main
station has been consecutively connected to all county dispatching services, resulting in further
convergence and an increase in information flow in the main station, which puts considerable pressure
on the dispatching data network and the main station dispatching automation system [19,20]. Due
to access to county transfer automation business, the operation analysis report of power dispatch
automation shows that many hidden defects are generated in the information flow, which is very
difficult to trace and analyze due to the large amount of data and fast disappearance of information
flow [21,22]. The dispatching automation system sometimes encounters the problem of misreporting
or omitting information due to misdirected data from communication channels or plant and station
general control equipment [23–25]. In addition to regular functional defects, there are still tremendous
abnormal phenomena for which it is difficult to determine specific causes, which is not conducive to
the elimination of power dispatch automation system abnormalities and becomes a bottleneck for
improving the operation level of power dispatch automation systems [26,27].

1) Data analysis is not sufficiently accurate, and hidden problems are difficult to discover. The
timely detection of many hidden problems from the master control and dispatch automation
system is difficult through the dispatch automation system. For example, after the integration
of local and county consolidation and regulation and control, an increasing number of
dispatching objects are consecutively connected to the master station, and the dispatching
automation system is stuck and unresponsive, which is likely to be related to problems such
as intermittent errors and frequency of messages.

2) Problem data capture and diagnosis are not immediate enough. Intermittent false online,
unsuccessful remote control, and partial signals that are not uploaded when tremendous signals
are uploaded occasionally occur. Due to the lack of timely and in-depth analysis, the problem
cannot be immediately identified, which hinders remote regulation and control and increases
work costs. For example, if historical information is checked without a breaker variation signal,
the system cannot determine the accident tripping after successfully tripping the reclosing
action. This situation affects the efficiency of power grid repair. On the other hand, the outage
information cannot be instantly reported.
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3) Lack of data support for work such as counterevent analysis. Due to the lack of a black
box mechanism, data for many problems are not instantly saved, which causes problems for
scheduling automation personnel in learning, fault analysis, and drills.

To effectively identify the safety hazards inherent in the dispatching automation system in real
time, it is necessary to improve the automation operation and management level of power supply
companies and to lay a solid foundation for the safe, stable, high-quality and economic operation
of the power grid through online analysis of the data volume of the dispatching automation system
and rapid problem identification research.

The remainder of this paper is organized as follows: The acquisition and structured storage
methods of the data flow are surveyed in Section 2. Section 3 investigates the existing anomaly detec-
tion approaches. In Section 4, the service fault-tolerant scheduling methods are surveyed. Section 5
concludes this paper.

2 Acquisition and Structured Storage of Data Flow

Presently, the single storage function enables optimization analysis and fault tracing when retriev-
ing data [28,29]. In addition, the current scheduling data network service information flow storage
function mainly stores the information flow data generated for the remote communication between
the station and the master station but lacks the storage function for the internal data flow of the master
station system [30,31]. It is difficult to combine data network information flow with scheduling key
services to carry out data flow fault anomaly discrimination based on business scenarios [32,33].

To achieve the integrity of big data acquisition, data flow acquisition equipment depends on the
high performance and fast processing capacity of software and hardware, which can quickly and deeply
analyze the complete collected data and upload the data information after pattern recognition to the
data business analysis platform [34,35]. Therefore, we need to analyze large amounts of data collection
and storage solutions. The framework of data acquisition and storage is illustrated in Fig. 1.
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Figure 1: Framework of data acquisition and storage
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2.1 Challenges in Data Acquisition and Storage
In existing works on the acquisition and structured storage of data flow, there are some open

challenges, which are illustrated in Fig. 2.

Challenges in Data Acquisition and Storage

Effective and valid data 
collection

Efficient data 
transmission

Reliability and 
persistency of data 

storage

Figure 2: Challenges in data acquisition and storage

1) Effective and valid data collection. The process of obtaining raw data from an external system
or network is referred to as data collection [36,37]. Effective and valid data collection is
necessary because inefficient and improper data collection will negatively impact subsequent
processing.

2) Efficient data transmission. Due to the high bandwidth consumption and the energy efficiency,
transmitting numerous data to storage facilities becomes challenging [38,39].

3) Reliability and persistency of data storage. Considering the tremendous amount of data, it
is challenging to achieve reliability and persistency of data storage while balancing the cost
[40,41].

2.2 Current Solutions
2.2.1 Current Solutions to Data Acquisition

The data acquisition methods are listed in Table 1. Fig. 3 illustrates the main performance of the
acquisition methods.

Table 1: Data acquisition methods

Target Reference Methods Advantage

Acquisition
performance

[42] Introduced vehicular micro
clouds to data collection

Improve the fault tolerance of
data collection

[43] Data forwarding algorithm Improves the efficiency of the
data delivery ratio through
restricting the broadcast
messages

[44] Combine the long-term evolution
network with vehicular hoc
network to optimize the data
volume and collection cycle

Optimize the data volume and
collection cycle considering
system robustness

[45] Data relay mule–based collection
scheme

Improve the data acquisition
performance

(Continued)
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Table 1 (continued)

Target Reference Methods Advantage

[46] Method of traffic data collection
using vehicle-mounted
monocular camera

Enhance the flexibility and
coverage of traffic data
collection

Optimizing
resource
utilization

[47] Data acquisition scheme
supported resource utilization
optimization

Optimize the limitation of the
wireless communication
bandwidth

[48] On-demand vehicular sensing
framework without
infrastructure

Achieve accurate monitoring
data and reduce the number
of participating vehicles,
energy consumption and
communication costs

Security
protection

[49] Route optimization method Improve the collection of
multimedia data considering
dynamic factors

[50] Data acquisition system based on
blockchain

Utilize the UAV as a relay to
gather data

[51] Security-preserving data
collection and sharing scheme
based on blockchain

Ensure efficient and real-time
data collection with security
protection

Acquisition
performance

Improving the fault 
tolerance of data collection

Optimizing resource 
utilization 

Enhancing the efficiency 
of data delivery ratio

Ensuring efficient and 
real-time data collection

Achieving accurate 
monitoring data

Figure 3: Main performance of the data acquisition methods

Hagenauer et al. [42] introduced vehicular micro clouds as edge servers into vehicular networks,
which contributes to data collection. In [43], a data forwarding algorithm, which improves the
efficiency of the data delivery ratio by restricting the broadcast messages, was proposed.

Considering the system robustness, Turcanu et al. [44] combined the long-term evolution network
with a vehicular hoc network to optimize the data volume and collection cycle. Due to the lightweight
signaling process, the repeated collection of large amounts of data is avoided, and the impact on system
load is minimal.
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Ren et al. [45] proposed a data relay mule-based collection scheme, named DRMCS, to accomplish
efficient data acquisition without numerous increases in redundancy. Considering the delay and task
completion rate with data acquisition, DRMCS utilized a micro mobile data center selection method
based on a simulated annealing algorithm to improve the data acquisition performance and fault
tolerance of data collection.

To address the limitation of flexibility and coverage of traffic data collection, a traffic data
collection method that uses a vehicle-mounted monocular camera is proposed [46].

Nie et al. [47] focused on the potential of vehicular sensors in traffic data acquisition. The data are
collected by sensors and then transmitted to road side units while moving along the road. However,
wireless communication bandwidth is limited due to the numerous update data generated by vehicular
network applications. A data acquisition scheme for supporting resource utilization optimization is
proposed.

Rahman et al. [48] designed an on-demand, vehicular sensing framework without infrastructure, in
which the users’ phones serve as mobile collecting sensors. Through the proposed framework, accurate
monitoring data can be obtained, and the number of participating vehicles, energy consumption and
communication costs can be reduced. Considering the dynamic factors in multimedia data collection,
Li et al. [49] proposed a route optimization method in which two rules of data and vehicle priority are
applied to improve the collection of multimedia data in the Internet of Things.

Islam et al. [50] designed a data acquisition system based on blockchain, which utilized an
unmanned aerial vehicle (UAV) as a relay to gather data in the Internet of Things environment. In
the proposed system, the data are encrypted before the transmission process with the assistance of the
UAV. The data are then integrally stored after the verification of the edge servers.

To address the problem of data security, Kong et al. [51] proposed a security-preserving, data col-
lection and sharing scheme based on blockchain. During the data acquisition process, the disjunctive
normal form cryptosystem and an identity-based signcryption scheme are integrated into the secure
variance calculation of the collected data. In intelligent transportation systems (ITSs), efficient and
real-time data collection is significant.

2.2.2 Current Solutions on Data Storage

The data storage methods are listed in Table 2. Fig. 4 illustrates the main performance of the
acquisition methods.

Table 2: Data storage methods

Target Reference Method Advantage

Storage
performance

[52] Distributed database based on
Apache

Determine the validity of packets by
detecting the payload

[53] Multilevel filtering method Accomplish similarity join of the fuzzy
string

[54] Reformative method in DPI
based on regular expression

Utilize character intervals to describe
multiple consecutive characters and
improve transmission efficiency

(Continued)
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Table 2 (continued)

Target Reference Method Advantage

[55] Semistructured data storage
and processing engine

Extract semantic values from a
tremendous amount of patient data

[56] Semistructured data in the data
flow, based on the DL
semistructured tree miner
algorithm

Effectively mined and stored data with
the time attenuation model

Storage
performance

Enhancing the data 
transmission efficiency

Effectively mining and 
storaging data

Determining the validity 

of packets
Extracting semantic 

values from patient data

Figure 4: Main performance of the data storage methods

Power systems generate millions or even billions of status, debug, and error records every day.
To ensure the security and sustainability of power systems, it is necessary to quickly process and
analyze a large amount of power data to realize real-time decisions. Traditional solutions typically use
relational databases to manage power data. However, when the amount of data substantially increases,
the relational database cannot effectively process and analyze a large amount of power data.

Jin et al. [52] proposed a distributed database based on Apache. DPI is a packet-based, deep
inspection technology that detects different network application layer payloads, such as HTTP and
DNS, and that determines the validity of packets by detecting the payload.

A multilevel filtering method is proposed to accomplish similarity join of the fuzzy string. With
the proposed method, Wang et al. [53] designed an elastic framework that transformed the problem
of calculating fuzzy matching similarity into the weighted maximum matching problem at the element
level, record level and similarity level.

Based on regular expression, a reformative method in DPI is proposed. In the face of increasingly
complex attacks, accurate string recognition has difficulty accurately obtaining features. Regular
expressions with flexibility and high efficiency are widely employed in feature fuzzy matching. In
the matching process, Sun et al. [54] utilized the character interval to describe multiple consecutive
characters, which improves the transmission efficiency.

With the intention of handling the problem of increasing medical expenses caused by the swift
increase in the quantity and quality of medical data, Satti et al. [55] designed a semistructured
data storage and processing engine, which can extract semantic values from numerous patient data
generated by a variety of data sources at different rates and different levels of abstraction.

In [56], the authors concentrated on the mining of semistructured data in the data flow based on
the deep learning (DL), semistructured tree miner algorithm. The data can be effectively mined and
stored with the time attenuation model.
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2.3 Opportunities in Data Acquisition and Storage
Although some of the previously described challenges in data acquisition and storage are

addressed, opportunities remain, as illustrated in Fig. 5.
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Figure 5: Opportunities in data acquisition and storage

1) Security in data transmission. Due to the limitation of network transmission conditions, data
transmission is vulnerable to attack [57]. Yuan et al. [58] discussed the security of wireless data
transmission. Therefore, the joint optimization of security protection and efficiency during
data transmission is one of the future directions of data acquisition.

2) Privacy preservation and security assurance. Although data storage has received widespread
attention in recent years, as summarized in Fig. 6, data storage security still faces severe
opportunities. Bazai et al. [59] pointed out that MapReduce has potential risks of privacy
disclosure. Hence, balancing privacy preservation and stability during the storage process is
a promising direction for data storage.
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Figure 6: Privacy protection schemes for data acquisition and storage

3 Anomaly Detection of Data Flow
3.1 Challenges

Anomaly detection and fault discrimination have been investigated in many existing works [60,61].
Nevertheless, with the advent of the fifth generation (5G), the amount of data has significantly
increased, which causes potential data anomalies and operating faults [62,63]. Specifically, challenges
for anomaly detection and fault discrimination methods arise, as illustrated in Fig. 7.

1) Lack of training samples. Sufficient training samples are required to construct a model with
high performance [64]. However, as data collection is challenging, existing samples are usually
lacking. Therefore, training samples with the same characteristics should be generated.

2) Anomaly detection in time series data. Time-series data, such as weather data and power data,
have high requirements for real time [65]. Therefore, to ensure the integrity of time series data,
anomaly detection should be considered.
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3) Privacy preservation in anomaly detection. To more efficiently detect anomalies, online, real-
time anomaly detection methods are usually adopted [66]. However, the private information
of users may be detected, resulting in the disclosure of users. Therefore, privacy preservation is
one of the challenges in anomaly detection.

Challenges in Anomaly Detection
and Fault Discrimination

Lack of training samples

Anomaly detection in 
time series data

Privacy preservation in 
anomaly detection

Figure 7: Challenges in anomaly detection of data flow

3.2 Goals on Anomaly Detection Methods
The reliability and real-time service scheduling flow directly influence the function [67]. Therefore,

the service latency should be matched with the requirements of users while scheduling the service
flow [68,69]. The investigation of the abnormal feature detection and fault discrimination of data
flow is divided into two parts. First, with the feature analysis of the information flow, the formation
mechanism and feature quantity should be examined. Second, the abnormal feature detection method
of data flow is formed by monitoring the information flow. In the next section, we summarize existing
works on anomaly detection methods regarding the two goals of improving the stability of data flow
and enhancing the accuracy of data flow. The framework of anomaly detection is shown in Fig. 8. In
addition, the main anomaly detection methods are illustrated in Fig. 9.
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Figure 8: Framework of anomaly detection
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Anomaly 
detection 
Methods

Feature selection method 
with random forest

Adaptive anomaly detection 
approach in small samples

Anomaly discrimination and 
classification approach

Random forest 
method combined 

Anomaly detection method 
combined LSTM with GAN

Anomaly detection method 
for CPS based on GAN

Probabilistic anomaly 
discrimination method 

Micro anomaly 
detection 

Anomaly detection 
approach

Unsupervised anomaly 
detection method

Figure 9: Main anomaly detection methods

3.2.1 Improving the Stability of Data Flow

The anomaly detection methods to improve the stability of data flow are listed in Table 3.

Table 3: Anomaly detection to improve the stability of data flow

Target Reference Method Advantage

Improving
stability of data
flow

[70] Anomaly detection method that
combines LSTM with a GAN

Improve the stability of time
series data

[71] Survey of anomaly detection
methods in computer network

Discuss the challenges and
present the open problems

[72] Feature selection approach with
random forest and support vector
machine

Improve the stability of feature
selection

[73] Adaptive online anomaly detection
approach in small samples

Predict the unknown anomalies
by classifying the known
anomalies

[74] Random forest method combined
with feature selection and DL
classification

Perform better when facing
financial data

[75] Anomaly detection method for
CPS based on GAN

Identify the anomalies caused
by various attacks

[76] Probabilistic anomaly discrimination
method for wind turbine

Improve the stability of the
wind turbine

[77] Micro anomaly detection in satellite
telemetry data

Improve the stability of satellite
telemetry data

[78] Unsupervised anomaly detection
method in the IoT

Effectively characterize the time
series data in the IoT

(Continued)
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Table 3 (continued)

Target Reference Method Advantage

[79] Anomaly detection approach with
signal filtering discrimination

Enhance the security of the
automated vehicle
transportation

[80] Anomaly discrimination and
classification approach

Improve the stability of the
automotive industry

Zhu et al. [70] investigated the anomaly detection of data with time series. Conventional anomaly
detection approaches can only detect abnormal data with time series at a shallow level because of
the instability of time series data. The authors combined long short-term memory (LSTM) with a
generative adversarial network (GAN) and designed a fusion model, named LSTM-GAN, to detect
abnormal features in time series data.

The anomaly detection methods in computer networks were surveyed in [71]. First, the threat
from attackers or crackers was introduced. Second, the deficiency of the traditional anomaly detection
approach, which was based on the signature of threat, was analyzed. Last, the authors summarized
existing anomaly detection systems and discussed the challenges and open problems.

Li et al. [72] explored network intrusion detection from the perspective of the stability of feature
selection. Specifically, two feature selection approaches were evaluated, i.e., variables importance
measure with a random forest (RF-VIM) and recursive feature elimination with a support vector
machine (SVM-RFE). SVM-RFE could select the significant features but was susceptible to the
imbalance rate. RF-VIM could provide stable subsets.

Existing anomaly detection methods performed poorly in the absence of training samples.
Therefore, an adaptive online anomaly detection approach in small samples was proposed [73]. This
method predicted the unknown anomalies by classifying the known anomalies.

To reduce the financial loss of financial statement fraud for investors, Yao et al. [74] investigated
abnormal data detection in financial statements. First, the sources of abnormal data were analyzed.
Second, the problem was modeled with DL. Last, a random forest method combined with feature
selection and DL classification, which performed better when processing a large amount of financial
data, was proposed.

Li et al. [75] proposed an anomaly detection approach based on a GAN for a cyber-physical system
(CPS). By modeling the time sequence of sensors and actuators in the CPS, the potential anomaly
was detected. Moreover, the proposed method effectively identified the anomalies caused by various
attacks.

The stability of the wind turbine indicates its operating conditions. To develop the condition
and anomaly detection for the wind turbine, Zhang et al. [76] presented a probabilistic anomaly
discrimination method based on artificial intelligence, which was superior to conventional methods.

Sun et al. [77] analyzed the micro anomaly detection of the primary components in satellites. Due
to the low discrimination accuracy in the conventional methods, an anomaly detection model based
on the optimization sequence was constructed. By extracting the features of satellite telemetry data
and segmenting the phases, anomaly discrimination for telemetry data was achieved.
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Anomaly detection is necessary for the Internet of Things (IoT). However, the data are generally
labeled to discriminate the anomalies. Guo et al. [78] investigated unsupervised anomaly detection in
the IoT for time series data. The gated recurrent unit (GRU) was selected to represent the correlations
among data, and Gaussian mixed priors were employed to characterize the data.

Currently, automated vehicle transportation, which is a novel MEC-based scenario, has been
emerging. To enhance the security of automated vehicle transportation, Wang et al. [79] presented
an anomaly detection approach combined with signal filtering discrimination. The anomalies were
detected according to the trajectories of vehicles using the adaptive extended Kalman filter. Further-
more, the states of vehicles were realized by analyzing the states of surrounding traffic, which was more
consistent with real conditions.

Numerous data were generated during the production and testing phases in the automotive
industry. To evaluate the performance of vehicular systems, potential faults should be discriminated
against. By analyzing the connections of vehicular systems, a robust anomaly discrimination and
classification approach was presented [80].

3.2.2 Improving the Accuracy of Data Flow

The anomaly detection methods to improve the accuracy of data flow are listed in Table 4.

Table 4: Anomaly detection to improve the accuracy of data flow

Target Reference Method Advantage

Improving
accuracy of data
flow

[81] Bias scoring mechanism for
anomalies

Adaptively detect the anomaly

[82] Framework to detect the
abnormal sequence

Improve the identification
capacity of anomaly detection

[83] Anomaly detection in power
systems with artificial neural
network

Reduce the consumption of
online resources

[84] Counting method for the
telemetry data features

Extract the features and improve
the accuracy of telemetry data

[85] Unsupervised anomaly
detection approach

Distinguish between normal data
and abnormal data

[86] Weather data analysis
framework

Extract the features and modes in
complicated weather data

[87] Anomaly detection model for
satellite telemetry data with
sequence features

Improve the accuracy of satellite
telemetry data

[88] Intelligent anomaly detection
method

Solve the class imbalance

[89] Survey of the anomaly
detection methods with DL

Classify and evaluate the
methods

[90] Anomaly detection method
combined the autoencoder
with LSTM

Improve the accuracy of anomaly
detection

(Continued)
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Table 4 (continued)

Target Reference Method Advantage

[91] Generation and identification
model with GAN

Generate samples to train the
identification model

[92] Identification and correction
method for drilling data

Correct the abnormal drilling
data

[93] Extreme gradient boosting
framework

Improve the classification
accuracy

[94] Abnormal traffic
discrimination model

Generate the substation samples

Anomaly detection in computer networks was investigated in [81]. First, the anomaly was
classified according to the abnormal data. Second, the anomaly was exposed through a specific filter.
Last, the bias scoring mechanism was utilized to adaptively detect the anomaly.

Song et al. [82] presented a framework for detecting abnormal sequences, which is available for
intrusion identification and fault discrimination. First, the framework projected the data into the
feature space based on the model. To improve the identification capacity of anomaly detection, the
discriminative features were extracted from the generation model. Second, the anomalies were detected
by the classifiers generated from the transformed data.

Anomaly detection is necessary to maintain the stability of power systems. The artificial neural
network (ANN) could train offline data and reduce the consumption of online resources. Therefore,
ANNs can be applied to power systems to detect faults. Yadav et al. [83] discussed the application of
ANNs to power systems for anomaly detection, identification, and classification and compared the
performance of the approaches.

On-orbit anomaly detection is a primary problem in satellite management [84]. To identify the
anomalies for complex satellite telemetry data, a counting method for the telemetry data features,
which detected the abnormal data by extracting the changing frequency and extent of data to illustrate
the data features, was presented.

To identify and detect the anomalies in the process of chemical plants, an unsupervised approach
that combines graph theory (GT) with generative topographic mapping (GTM) was presented in [85].
Specifically, GTM offered a policy for calculating the similarity between two samples, whereas GT
distinguished normal items from abnormal items by clustering.

Weather data analysis can be implemented by the IoT and big data framework. To extract the
features and modes in complicated weather data, a weather sensor anomaly detection algorithm using
clustering was explored [86].

To improve the accuracy of satellite telemetry data, Du et al. [87] proposed an anomaly detection
model for satellite telemetry data with sequence features to improve their accuracy. First, the telemetry
data were steadily separated to obtain stable residual and data trends. Second, the anomaly detection
model was designed by fusing the features.

The monitoring and acquisition data in the wind turbine system were imbalanced because of the
large amount of data. Therefore, the abnormal data were difficult to accurately discriminate. With
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the deep neural network (DNN), Chen et al. [88] presented an intelligent anomaly detection method,
which solved the class imbalance by classifying the source monitoring data.

The anomaly detection methods with DL are investigated in detail [89]. According to the basic
assumptions and research methods, anomaly detection methods are classified to distinguish normal
behavior from abnormal behavior. After evaluating the performance, the advantages and deficiencies
of these methods are also discussed.

Park et al. [90] investigated fault detection for time sequence data and presented an anomaly
detection method combined with an autoencoder and LSTM. Normal offline data were employed
to train the autoencoder to identify and classify the anomaly.

DL, which is an algorithm driven by neural networks, is rapidly developing. DL models with
feature representation are applied to fault detection. However, the misclassification rate was increased
when the fault data were limited. To improve the accuracy of anomaly detection, Zhou et al. [91]
designed a generation and identification model with a GAN, where global optimization was performed
to generate more fault samples and train the identification model.

To improve the quality of drilling data, Yang et al. [92] investigated anomaly detection and
proposed an identification and correction method for drilling data. First, to detect all kinds of
abnormal data, the local detection algorithm was designed to obtain the reasons for abnormal data.
Second, the effective k nearest algorithm was utilized to correct the abnormal data.

To improve the classification accuracy of the scheme for protecting the power transformer,
Raichura et al. [93] designed the extreme gradient boosting framework to distinguish the outside faults
and inner anomalies. Moreover, a convolutional neural network (CNN) was employed to classify
the faults. A comparison with other machine learning algorithms, such as SVMs, revealed that the
proposed method performed better in classification accuracy.

With the development of digitalization, the flow of substation communication networks is
increasing. Moreover, abnormal traffic discrimination has been the key to maintaining network
security. Yang et al. [94] constructed an abnormal traffic discrimination model for a substation
communication network based on the ResNet model, solving the problem of insufficient substation
samples.

3.3 Opportunities for Anomaly Detection to Improve Detection Performance
Although some of the previously described challenges in data acquisition and storage are

addressed, opportunities to improve the performance of anomaly detection are discussed in existing
works and are illustrated in Fig. 10.
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performance of anomaly 
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Anomaly detection 
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Mixed trained 
samples

Figure 10: Opportunities in anomaly detection of data flow
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1) Anomaly detection in small samples [73]. Ideally, the training process of anomaly detection
and fault discrimination models should cover as many kinds of anomalies to be effective.
However, the practical samples fail to reach the ideal situations, which reduces the prediction
performance for the rare anomaly of the anomaly detection method [95,96]. Therefore,
anomaly detection in small samples is a future research direction of anomalies.

2) Online anomaly detection [80]. Anomalies should be detected in time after occurring and
eliminated with relevant techniques. Therefore, to improve the detection accuracy, an online
anomaly detection approach is necessary [97,98]. Although online anomaly detection methods
have been investigated in certain existing works, the detection accuracy and efficiency are too
low to meet the requirements of practical application scenarios. Therefore, online anomaly
detection is also a future direction of anomaly detection to improve the detection accuracy
and efficiency.

3) Mixed trained samples [82]. Existing anomaly detection and fault discrimination methods are
mostly inherently trained with only normal data. However, it is not possible to obtain samples
that include only normal data in practical scenarios. Therefore, the anomaly detection and fault
discrimination model should be trained in mixed samples, including normal and anomalous
data [99]. In addition, the trained samples need to contain labeled and unlabeled data to
improve the performance of the model [100,101]. Hence, detection under mixed trained samples
is also a direction for future anomaly detection.

4 Service Fault-Tolerant Scheduling Based on Communication
4.1 Challenges

Most existing works focus on service fault-tolerant scheduling. However, with the development
of a heterogeneous system and an increase in data, certain challenges about service fault-tolerant
scheduling algorithms are surveyed, as illustrated in Fig. 11.
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Figure 11: Challenges in service fault-tolerant scheduling

1) Dynamic scheduling. The dynamic fault-tolerant scheduling of services effectively reduces
the delay and energy consumption caused by resource redistribution and improves resource
utilization [102].

2) Criticality levels of run-time faults. The criticality levels of run-time faults represent the priority
to handle. To enhance the efficiency of service fault-tolerant scheduling, run-time faults with
high criticality levels must be addressed first [103].
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3) Service scheduling in heterogeneous systems. Heterogeneous systems bring convenience
to service scheduling and increase the complexity of the systems. Many complex faults
occur in heterogeneous systems, which provides new challenges for fault-tolerant scheduling
algorithms [104].

4.2 Goals on Service Fault-Tolerant Scheduling
With the development of big data and 5G, numerous data have been generated according to the

requirements of users [105,106]. The service schedule, which is a technique that improves resource
utilization by scheduling the execution of service, renders the data storage and analysis convenient
[107,108]. However, potential faults, e.g., missing data, may occur in service scheduling. Therefore,
service fault-tolerant scheduling has a significant role in service scheduling and directly affects the
reliability of the network system [109,110]. Fig. 12 demonstrates the service fault-tolerant scheduling
framework. The data center includes multiple hosts, denoted by H = {h1, h2, . . . , hn}. In addition, each
host provides many virtual machines (VMs). Let vi,j denote the j-th VM on hi. As shown, first, the users
provide the service requirements, which include a task queue. Second, to satisfy the requirements, the
system scheduler is used to schedule the tasks. Due to possible faults, such as the loss of data and
anomaly of the scheduler, the fault-tolerant mechanism is added to the system scheduler to eliminate
the potential faults. Last, the scheduled tasks are processed in the VMs of the data center.

Users Data
Flow

Task
Queue

System
Scheduler

Fault-Tolerant 
Mechanism

Task
Scheduler

Data Center

Executing
Tasks

Waiting
Tasks

V11 V12 V1n

h1
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Figure 12: Framework of service fault-tolerant scheduling

Next, we will summarize existing works on service fault-tolerant scheduling from four optimiza-
tion goals, i.e., reducing energy consumption, decreasing service response latency, improving resource
utilization and enhancing the reliability of systems, which are shown in Fig. 13.
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Goals on service fault-tolerant scheduling
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Figure 13: Goals of service fault-tolerant scheduling methods

4.2.1 Reducing Energy Consumption

The service fault-tolerant scheduling methods for decreasing energy consumption are listed in
Table 5.

Table 5: Service fault-tolerant scheduling to reduce energy consumption

Target Reference Method Advantage

Reducing the energy
consumption

[111] Heuristic algorithm based on
the earliest finish time of
service clusters

Reduce the resources
consumption

[112] Survey of fault-tolerant
service scheduling in CC

Evaluate the performance of
existing methods

[113] Energy-aware, efficient
heuristic scheme

Solve fault-tolerant scheduling
for real-time tasks in
heterogeneous systems

[114] Fault-tolerance scheduling
method by developing three
mode redundancy

Decrease the energy
consumption in systems

[115] Fault-tolerant scheduling
method with checkpoints

Address the potential faults and
decrease the energy
consumption in systems

[116] Byzantine fault detection
algorithm

Decrease the fault-tolerant
overhead

Currently, executing clustering services will increase the efficiency of scientific workflows (SWf)
in cloud servers. Vinay et al. [111] presented a heuristic algorithm based on the earliest finish time of
clusters to develop fault-tolerant scheduling in cloud computing (CC). When the service in clusters
is unsuccessfully executed, the proposed algorithm will execute again using idle time, decreasing the
resource consumption.

The scheduling algorithms in CC focus on high-performance computation and computing costs.
However, because of the incomplete scheduling strategies, the execution efficiency of computing tasks
is hard to guarantee. Therefore, to build a foundation for constructing an efficient fault-tolerant
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framework, Pandita et al. [112] evaluated the fault-tolerance performance of the existing scheduling
algorithm in CC.

Nair et al. [113] proposed an energy-aware, efficient heuristic scheme to solve fault-tolerant
scheduling for real-time tasks in heterogeneous systems. The authors designed a standby-sparing
method, where the efficient core was utilized to process the critical tasks and the high-performance
core was utilized to process the tasks affected by faults.

Three mode redundancy (TMR) is used to eliminate faults in homogeneous systems with high
energy consumption. Yu et al. [114] presented a fault-tolerance scheduling strategy in heterogeneous
systems by developing TMR. Specifically, the services without the requirements of fault tolerance
were still executed with the traditional TMR. Otherwise, the services were executed with the proposed
method, which decreased the energy consumption in systems.

In mobile cloud computing (MCC), mobile devices are usually resource limited. The scheduling
strategy must be updated when scheduling resources change. Lee et al. [115] proposed a fault-tolerant
scheduling method with checkpoints and a replication mechanism to handle potential faults, which
reduced energy consumption.

Chinnathambi et al. [116] presented a Byzantine fault detection algorithm and designed a
scheduling and checkpoint optimization algorithm to tolerate and eliminate the Byzantine fault.
In addition, the proposed algorithm exponentially decreased the fault-tolerant overhead and effec-
tively allocated the virtual resources.

4.2.2 Decreasing Response Latency of Service

The service fault-tolerant scheduling approaches for reducing the response latency of service are
listed in Table 6.

Table 6: Service fault-tolerant scheduling to reduce the response latency of service

Target Reference Method Advantage

[117] Fault-tolerant service
scheduling scheme with
checkpoints in CC

Reduce the response latency
of service

[118] Fault-tolerance scheduling
algorithm based on
resubmitting and duplication

Maximize the idle time during
service scheduling

Decreasing response
latency of service

[119] Dynamic clustered scheduling
method

Decrease the execution delay
of tasks

[120] Heuristic service, fault-tolerant
scheduling algorithm based on
cross-entropy

Balance the running time of
tasks and the lifetime of
systems

[121] Multipath service scheduling
algorithm

Optimize the reliability and
fault tolerance of the IIoT

With the development of intelligent computing techniques in CC, fault tolerance has become
increasingly significant [117]. Therefore, a fault-tolerant-oriented service scheduling scheme was
presented. The checkpoint strategy was employed to migrate the execution-failed services, which
efficiently reduced the service response delay.
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Yao et al. [118] presented a fault-tolerance scheduling algorithm based on resubmitting and
duplication. First, as the workflow was divided into several subtasks, the deadline was also divided.
Afterward, the fault-tolerance strategy with resubmission and duplication of each subtask was
allocated. To maximize the idle time, an online adjustment method for the scheduling strategy of
unexecuted tasks was also designed.

Considering the failure of computation tasks in CC, Abd Latiff et al. [119] presented a dynamic
clustered scheduling method based on the League Championship Algorithm (LCA). This algorithm
could monitor the available resources and prevent premature failure of tasks, which decreased their
execution latency.

Cao et al. [120] examined how to prolong the lifetime of fault-tolerant, mixed-criticality embedded
systems. Since the mixed-integer linear programming was time-consuming when employed in large-
scale systems, a heuristic algorithm based on the cross-entropy was presented, balancing the running
time of tasks and lifetime of systems.

Applications in the Industrial Internet of Things (IIoT) usually require high reliability and low
access latency. Ahrar et al. [121] explored the service schedule in IIoT and proposed a multipath
scheduling algorithm that considered the potential faults in the paths. This algorithm optimized the
reliability and fault tolerance of IIoT by analysis of the experiments in the simulated heterogeneous
scenarios.

4.2.3 Improving Resource Utilization

The service fault-tolerant scheduling methods to improve resource utilization are listed in Table 7.

Table 7: Service fault-tolerant scheduling to improve resource utilization

Target Reference Method Advantage

[122] Dynamic resource allocation
method with a fault-tolerant
mechanism

Improve the resource utilization
of systems

[123] Service allocation and
communication approach with
real-time fault-tolerance

Improve the computation
resources utilization

Improving resource
utilization

[124] Offline elastic scheduling
algorithm

Dynamically regulate resource
allocation and increase resources
utilization

[125] Dynamic elastic fault-tolerant
scheduling method

Improve resource utilization in
the cloud

[126] Dynamic task allocation and
scheduling scheme

Optimize the energy efficiency

[127] Fault-tolerant framework with
criticality levels of run-time
faults

Avoid the overallocation of
computation resources

Fault tolerance is widely employed in CC. Soniya et al. [122] investigated fault-tolerant service
scheduling in CC. First, a dynamic resource allocation method with a fault-tolerant mechanism, which
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enhanced resource utilization, was presented. Second, combined with the virtual machine scheduling
approach, a dynamic scheduling scheme with a fault-tolerant mechanism for real-time services in CC
was proposed.

Zhu et al. [123] examined the fault-tolerant mechanism in a real-time workflow. First, based on the
conducted workflow model, which tolerates real-time faults, the service allocation and communication
approach is presented, improving the computation resource utilization by fully using idle resources.

In cloud systems, fault tolerance has been the primary requirement for the execution of com-
putation tasks. Therefore, Ding et al. [124] worked on the fault tolerance of the task workflow and
presented an offline elastic scheduling algorithm with fault tolerance to dynamically regulate resource
allocation and increase resource utilization in cloud systems.

Yan et al. [125] presented a dynamic elastic fault-tolerant scheduling method for cloud services,
realizing fault tolerance and increasing resource utilization. First, a fault-tolerant task allocation
method was designed. Considering the uncertainty, two task scheduling models with fault tolerance
were interchangeably employed. Second, the overlapping mechanism was adopted to improve resource
utilization in the cloud.

Marahatta et al. [126] proposed a dynamic task allocation and scheduling scheme based on
fault tolerance to coordinately optimize energy efficiency and resource utilization. Specifically, the
upcoming tasks were classified and then allocated to the appropriate virtual machine for execution.
In addition, a flexible resource supply mechanism was also developed to optimize energy efficiency.

Chen et al. [127] designed a fault-tolerant framework to address faults according to the criticality
levels of run-time faults. To avoid the overallocation of computational resources, an overrun handling
protocol was also proposed, which ensured fault recovery. In addition, an offline scheduling analysis
technique was adopted to evaluate the proposed approach.

4.2.4 Enhancing the Reliability of Systems

The service fault-tolerant scheduling methods to improve the reliability of systems are listed in
Table 8.

Table 8: Service fault-tolerant scheduling methods to improve the reliability of systems

Target Reference Method Advantage

[128] Fault-tolerant scheduling
method in power management
system

Operate the deceleration
mechanism according to the
actual workload

[129] Fault-tolerant task scheduling
algorithm in grid computing

Improve the reliability of systems

[130] Fault-tolerance method in
criticality-mixed systems

Improve the security of tasks
with different critical levels

[131] Fault trace approach for the
power grid

Take full advantage of the
monitoring data and infer the
fault reasons

(Continued)
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Table 8 (continued)

Target Reference Method Advantage

Enhancing
reliability of
systems

[132] Heuristic fault-tolerant task
scheduling algorithm

Improve the reliability of systems
by the number of tolerant
permanent faults

[133] Adaptive fault-tolerant
scheduling algorithm

Select the most appropriate
fault-tolerant technique to
address the faults

[134] Service fault-tolerant
scheduling method in
scientific workflows

Improve the reliability of systems

[135] Task clustering algorithm
with fault tolerance

Synthetically consider the
execution latency and cost of
workflows

Zhang et al. [128] investigated fault tolerance in a power management system and designed a fault-
tolerant scheduling method. Specifically, the online method calculates the running rate of the system
and operates the deceleration mechanism according to the actual workload.

Grid computing serves computation-sensitive and long-operating applications. To guarantee the
quality of service (QoS), these applications need to tolerate potential faults. Based on the ant colony
algorithm, Idris et al. [129] presented a fault-tolerant task scheduling algorithm in grid computing,
ensuring that the tasks can be normally executed when faults occur.

In real-time systems and embedded systems, criticality-mixed task scheduling is usually consid-
ered. Zhou et al. [130] designed a fault-tolerance method in criticality-mixed systems to improve the
security of tasks with different critical levels.

Wang et al. [131] proposed a fault trace approach for the power grid in a big data platform. First,
Spark was used to handle the faults. Second, the fault was analyzed by data mining. Last, according to
the decision tree, the reasons for faults were inferred. In addition, this method could take full advantage
of the monitoring data and infer the fault reasons.

The complexity of heterogeneous systems increases the possibility of faults in the systems,
resulting in the growing significance of efficient task scheduling strategies with fault tolerance. Hence,
Liu et al. [132] proposed a heuristic, fault-tolerant task scheduling algorithm to improve the reliability
of systems by dynamically computing the number of tolerating permanent faults.

Alarifi et al. [133] presented a fault-tolerant scheduling algorithm to allocate service requests to the
appropriate devices in the IoT. When the service execution failed, the proposed algorithm selected the
most appropriate fault-tolerant technique from replication, resubmission, and checkpoint techniques,
increasing the reliability of the IoT.

Fault tolerance is the primary technique in CC. When the workflow experiences faults, the
applications provide a protection mechanism to ensure the safety of the systems. Talwani et al. [134]
compared the techniques that optimized the fault tolerance in scientific workflows according to real-
world workflows.
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Task clustering can enhance the computational granularity of the scientific workflow to execute
tasks with distributed computing resources. Khaldi et al. [135] proposed a task clustering algorithm
with fault tolerance. The algorithm considered the constraints of workflow execution time and
execution cost to develop the performance of the workflow.

4.3 Opportunities for Service Fault-Tolerant Scheduling to Enhance Scheduling Efficiency
Although some of the previously mentioned challenges in service fault-tolerant scheduling are

addressed, opportunities to enhance the efficiency of service scheduling remain, as illustrated in
Fig. 14.
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Figure 14: Opportunities in service fault-tolerant scheduling

1) Elastic resource scheduling. The rich resources in data centers are used to process a large
amount of data, which consumes resources and power and negatively impacts the natural
environment [136]. Therefore, the green processing of data becomes increasingly significant
to protecting the environment. For each service, the resource requirements of services should
be analyzed in detail. Based on the consideration of fault tolerance, the resources should
be elastically allocated for services in the data center to save energy [137]. Therefore, elastic
resource scheduling is a future direction of service fault-tolerant scheduling.

2) Prediction for errors in tasks. Frequent task migration causes additional energy consumption
and influences the system performance [138]. Therefore, potential faults can be predicted based
on the characteristics of tasks executed in the long term. Resources should be provided to
address the faults, reducing the energy consumption [139]. Thereby, prediction for errors in
tasks is also a future research direction of service fault-tolerant scheduling.

3) Security in service fault-tolerant scheduling. Service fault-tolerant scheduling requires the
detection of multiple attributes of services, possibly including the privacy of the user, which
leads to the significance of security [140]. A service fault-tolerant scheduling method with
high performance should address the relationship of security and fault tolerance [141]. Hence,
security in service fault-tolerant scheduling is also a future research direction.

5 Conclusion

In this work, a comprehensive and detailed survey of intelligent identification based on power
big data is presented. First, the data acquisition and storage process are investigated. Second, the
anomaly characteristics and fault discrimination techniques of a massive amount of data are analyzed.
Furthermore, the problem of fault tracing for dispatching operations during communication is
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discussed. This survey is presented to promote the further progress of intelligent identification based
on power big data. However, numerous research issues in this area are still open and need further
efforts, including optimizing the distributed intelligent identification process and balancing security
protection and performance.
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