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ABSTRACT

Peridynamics (PD) is a non-local mechanics theory that overcomes the limitations of classical continuum mechan-
ics (CCM) in predicting the initiation and propagation of cracks. However, the calculation efficiency of PD models is
generally lower than that of the traditional finite element method (FEM). Structural idealization can greatly improve
the calculation efficiency of PD models for complex structures. This study presents a PD shell model based on the
micro-beam bond via the homogenization assumption. First, the deformations of each endpoint of the micro-beam
bond are calculated through the interpolation method. Second, the micro-potential energy of the axial, torsional,
and bending deformations of the bond can be established from the deformations of endpoints. Finally, the micro
moduli of the shell model can be obtained via the equivalence principle of strain energy density (SED). In addition,
a new fracture criterion based on the SED of the micro-beam bond is adopted for crack simulation. Numerical
examples of crack propagation are provided, and the results demonstrate the effectiveness of the proposed PD shell
model.
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1 Introduction

Peridynamic (PD) theory was proposed by Silling [1] as a new formulation of the classical
continuum mechanics (CCM) to solve fracture and failure issues. The PD equations of motion
appear as integral-differential equations [2], and the integral does not depend on the continuity
of the displacement. Thus, PD theory is spontaneously applied to analyze and solve discontinuity
problems, such as crack propagation. In recent years, PD theory has been rapidly developed and
applied to fracture or damage analysis of solid structures, such as the fracture problems of isotropic
and anisotropic materials [3–5], the problems of plasticity [6–8], the crack branch [9–11] and impact
[12] of brittle materials, composite materials [13–15], crack bending problem [16], and nonlinear
analysis [17,18].

However, the calculation efficiency of PD models is usually lower than that of other traditional
numerical methods, such as the finite element method (FEM), especially for complex structures. The
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coupling method is a strategy to improve calculation efficiency. Han et al. [19] proposed a local/non-
local coupling model via the Arlequin approach; this model couples energy equations of the PD and
CCM models in an overlapping domain. Han et al. [20] presented a hybrid adaptive local-continuum
damage/PD model by using the morphing method [21,22]. Structural idealization is often employed in
engineering as a useful method to reduce the calculation time of PD models. Silling et al. [23] proposed
a two-dimensional (2D) PD model for membranes and used this model for the numerical simulation of
membrane stretching and dynamic tearing. Gerstle et al. [24] proposed the micropolar PD model that
has two stiffness parameters. This model is mainly used to solve 2D plane problems. O’Grady et al. [25]
introduced a non-ordinary state-based PD (SBPD) Kirchhoff-Love plate model based on beam models
to represent the bending deformation of the plate, which is derived from the concept of a rotating spring
with the bond between two material points. Taylor et al. [26] presented a 2D bond-based PD (BBPD)
plate model through the asymptotic analysis of thin plates. This model can effectively analyze thin plate
structures, including fractures caused by bending. Diyaroglu et al. [27] proposed a new PD Mindlin
plate model based on the BBPD formulation while accounting for transverse shear deformation. The
PD equations of motion were established and simplified to the same form as those of the classical
Mindlin plate equations. Chowdhury et al. [28] proposed an SBPD model for linear elastic shells by
introducing a shear correction factor and a shear deformation correction considering shell thickness.
Taştan et al. [29] developed a PD model for orthotropic Kirchhoff thin plates based on the BBPD
formulation by using the homogenized approach. Sarego et al. [30] proposed a 2D linearized ordinary
SBPD model for elastic deformation and computed the stiffness matrix for 2D plane stress/strain
conditions, which is suitable for constructing membrane structures. Yang et al. [31] implemented the
PD Mindlin plate formulations presented by Diyaroglu et al. [27] in the FEM framework. Nguyen
et al. [32] developed a new ordinary SBPD model to predict the thermomechanical behaviors of 3D
shell structures with six degrees of freedom, providing numerical methods and computational steps to
deal with complex shell structures. Yang et al. [33] proposed a new PD Kirchhoff plate model based
on the SBPD formulation, which is computationally efficient because each material point of the plate
model has only one degree of freedom. Yolum et al. [34] presented a PD formulation for orthotropic
Mindlin plates with transverse shear deformation. Vazic et al. [35] established a PD model for Mindlin
plates based on Winkler’s elastic theory, which is an extension of the Mindlin plate model proposed
by Diyaroglu et al. [27]. Oterkus et al. [36] developed a new PD formulation for shell membranes. PD
equations of motion were established by using Euler-Lagrange equations, and the bond constant of
the shell membrane was determined by comparing PD equations of motion with classical equations of
motion under a special condition that horizon tends to zero. Zhang et al. [37] developed a SBPD theory
for nonlinear Reissener-Mindlin shells to model and predict large deformations of thick-walled shell
structures. The controlling equations of the SBPD shell theory were derived by the non-local balance
laws and the kinematic assumptions of Reissner and Mindlin plate and shell theories. Yang et al. [38]
proposed a new SBPD model for functionally graded Kirchhoff plates and obtained the equations of
motion of the proposed model by using the Euler-Lagrange equations and Taylor expansion. Zhang
et al. [39] developed a non-local stress resultant-based geometrically-exact shell theory, which can
simulate fracture and crack extension in shell structures under finite deformations. Shen et al. [40,41]
proposed a PD shell model based on the micro-beam bond via the interpolation method, which is the
foundation of this study.

The structural idealization strategies for PD plate and shell models proposed above can be divided
into two types: BBPD model and SBPD model. Compared with the SBPD model, the BBPD model
has the advantages of easy programming, simple calculation, and high calculation efficiency and has a
wide range of application prospects. In the study, the in-plane deformation part of the PD shell in our
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previous work [40] is improved, and a new fracture criterion based on the strain energy density (SED) of
the micro-beam bond is proposed. The reconstruction process of the whole PD shell model is described
in detail through the strain homogenization method. First, the deformations of each endpoint of the
micro-beam bond are calculated by the interpolation method. Second, the micro-potential energy of
the axial, torsional, and bending deformations of the bond can be established from the deformations
of endpoints. Finally, the micro moduli of the shell model can be obtained via the equivalence principle
of SED.

The rest of this paper is organized as follows. Section 2 reviews the basic formulations of the micro-
beam bond with axial, torsional, and bending deformations. Section 3 mainly describes the derivation
process of the micro moduli of various deformations in the PD shell model and presents a new energy
failure criterion of the micro-beam bond for PD shells. In Section 4, some numerical examples are
given, including a V-shaped notch plate under pressure loading, a notched plate under stretching,
a notched cylinder under internal pressure, and a notched S-shaped curved shell under stretching.
Finally, Section 5 provides the conclusions.

2 Micro-Beam Bond

As shown in Fig. 1, the micro-beam bond is assumed to be composed of point xi and its adjacent
point xj, which is located in the neighborhood horizon Hxi . The neighborhood horizon of point xi

is a circle of radius δ centered on it. For the local coordinate system of the neighborhood horizon
Hxi , the normal of the horizon is defined as the Z-axis, and the X -axis and the Y -axis lie in the plane
of the horizon and are orthogonal, respectively. For the local coordinate system of the micro-beam
bond, the x-axis is defined as the vector from point xi to point xj, the z-axis is in the same direction as
the Z-axis, and the y-axis is perpendicular to the x-axis. Each micro-beam bond is subjected not only
to axial deformation but also to torsional and bending deformations. The micro moduli of various
deformations for the micro-beam bond model can be solved independently.

Figure 1: Micro-beam bond with its (a) horizon and (b) local coordinate system

In the local coordinate system of the micro-beam bond, the relationship between the force/moment
densities and displacements of endpoints of the micro-beam bond can be expressed as

F = Ku

where

F = {
fix fiy fiz mix miy miz fjx fjy fjz mjx mjy mjz

}T

u = {
ui vi wi θix θiy θiz uj vj wj θjx θjy θjz

}T

K =
∫ 1

0

BTDPDBξdχ (1)



1978 CMES, 2023, vol.134, no.3

in which B and DPD can be expressed as follows

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
ξ

0 0 0 0 0
1
ξ

0 0 0 0 0

0 0
12χ − 6

ξ2 0 −6χ − 4
ξ

0 0 0 −12χ − 6
ξ2 0 −6χ − 2

ξ
0

0
12χ − 6

ξ2 0 0 0
6χ − 4

ξ
0 −12χ − 6

ξ2 0 0 0
6χ − 2

ξ

0 0 0 − 1
ξ

0 0 0 0 0
1
ξ

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

and

DPD =

⎡
⎢⎢⎣

cax

cby

cbz

ctor

⎤
⎥⎥⎦ (3)

In Eqs. (1)–(3), χ is the shape parameter whose value ranges from 0 to 1; ξ is the length of
the micro-beam bond; and cax, cby, cbz, and ctor are the axial deformation parameter, the bending
deformation parameter around the y-axis, the bending deformation parameter around the z-axis, and
the torsional deformation parameter, respectively.

3 PD Shell Model

As shown in Fig. 2, the horizon Hxi of point xi is assumed to be exactly enclosed by a square
element with nodes 1, 2, 3, and 4, and the length of the square element is L = 2δ. For the local
coordinate system XYZ of the square element, the X -axis is defined as the vector from node 1 to
node 2, the Y -axis is the vector from node 2 to node 3, which is perpendicular to the X -axis, and the
Z-axis is the normal of the square element. For the convenience of calculation, the homogenization
assumption for the region within the neighborhood horizon of point xi can be extended to any region
within the square element, considering that the overlapping region between the neighborhood horizon
of point xi and the square element occupies the majority of the square element.

Figure 2: Horizon of point xi is exactly enclosed by a square element

3.1 Micro Moduli of in-Plane Deformation for PD Shells
The in-plane deformation only includes the translational displacement of the X -axis and the

Y -axis and the rotation angle displacement around the Z-axis. Therefore, in the coordinate system of
the square element, the translational displacement along the X -axis and the Y -axis and the rotation
angle around the Z-axis of each node can be defined as UI , VI , and �IZ, respectively. The in-plane
displacement vector of the square element can be expressed as
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U
e =

{
U

T

1 U
T

2 U
T

3 U
T

4

}T

(4)

where

U
T

I = {
UI VI �IZ

}
(I = 1, 2, 3, 4)

The in-plane displacement vector at any position in the square element can be expressed by the
Allman interpolation function [42] and Eq. (4) as

U(p, q) = {
U V �Z

}T = N (p, q) U
e

(5)

where N (p, q) is the interpolation function, as described in Appendix A.

According to Eq. (5), the in-plane displacement vector at endpoints xi and xj of the micro-beam
bond in the local coordinate system XYZ can be obtained as

U = {
Ui Vi �iZ Uj Vj �jZ

}T = R̄U
e

where R̄ is the interpolation matrix, specifically

R̄ =
[

N(pi, qi)

N(pj, qj)

]
In the local coordinate system of the micro-beam bond, the in-plane displacement vector at

endpoints xi and xj of the micro-beam bond is defined as

u = {
ui vi θiz uj vj θjz

}T

Through coordinate transformation, the in-plane displacement vector at endpoints xi and xj of
the micro-beam bond in its local coordinate system can be obtained as

u = TU = TR̄U
e

(6)

where T is the coordinate transformation matrix of the two local coordinate systems of the square
element and the micro-beam bond. Assuming that the Z-axis and the z-axis of the two local coordinate
systems coincide, we obtain

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

where θ is the angle between the x-axis and the X -axis.

As shown in Fig. 3, the micro-beam bond can only be subjected to axial deformation along the
x-axis and transversal deformation around the z-axis for the in-plane deformation. Thus, the strain of
the micro-beam bond can be expressed in the local coordinate system of the micro-beam bond as

ε = [
εx κz

]T = Bu (7)
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where εx, κz represent the axial strain and the curvature in the z-axis direction, respectively, and

B =
⎡
⎢⎣−1

ξ
0 0

1
ξ

0 0

0
12χ − 6

ξ 2

6χ − 4
ξ

0 −12χ − 6
ξ 2

6χ − 2
ξ

⎤
⎥⎦

where χ is the shape parameter, and ξ is the length of the bond.

Figure 3: Micro-beam bond subjected to axial and transversal deformation for the in-plane deforma-
tion (a) undeformed state and (b) deformed state

Substituting Eq. (6) into Eq. (7) can be obtained as

ε = BT̄R̄U
e

(8)

According to the homogenization assumption, the strain in the square element is assumed to be
equal everywhere and is εXY = [εX εY γXY ]T. Thus, the in-plane displacement vector of the square
element can be defined as

U
e =

[
−εXδ − γXYδ −εYδ −γXY

2
εXδ − γXYδ −εYδ −γXY

2
εXδ + γXYδ εYδ −γXY

2

−εXδ + γXYδ εYδ −γXY

2

]T

(9)

where εX , εY , and γXY represent the positive strain in the X -axis direction, the positive strain in the
Y -axis direction, and the shear strain in the X -axis and the Y -axis directions, respectively.

Substituting Eq. (9) into Eq. (8) can be obtained as

ε =

⎡
⎢⎢⎣

εX cos2θ + εY sin2
θ + γXY sin θ cos θ

6 (2χ − 1)

[
(εX − εY) cos θ sin θ − γXY

(
cos2θ − 1

2

)]
ξ

⎤
⎥⎥⎦ = Tξ εXY (10)

where

Tξ =

⎡
⎢⎢⎣

cos2θ sin2
θ sin θ cos θ

6 (2χ − 1) sin θ cos θ

ξ
−6 (2χ − 1) sin θ cos θ

ξ
−

6 (2χ − 1)

(
cos2θ − 1

2

)
ξ

⎤
⎥⎥⎦
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The micro moduli matrix of the micro-beam bond corresponding to axial and transversal
deformations is defined as

DPD =
[

cax

cbz

]
(11)

Therefore, the micro-potential energy of the micro-beam bond can be expressed by Eqs. (10) and
(11) as

ω̄ = 1
2

∫ xj

xi

ε
TDPDεdx = 1

2

∫ 1

0

ε
TDPDεξdχ = 1

2

∫ 1

0

ε
T
XY T

T

ξ
DPDTξ εXYξdχ (12)

Then, the in-plane SED of point xi in PD theory can be expressed by Eq. (12) as

W̄PD (xi) = t
∫ δ

0

∫ 2π

0

1
2
ω̄ξdθdξ = ε

T
XY

(
t
4

∫ δ

0

∫ 2π

0

∫ 1

0

T
T

ξ
DPDTξ ξ

2dχdθdξ

)
εXY (13)

where the factory 1
2

represents that each endpoint of the bond owns only half of the energy in the
micro-beam bond, and t is the thickness of the square element.

The in-plane SED of point xi in CCM can be expressed as

W̄CCM (xi) = 1
2
ε

T
XY DmεXY (14)

where

Dm = E
1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦

where E is Young’s modulus, and ν is Poisson’s ratio.

By setting Eq. (13) equal to Eq. (14), the values of cax and cbz can be obtained as

cax = 6E
πtδ3 (1 − ν)

, cbz = E (1 − 3ν)

6πtδ (1 − ν2)
(15)

3.2 Micro Moduli of Bending Deformation for PD Shells
The bending deformation only includes the transversal displacement along the Z-axis and the

rotational displacement around the X -axis and the Y -axis. Therefore, in the coordinate system of
the square element, the transversal displacement along the Z-axis and the rotation angles around the
X -axis and the Y -axis of each node can be defined as WI , �IX , and �IY , respectively. The bending
displacement vector of the square element can be expressed as

Ũe = {
ŨT

1 ŨT
2 ŨT

3 ŨT
4

}T
(16)

where

ŨT
I = {

WI �IX �IY

}
(I = 1, 2, 3, 4)
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The bending displacement vector at any position of the square element can be expressed by a cubic
interpolation function [40] and Eq. (16) as

Ũ(p, q) = {
W �X �Y

}T = Ñ (p, q) Ũe (17)

where Ñ (p, q) is the interpolation function, as described in Appendix B.

According to Eq. (17), the bending displacement vector at endpoints xi and xj of the micro-beam
bond in the local coordinate system XYZ can be obtained as

Ũ = {
Wi �iX �iY Wj �jX �jY

}T = R̃Ũe

where R̃ is the interpolation matrix, specifically

R̃ =
[

Ñ(pi, qi)

Ñ(pj, qj)

]
In the local coordinate system of the micro-beam bond, the bending displacement vector at

endpoints xi and xj of the micro-beam bond is defined as

ũ = {
wi θix θiy wj θjx θjy

}T

Through coordinate transformation, the bending displacement vector at endpoints xi and xj of
the micro-beam bond in its local coordinate system can be obtained as

ũ = T̃Ũ = T̃R̃Ũe (18)

where T̃ is the coordinate transformation matrix of the two local coordinate systems of the square
element and the micro-beam bond. Assuming that the Z-axis and the z-axis of the two local coordinate
systems coincide, we obtain

T̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 cos θ sin θ 0 0 0
0 − sin θ cos θ 0 0 0
0 0 0 1 0 0
0 0 0 0 cos θ sin θ

0 0 0 0 − sin θ cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

As shown in Fig. 4, the micro-beam bond can only be subjected to transversal deformation around
the y-axis and torsional deformation around the x-axis. Thus, the strain of the micro-beam bond can
be expressed in the local coordinate system of the micro-beam bond as

ε̃ = [
κy φx

]T = B̃̃u (19)

where κy, φx represent the curvature in the y-axis direction and the torsional curvature, respectively,
and

B̃ =
⎡
⎢⎣

12χ − 6
ξ 2

0 −6χ − 4
ξ

−12χ − 6
ξ 2

0 −6χ − 2
ξ

0 −1
ξ

0 0
1
ξ

0

⎤
⎥⎦
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Figure 4: Micro-beam bond subjected to transversal and torsional deformation for the bending
deformation (a) undeformed state and (b) deformed state

Substituting Eq. (18) into Eq. (19) can be obtained as

ε̃ = B̃T̃R̃Ũe (20)

According to the homogenization assumption, the strain in the square element is assumed to be
equal everywhere and is ε̃XY = [κY κX κXY ]T. Thus, the bending displacement vector of the square
element can be defined as

Ũe =
[
κXYδ2

2

(
−κX − κXY

2

)
δ

(
κY + κXY

2

)
δ −κXYδ2

2

(
−κX + κXY

2

)
δ

(
−κY + κXY

2

)
δ

κXYδ2

2

(
κX + κXY

2

)
δ

(
−κY − κXY

2

)
δ −κXYδ2

2

(
κX − κXY

2

)
δ

(
κY − κXY

2

)
δ

]T

(21)

where κX , κY , and κXY represent the curvature in the X -axis direction, the curvature in the Y -axis
direction, and the torsional curvature in the X -axis and the Y -axis directions, respectively.

Substituting Eq. (21) into Eq. (20) can be obtained as

ε̃ =
⎡
⎣ κY cos2θ + κX sin2

θ + κXY sin θ cos θ

(κX − κY) sin θ cos θ +
(

cos2θ − 1
2

)
κXY

⎤
⎦ = T̃ξ ε̃XY (22)

where

T̃ξ =
⎡
⎣ cos2θ sin2

θ sin θ cos θ

− sin θ cos θ sin θ cos θ cos2θ − 1
2

⎤
⎦

The micro moduli matrix of the micro-beam bond corresponding to bending and torsional
deformations is defined as

D̃PD =
[

cby

ctor

]
(23)

Therefore, the micro-potential energy of the micro-beam bond can be expressed by Eqs. (22) and
(23) as

ω̃ = 1
2

∫ xj

xi

ε̃
T
D̃PD̃εdx = 1

2

∫ 1

0

ε̃TD̃PD̃εξdχ = 1
2

∫ 1

0

ε̃T
XY T̃T

ξ
D̃PDT̃ξ ε̃XYξdχ (24)
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Then, the bending SED of point xi in PD theory can be expressed by Eq. (24) as

W̃PD (xi) = t
∫ δ

0

∫ 2π

0

1
2
ω̃ξdθdξ = ε̃T

XY

(
t
4

∫ δ

0

∫ 2π

0

∫ 1

0

T̃T
ξ
D̃PDT̃ξ ξ

2dχdθdξ

)
ε̃XY (25)

The bending SED of point xi in CCM can be expressed as

W̃CCM (xi) = 1
2t

ε̃T
XY Db̃εXY (26)

where

Db = Et3

12 (1 − ν2)

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1 − ν

2

⎤
⎥⎦

By setting Eq. (25) equal to Eq. (26), the values of cby and ctor can be obtained as

cby = Et
2πδ3(1 − ν)

, ctor = Et(1 − 3ν)

2πδ3(1 − ν2)
(27)

So far, the four micro moduli of various deformations for the PD shell model in Eqs. (15) and (27)
have all been solved, and the stiffness matrix of a micro-beam bond for PD shells can be formed easily.

3.3 Failure Criterion
By comparing the relationship between the elongation rate s and the critical elongation rate s0 of

the bond between two material points, this single judgment criterion cannot accurately describe the
damage degree of the micro-beam bond. In this study, the fracture criterion based on the idea of strain
energy is adopted to simulate the cracks. The proposed PD shell model belongs to the 2D condition.
As shown in Fig. 5, similar to the 3D condition, the fracture energy [43,44], i.e., the energy required
to open a new fracture surface per unit area, can be determined by the energy released by breaking all
bonds across the unit fracture surface. Assuming that the critical micro-potential energy of each bond
is ωc, the integral equation of the fracture energy Gc for the 2D condition can be defined as

Gc = 2t
∫ δ

0

∫ δ

z

∫ cos−1z/ξ

0

ωcξdϕdξdz (28)

where t is the thickness of the shell and ωc can be expressed as

ωc = 1
2

∫ xj

xi

εTDPDεdx (29)

where

ε = [
εx κy κz φx

]T

where εx, κy, κz, and φx represent the axial strain, the curvature in the y-axis and the z-axis directions
and the torsional curvature of the micro-beam bond, respectively.
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Figure 5: Schematic of the fracture surface

Assuming that the micro-beam bond is uniformly deformed in the neighborhood horizon of point
xi, all strains in the neighborhood horizon are equal. Therefore, Eq. (29) can be rewritten as

ωc = 1
2
εTDPDεξ (30)

where ξ is the length of the micro-beam bond.

Then, substituting Eq. (30) into Eq. (28), the integral fracture energy equation can be calculated
as

Gc = 2t
∫ δ

0

∫ δ

z

∫ cos−1z/ξ

0

ωcξdϕdξdz = tδ4

2

(
1
2
εTDPDε

)
(31)

Finally, the energy failure criterion of a micro-beam bond can be expressed by Eq. (31) as

ω̄bond = 1
2
εTDPDε = 2Gc

tδ4

4 Numerical Examples
4.1 V-Shaped Notch Plate under Pressure Loading

A soda-lime brittle glass plate is selected to demonstrate that the proposed shell model can simulate
its crack propagation. The geometry and dimensions of the glass specimen are shown in Fig. 6. Thec
sample has the dimension of width W = 100 mm, height H = 150 mm, and thickness t = 4.65 mm.
There is a V-shaped notch with an angle of 40◦ on the left side of the sample, and a pre-crack exists at
the end of the V-shaped notch. The material properties of the specimen are taken from the literature
[45], with Young’s modulus of E = 72 GPa, Poisson’s ratio of ν = 0.23, density of ρ = 2440 kg/m3,
and fracture energy of Gc = 3.8 J/m2. In the experiment [46], the impact effect on the V-shaped notch
is caused by an impactor. Instead of simulating the impactor itself, the notch pressure load is chosen
to be estimated in the computational tests to reduce the computational cost of the model. The loading
conditions for the notch pressure load are taken from the literature [45], where it is assumed that the
load is uniformly distributed along the loading area. Only one layer of material points of the V-shaped
notch plate is discretized, with a discretization spacing of � = 0.5 mm. According to suggestions of
the literature [47], the selected neighborhood horizon of the material points is δ = 3�, and the time
increment step is �t = 1 × 10−7 s, which is sufficient to satisfy the stability condition of numerical
integration. In this study, a precise volume correction algorithm [48] for 2D PD models is introduced
to improve the computational accuracy of numerical integration.
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Figure 6: Geometry and dimensions of the V-shaped notch plate

Numerical results are shown in Figs. 7a–7c. As the loading time is prolonged, the crack propagates
slowly in the pre-crack direction and the crack bifurcation appears at approximately 60 μs, at a position
60 mm away from the left side of the sample, with a bifurcation angle of around 45◦. Two bifurcated
crack propagation paths can be observed at the front end of the plate. Experimental results provided
in [46] are shown in Fig. 7d. Numerical results in Fig. 7c are in good agreement with experimental
results of fractured specimens in Fig. 7d, which shows that the PD shell model and fracture criterion
proposed in this study can simulate the crack propagation path very accurately.

Figure 7: Numerical results of crack propagation for the V-shaped notch plate at loading time of (a)
45 μs, (b) 81 μs, and (c) 112 μs; (d) experimental photographs of fractured specimens, reproduced
with the permission of [46], copyright @ Journal of the Mechanics and Physics of Solids, 2018

4.2 Pre-Notched Plate under Stretching
As shown in Fig. 8, the material characteristics, geometric shape, and boundary conditions of the

rectangular thin plate are selected as described in literature [49]. The rectangular thin plate has the
dimension of length L = 100 mm, width W = 40 mm, and thickness t = 1 mm. The pre-notch
is located in the middle of the left side of the rectangular thin plate, whose length is l = 50 mm.
The Young’s modulus, density, Poisson’s ratio, and fracture energy of the thin plate are E = 72 GPa,
ρ = 2440 kg/m3, ν = 1/3, and Gc = 135 J/m2, respectively. The tensile loading with equal magnitude
and the opposite direction is exerted to the upper and lower edges of the thin plate, whose magnitude
is kept constant as σ = 12 MPa throughout the simulation. The neighborhood horizon of the material
point is δ = 3�, and the same fracture criterion as in the previous example is selected.
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Figure 8: Dimensions and boundary conditions of the pre-notched plate

Four discrete mesh sizes of 1.25, 1, 0.8, and 0.5 mm are selected to investigate the effect of mesh
refinement on cracks, respectively. The crack propagation paths of the plate using four uniform grids at
47 μs are shown in Fig. 9. The tensile loading on the upper and lower edges of the thin plate increases
abruptly and then remains constant after reaching the required value. As the loading time is prolonged,
the crack propagation path slowly expands along the direction (X -axis) of the pre-crack until near 21
μs, crack bifurcation occurs, and two bifurcated crack propagation paths can be observed at the front
end of the plate. The crack propagation paths are highly similar for all four models. As the horizon
decreases, the damage region becomes smaller, i.e., the damage region becomes more precise. The fine
mesh captures the degree of damage more accurately than the coarse mesh. Numerical results show
that the crack propagation paths predicted by the proposed PD shell model are roughly similar to the
numerical results in the references [48,49].

Figure 9: Crack propagation paths of the pre-notched plane under different discretizations. Mesh
spacing � of (a) 1.25 mm, (b) 1.0 mm, (c) 0.8 mm, and (d) 0.5 mm

4.3 Pre-Notched Cylinder under Internal Pressure
A cylindrical shell [50] subjected to internal pressure in the axial direction and symmetrical pre-

notches with bending deformation and membrane deformation is selected to verify the applicability of
the proposed PD shell model to the crack propagation of the ordinary shell model. As shown in Fig. 10,
the cylinder has a cross-sectional radius of R = 5 mm, an axial length of L = 30 mm, and a thickness
of t = 0.125 mm. Two symmetrical pre-cracks are located in the middle of the cylindrical shell axially
(Z-axis), with a single crack length of l = 4 mm. Two cases (a) without and (b) with tear straps
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are considered. The purpose of installing the tear straps is to restrain the axially propagating crack.
The mechanical parameters of the cylinder are taken from literature [50], where Young’s modulus is
E = 70 GPa, Poisson’s ratio is ν = 0.3, and the fracture energy is Gc = 1.5 J/m2, respectively. The
displacements in the X -axis and the Y -axis directions at both ends of the cylinder are constrained.
Exploiting symmetry, only one-half of the geometry of the cylinder is modeled, and only one layer
of material points of the thin cylinder is discretized with a discretization spacing � of 0.25 mm. The
selected neighborhood horizon is δ = 3�, and the fracture criterion is as described in Section 3.3
above. The damage clouds of the cylinder in case (a) and case (b) at different force balance stages
are shown in Figs. 11 and 12. For the cylinder without tear straps, Fig. 11 shows that a straight crack
parallel to the axial direction (Z-axis) of the cylinder propagates toward its ends under the action of
internal pressure. As expected, a straight crack propagation path is observed. For the cylinder with
tear straps, Fig. 12 shows that the crack propagates in the axial direction in the same way as case (a)
until the crack approaches the tear straps, where the direction of crack propagation suddenly changes
from axial to circumferential, and the crack branching occurs in the circumferential direction. The
presence of tear straps significantly affects the crack propagation path. The damage numerical results
of these two cases are the same as those in the literature [50]. Thus, this phenomenon is successfully
simulated by the proposed PD shell model.

Figure 10: Axially pre-notched thin cylinders under internal pressure (a) without tear straps and (b)
with tear straps

Figure 11: Crack propagation path of the axially pre-notched cylinder without tear straps under
internal pressure (a) 0.81 MPa, (b) 0.49 MPa, (c) 0.35 MPa, (d) 0.24 MPa, (e) 0.16 MPa, and (f)
0.095 MPa
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Figure 12: Crack propagation path of the axially pre-notched cylinder with tear straps under internal
pressure (a) 0.85 MPa, (b) 0.50 MPa, (c) 0.40 MPa, (d) 0.47 MPa, (e) 0.53 MPa, and (f) 0.46 MPa

4.4 Pre-Notched S-Shaped Curved Shell under Stretching
In this example, an S-shaped curved shell with pre-notches is selected to verify that the proposed

PD shell model is applicable to any shell structure and to deal with thin shells with arbitrary cracks.
The geometry and dimensions of the long side of the S-shaped curved shell are shown in Fig. 13, which
is formed by two arcs tangent to each other with a radius of R = 80 mm. An external load of equal
magnitude in opposite directions is exerted on the entire long edge of the shell with a load magnitude
of σ = 12 MPa. Two cases of pre-notches with an angle of (a) 0◦ and (b) 45◦ are considered, as shown
in Fig. 13, to observe the crack propagation. The length of the short side of the shell is L = 50 mm, and
a pre-notch with a length of l = 10 mm exists at the tangent in the middle of the two circular curved
surfaces of the thin shell, which is uniformly distributed along the tangent of the curved surface. The
material parameters of the thin shell are as follows: Young’s modulus of E = 72 GPa, Poisson’s ratio of
ν = 1/3, thickness of t = 1 mm, and fracture energy of Gc = 80 J/m2. Only one layer of material points
of the S-shaped surface is discretized, with a discretization spacing of � = 1 mm. The neighborhood
horizon of the material point is δ = 3�, and the same fracture criterion as in the previous examples is
selected.

Figure 13: S-shaped shell structure with pre-notch (a) parallel to YZ-plane and (b) 45° with YZ-plane

The damage diagrams of the shell structure at different loading times for two cases are shown
in Figs. 14 and 15. Fig. 14 shows that the crack parallel to the YZ-plane propagates in two opposite
directions, and the propagation path is roughly parallel to the YZ-plane. However, at the end of the
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crack propagation, crack bifurcation occurs, and two slightly bifurcated crack propagation paths can
be observed. As shown in Fig. 15, the crack at an angle of 45◦ with the YZ-plane first propagates
slightly on the shell surface along the pre-notched direction, the direction of crack propagation path
changes, and the crack propagates roughly along the YZ-plane in two opposite directions. When the
loading time is approximately 21 μs, the first crack bifurcation occurs, and the new crack propagates
roughly along the X -axis in two opposite directions. The original and bifurcated cracks propagate
simultaneously in the established directions. Eventually, the bifurcation propagation path of the crack
can be observed very clearly.

Figure 14: Propagation of crack parallel to the YZ-plane, and the time of (a) 3 μs, (b) 10 μs, (c) 17 μs,
(d) 24 μs, (e) 31 μs, and (f) 38 μs

Figure 15: Propagation of the crack at an angle of 45◦ with the YZ-plane, and the time of (a) 3 μs, (b)
10 μs, (c) 17 μs, (d) 24 μs, (e) 31 μs, and (f) 38 μs

5 Conclusion

In this study, a PD shell model based on the micro-beam bond via the homogenization method
is presented. First, the deformations of each endpoint of the micro-beam bond are calculated using
the interpolation method. Second, the micro-potential energy of the axial, torsional, and bending
deformations of the bond can be established from the deformations of endpoints. Finally, the micro
moduli of the shell model can be obtained via the equivalence principle of SED. The most critical
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aspect is the establishment of the conversion relationship between strains of the micro-beam bond
and strains of the square element, which can significantly simplify the process of deriving the micro
moduli. Different deformations of the micro-beam bond are considered; thus, it is not restricted by
material parameters. On the basis of elasticity and small deformations, the 2D plane stress model
and the bending model are combined to form a general PD shell model, which is a combination
of axial, torsional, and bending deformations. The effectiveness of the proposed PD shell model is
demonstrated by several numerical examples. The strain homogenization method used to construct
the PD shell model in this study will be applied to the construction of other models in the future, such
as anisotropic and large deformation models.
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Appendix A. Shape functions for in-plane deformation of the PD shell model

N (p, q) is the interpolation function for in-plane deformation, specified as

N (p, q) = [
N1 (p, q) N2 (p, q) N3 (p, q) N4 (p, q)

]

NI (p, q) =
⎡
⎣N̄I 0 N̄K1

YJ1I − N̄K2
YIJ2

0 N̄I −N̄K1
XJ1I + N̄K2

XIJ2

0 0 N̄I

⎤
⎦ (I = 1, 2, 3, 4) (A1)

p = (X − Xc) /δ, q = (Y − Yc) /δ (−1 ≤ p, q ≤ 1)

The parameters of the bottom right corner mentioned in Eq. (A1) can be defined as⎧⎨
⎩

J1 = MOD (I + 2, 4) + 1
J2 = MOD (I , 4) + 1
K1 = J1 + 4, K2 = I + 4

(A2)

where MOD(x, y) represents the remainder of x divided by y.

Xc and Yc are the coordinates of the square element centroid. The components of NI (p, q) can be
expressed as

N̄I(p, q) = 1
4

(1 + pIp) (1 + qIq)

N̄K(p, q) =

⎧⎪⎪⎨
⎪⎪⎩

1
16

(
1 − p2

)
(1 + qK−4 q) (K = 5, 7)

1
16

(1 + pK−4p)
(
1 − q2

)
(K = 6, 8)

pI = (−1, 1, 1, −1) , qI = (−1, −1, 1, 1)

XIJ = XJ − XI , YIJ = YJ − YI (I = 1, 2, 3, 4)

(A3)

where K, I , J is an ordered triplet, and the order of value is (5, 1, 2), (6, 2, 3), (7, 3, 4), (8, 4, 1).
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Appendix B. Shape functions for bending deformation of the PD shell model

Ñ (p, q) is the interpolation function for bending deformation, specified as

Ñ (p, q) = [
Ñ1 (p, q) Ñ2 (p, q) Ñ3 (p, q) Ñ4 (p, q)

]

ÑI (p, q) =

⎡
⎢⎢⎢⎢⎣

ÑI (p, q) ÑIX (p, q) ÑIY (p, q)

∂ÑI (p, q)

δ∂q
∂ÑIX (p, q)

δ∂q
∂ÑIY (p, q)

δ∂q

−∂ÑI (p, q)

δ∂p
−∂ÑIX (p, q)

δ∂p
−∂ÑIY (p, q)

δ∂p

⎤
⎥⎥⎥⎥⎦ (I = 1, 2, 3, 4) (B1)

p = (X − Xc) /δ, q = (Y − Yc) /δ (−1 ≤ p, q ≤ 1)

where Xc and Yc are the coordinates of the square element centroid. The components of ÑI (p, q) in
Eq. (B1) can be expressed as

ÑI (p, q) = −1
8

[
(1 + pIp) (1 + qIq)

(
p2 + q2 − pIp − qIq − 2

)]
ÑIX (p, q) = δ

8
qI

[
(1 + pIp) (1 + qIq)

2
(qIq − 1)

]
ÑIY (p, q) = −δ

8
pI

[
(1 + pIp)

2
(1 + qIq) (pIp − 1)

]
∂ÑI

∂p
= −1

8
pI (1 + qIq)

(
3p2 + q2 − qIq − 3

)
,

∂ÑI

∂q
= −1

8
qI (1 + pIp)

(
p2 + 3q2 − pIp − 3

)
(B2)

∂ÑIX

∂p
= δ

8
pIqI(1 + qIq)

2
(qIq − 1) ,

∂ÑIX

∂q
= δ

8
(3qIq − 1) (1 + pIp) (1 + qIq)

∂ÑIY

∂p
= −δ

8
(3pIp − 1) (1 + pIp) (1 + qIq) ,

∂ÑIY

∂q
= −δ

8
pIqI(1 + pIp)

2
(pIp − 1)

pI = (−1, 1, 1, −1) , qI = (−1, −1, 1, 1)
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