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ABSTRACT

This paper proposes a zero-moment control torque compensation technique. After compensating the gravity and
friction of the robot, it must overcome a small inertial force to move in compliance with the external force. The
principle of torque balance was used to realise the zero-moment dragging and teaching function of the lightweight
collaborative robot. The robot parameter identification based on the least square method was used to accurately
identify the robot torque sensitivity and friction parameters. When the robot joint rotates at a low speed, it can
approximately satisfy the torque balance equation. The experiment uses the joint position and the current motor
value collected during the whole moving process under the low-speed dynamic balance as the excitation signal to
realise the parameter identification. After the robot was compensated for gravity and static friction, more precise
torque control was realised. The zero-moment dragging and teaching function of the robot was more flexible, and
the drag process was smoother.
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1 Introduction

Robot zero-moment control technology requires dynamic models as theoretical support. The
dynamic model of the collaborative robot can be obtained by the Lagrangian or the Newton-Euler
equation, and the dynamic parameters can be identified by some methods. The parameters to be
identified in the model mainly include three categories: kinematic, dynamic and friction parameters.
Kinematic parameters involve link length, torsion angle, link bias, etc. These are obtained through
kinematics calibration and are known as quantities. The dynamic parameters include the mass of the
connecting rod, the first mass moment and the moment of inertia. Friction parameters are determined
by the friction model. Dynamic parameters and friction parameters must be identified.

Yang et al. [1] developed a robot control/identification scheme to identify the unknown robot
kinematic and dynamic parameters with enhanced convergence rate. Jin et al. [2] proposed a new
dynamic parameter identification method for flexible joints. Urrea et al. [3] discussed the design
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and assessment of different parameter identification methods applied to robot systems, such as
least squares, extended Kalman filter, Adaptive Linear Neuron (Adaline) neural networks, Hopfield
recurrent neural networks and genetic algorithms. Considering the joint elasticity, a novel dynamic
parameter identification method is proposed for general industrial robots only with motor encoders
[4]. The proposed method can reasonably resolve the problem of mutual opposition within a single
criterion and improve the identification robustness compared with other optimisation criteria [5]. An
improved integration method is proposed which increases the sampling period by redefining the update
condition; it then expands the applied range of the classical method which is more suitable for the
working characteristics of a robot servo controller and reduces the speed quantisation error generated
by the encoder [6].

Xiao et al. [7] proposed a collision detection algorithm without external sensors which can detect
potential collisions in man-robot interaction. A multi-criteria method, in support of the planning of
shared human-robot assembly tasks, is presented [8]. To enable the teaching of industrial robots by
hand without any force sensors, Zhang et al. [9] put forward a scheme to minimise the external force
estimation error and reduce disturbance in the guiding task by using the virtual mass and virtual
friction model. Gaz et al. [10] addressed the problem of extracting a feasible set of dynamic parameters
characterising the dynamics of a robot manipulator.

To achieve zero moment control in robot teaching, this paper explores the sensorless method
on the basis of joint torque compensation. The torque balance equation was established to realise
the zero-moment dragging and teaching function of the lightweight collaborative robot. The robot
parameter identification based on the least square method was used to accurately identify the robot
torque sensitivity and friction.

Figure 1: (Continued)
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Figure 1: The collaborative robot

Given that the robot joint can approximately satisfy the torque balance equation when it is rotating
at a low speed, the joint position and motor current value were collected through experiments in the
whole process of low-speed motion, which were used as excitation signals to realise the identification
of robot dynamics parameters. Finally, an accurate dynamic compensation model was established to
realise zero moment dragging. The proposed method is applied to a self-developed collaborative robot,
as shown in Fig. 1, and the reliability of the proposed compensation algorithm is verified. This method
does not need a multi-dimensional force sensor, the system is simple, the cost is low, and the teaching
is flexible, which develops a new way for all kinds of robot teaching with complicated trajectories.

2 Zero-Moment Control Based on Torque Compensation
2.1 Zero-Moment Control System

This paper proposes the zero-moment control based on torque compensation. Its essence is that
the servo driver works in torque mode and controls the corresponding torque output of each joint
motor through the servo driver to overcome the gravity and friction of the robot itself. At this point,
the robot must only overcome the small inertial force under the traction of external force to move
following the external force.

The entire control system is shown in Fig. 2. Km is the torque constant of the servo controller,
G(q) is the gravitational torque of each joint, τf is the friction torque of each joint, τtot direct output
torque instruction of the robot controller. The zero-moment control system is a torque control system,
its joint position and speed are not controlled, which is convenient for teaching operations.
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Figure 2: Zero-moment control system based on torque compensation

Zero-moment control technology based on torque compensation only needs the robot controller
to output torque instruction τtot. The torque instruction was mainly used to overcome the gravity and
friction caused by the mechanical structure of the robot itself. The process is as follows:

τtot = G(q) + τf . (1)

To meet the requirements of the zero-moment control technology based on torque compensation,
the robot control system must have the following functions:

1. Current detection modules must be designed for the drivers of each joint of the robot. The
motor drivers of each joint are designed at the end of the motor to facilitate wiring and achieve a
compact design, as shown in Fig. 3a. A current detection module based on Hall current sensor was
added to the driver, as shown in Fig. 3b.

2. In dragging the robot, the robot operator drags the machine to any position and then releases
it. The robot can stay in this position without being affected by gravity and friction.

Figure 3: Current detection system in motor drive
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2.2 The Advantages and Disadvantages of the Zero-Moment Control Technology
The zero-moment control technology based on torque control can provide a solution without

external sensors. This method can realize flexible operation using a simple algorithm for the direct
teaching of lightweight robots. This method has the following advantages and disadvantages [11]:

1. The zero-moment control based on torque mainly realizes the robot joint rotation by controlling
the torque/current. Its joint position and speed are not controlled, which is convenient for teaching
operation, but the system stability is not as good as the traditional zero-moment control system based
on position control.

2. In the zero-moment teaching process, the robot motion is driven directly by the force of the
operator, which has better flexibility and accuracy than the traditional zero-moment control system
based on position.

3. Zero-moment control system based on torque does not need any sensor, such as a six-
dimensional force sensor, or joint torque sensor, so the cost is low.

4. The calculation of the zero-moment control system based on torque is less than that based on
position.

5. In the zero-moment control system based on torque, the inertia force of the robot must be
overcome by the operator. Therefore, the algorithm is not suitable for robots with large dead-weight.

3 Torque Sensitivity and Static Friction Parameter Identification

The zero-moment dragging and teaching function of the lightweight collaborative robot based
on joint shaft torque balance control was not dependent on the external additional torque sensor.
When the robot was in a state of dragging and teaching mode, the gravity and the friction of each
joint were offset by the corresponding joint motor output torque so that the robot can easily be
dragged by the operating personnel. Concurrently, when no external force was applied to the robot,
the robot remained in its current position, which implies that the robot was in a state of weightlessness.
When a slight force was applied, the robot moved under the action of inertia. This technology mainly
depends on the accurate identification of robot torque sensitivity and friction parameters. This chapter
introduces a method of parameter identification of torque sensitivity and friction under low-speed
dynamic balance.

3.1 Dynamics Modelling of Flexible Joints Based on Zero-Moment Control
The zero-moment control function of the robot was the focus of collaborative robot research. The

harmonic reducer, a flexible component, was used in all joints of the robot. The harmonic transmission
principle depends on the deformation of the flexible wheel, and such flexible joints are equivalent to
the ideal situation, as shown in Fig. 4. The connecting of the motor and the load can be equivalent
to a torsional spring representing the flexibility of the joint. The output torque of the motor τm is the
input of the robot joint, B represents the inertia of the motor itself and KJ is the equivalent stiffness
coefficient of the harmonic reducer. The rotation angle of the motor is θ , and the torque is transferred
to the output end to drive the load through the harmonic reducer. The rotation angle of the output
end is q. τext represents the torque exerted by the external environment on the robot.
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Figure 4: Equivalent torque model of the robot’s flexible joint

On the basis of the equivalence principle of flexible joints and Newton’s third law of motion, a
mathematical model was used to express the interrelation of the moment transfer.⎧⎨
⎩

M(q)q̈ = τ + τext

τ = K(θ − q)

Bθ̈ + τ = τm − τf

. (2)

In Eq. (2), M represents the moment of inertia of the load at the end of the robot joint, and θ − q
represents the rotation angle error at the motor end and connecting rod end. τ represents the torque
transmitted to the link. τ f represents the frictional force of robot joints. The frictional force model can
be obtained through an empirical formula or parameter identification method.

When the robot moves from the static state to the moving state, enough external force is needed to
offset the friction to realise the dragging and teaching of the robot. The dynamic model of the flexible
joint was established as follows:{

τext = Bθ̈ + M(q)q̈ + τf

τ = K(θ − q)
. (3)

Eq. (3) reveals that during dragging and teaching, the external force exerted on the joint must
overcome the rotational inertia of the joint motor and the static friction when the joint moves from
a static state to a moving state. To simplify the robot dragging and teaching process, the influence of
system inertia and friction on the system must be reduced.

Given that the robot joint uses a harmonic reducer to grant the joint structure a certain flexibility,
it can be considered that the robot was a flexible joint. On the basis of Spong’s feedback control
method for flexible joint robots [12] and Albu’s full-state feedback, impedance design and experiments
applicable to flexible joint robots, the dynamics model of robots with flexible joints was extended into
the following form:⎧⎨
⎩

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τext

τ = K(θ − q)

Bθ̈ + τ = τm − τf

. (4)

Assume that the degree of freedom of the robot was n, where M(q) ∈Rnxn represents the inertia
matrix of the robot.

C(q, q̇) ∈ Rnxn represents the robot’s Coriolis force and centrifugal force matrix.

G(q) ∈ Rn represents the gravity matrix of each joint.

q ∈ Rn represents the Angle matrix of the joint output.



CMES, 2023, vol.134, no.3 2027

τ∈ Rn represents the output torque of the harmonic reducer by the flexible component of the
joint.

The dynamic model of the flexible robot in Eq. (4) demonstrates that the zero-moment control
of the robot was mainly affected by gravity and friction. The controller must be able to distinguish
between external forces and the gravity the friction of the robot itself so that the joint actuator only
responds to external forces.

3.2 Zero-Gravity Controller Design
The control law of the system controller reflects the relationship between the input/output signals.

If analysed purely in the mathematical sense, a strict process of the control law can be deduced as
follows: Firstly, the dynamic equation of the system was constructed, and a controller that conforms
to the system model was designed. The stability function was derived by combining the two. If the
Lyapunov stability is satisfied, the designed controller is correct, if the Lyapunov stability is not
satisfied, the controller must be re-designed. The design process of the controller is shown in Fig. 5.

Figure 5: Design process of the controller

To achieve small external force traction in the zero-gravity control of a collaborative robot based
on flexible joints, the joint controller was set in the form of the proportional controller by using the
output torque τm of the motor and the output torque τ of the harmonic reducer.

τm = −Ktτ . (5)

The controller model of Eq. (5) was substituted into the mathematical model (2) of the flexible
joint of the robot, and the relationship between the rotational inertia of the joint motor and the friction
corresponding to the traction force was obtained

M(q)q̈ + Bθ̈ + τf

1 + Kt

= τext. (6)

The comparison of Eq. (6) with Eq. (3) shows that the influence of the motor moment of inertia
and friction on joint dragging was 1/(1+Kt) times of the original. In the joint control, Kt > 0 was
taken, then

Bθ̈ + τf

1 + Kt

< Bθ̈ + τf . (7)
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Based on Eq. (7), under the same external force, the larger the value of Kt, the easier the traction
will be. Extending from a single flexible joint to the whole collaborative robot system, and for the
collaborative robot with n degrees of freedom, Kt can be expanded into a positive definite and
triangular moment matrix, comprising n × n parameters (Kt = diag(Kt1, Kt2, · · · , Ktn)).

The controller model of Eq. (5) was substituted into the dynamics model (4) to obtain the
corresponding external force value τext.

M(q)q̈ + C(q, q̇)q̇ + G(q) + Bθ̈ + τf

1 + Kt

= τext, (8)

At this point, if the external force τext acting on the output end of the joint was removed, that is, in
Eq. (8), the angular velocity of the connecting rod was q̇ = 0, and the angular acceleration was q̈ = 0,
then it can be obtained from Eq. (8).

− G(q) − (1 + Kt)
−1τf = Bθ̈ (1 + Kt)

−1. (9)

According to Eq. (9), if at this time

− G(q) > (1 + Kt)
−1τf . (10)

Then, the robot joint will fall rapidly due to the influence of its gravity, preventing it from
maintaining its current position, thus failing to achieve the zero-gravity mode. Therefore, the designed
joint controller (5) fails to meet the actual control requirements.

The above analysis reveals that the influence of rotational inertia and friction on joint dragging
was reduced by the controller (5) to a certain extent, but the influence of joint gravity on robot zero-
moment control was not eliminated. To meet the requirement of zero-moment control, the controller
must be redesigned to eliminate the influence of gravity. On the basis of the above requirements, the
controller (5) was extended. The following controller was obtained.

τm = τ + Kt(G(q) − τ). (11)

Substituting the newly constructed controller (11) into Eq. (4), we can obtain

M(q)q̈ + C(q, q̇)q̇ + Kt
−1Bθ̈ + Kt

−1
τf = τext. (12)

Eq. (12) presents that the gravity term G(q) in the system was eliminated by the controller. At this
point, if the external force τext acting on the output end of the joint was removed and the robot was
maintained at the current position, the angular velocity of the connecting rod in Eq. (12) was q̇ = 0,
and the angular acceleration was q̈ = 0, then it can be obtained from Eq. (12).

Kt
−1Bθ̈ + Kt

−1
τf = 0. (13)

The Eq. (13) demonstrates that the larger the value of Kt, the easier the traction will be, by the
controller (11). When Kt → +∞, the Eq. (13) →0, this shows that the system was progressively
stable, thereby meeting the Lyapunov stability requirements, which proves that the controller design
was rational. By adjusting the gain value Kt of the controller, the gain value Kt >1 thus weakens
the effect of the motor rotation inertia and the friction on the dragging and teaching function, and
the larger the value of the adjustment coefficient Kt, the easier the traction will be. Therefore, only the
smaller external force τext can drag the robot.
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3.3 Robot Parameter Identification Model Based on Least Squares
For robot system parameters identification, the theoretical basis was the same, and a mathematical

model was required [13]. According to the Eq. (4), a dynamic model was established for a robot with
a flexible joint. For a single link system identification, the motor output torque τm can be represented
by the following kinetic equation:

τm = Bθ̈ + M(q)q̈ + C(q, q̇)q̇ + G(q) + τf − τext. (14)

The motor output torque τm and the motor current are linear relationships, τm = Kmi, current i
can be collected by the Hall sensor in the joint motor drive module. Km is the motor torque sensitivity,
B is the moment of rotation of the motor, G(q) is the gravity, τf is the friction and q is the joint angle.

During parameter identification, low-speed dynamic equilibrium motion was adopted. There is
no external force existed during the whole experiment (τext = 0). At this time, on the basis of the
Eq. (14), the kinetic equation of the single-link system was obtained

τm = Bθ̈ + M(q)q̈ + C(q, q̇)q̇ + G(q) + τf (15)

Robot dynamics parameters-Gravity Matrix G(q) can be obtained through the parametric mod-
elling of 3D software, so identifying the gravity matrix is unnecessary. The following transformation
was made by the Eq. (15).

G(q) = Kmi − Bθ̈ − M(q)q̈ − C(q, q̇)q̇ − τf . (16)

Many kinds of system identification methods exist, including least squares, maximum likelihood
estimation, Kalman filtering method and finite element method. The most widely used and most
effective in system identification is the least-squares method, and the dynamic equation will be written
in the form of matrix multiplication.

G(q) = HTQ = [
Km − B − M(q) − C(q, q̇) − τf

]T [
iθ̈ q̈q̇1

]
. (17)

According to the form of the above system dynamic equation, it can be obtained that the vector
H was independent of the robot’s motion state, and parameter identification was required. The vector
Q was the motion parameters of the robot joint, which was related to the motion state. Analysing the
Eq. (17) unveils that when the gravity matrix G(q) and the motion parameter Q of the joint are known,
obtaining vector H on the basis of the least-squares method would be effortless.

The robot adopts a dual encoder that can detect the joint location information accurately, and the
robot driver with current detection modules was designed. The Hall sensor was used in the motor drive
module for current detection. Typically, q̇ and q̈ can be obtained by numerical differences. However,
differential operations produce great noise, which must be reduced by filtering. However, filtering will
cause phase delays. The phase delay problem was eliminated by inputting the parameters on both
sides of the Eq. (17) into the same filter. The vector H was a constant, and the filter processing was
not affected. The key to zero-moment drag was to compensate for its gravity and friction.

Depending on the changing joint position of the robot, the current gravity G(q) of each joint
was calculated, thereby controlling the motor output torque (i.e., output current) to compensate
for gravity and frictional force, intensifying the fluency of the drag. Given that the robot dynamic
parameters include the centroid coordinates and quality of each link, it can be calculated by a 3D
software, SolidWorks, so identifying the gravity matrix is unnecessary. The gravity compensation value
required for each link can be calculated directly through the Lagrangian law. Thus, the function of zero
resistance dragging and teaching can be realized.
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This section takes the torque sensitivity and friction of Joint 2 in Fig. 6 as an example to introduce
the low-speed dynamic balance method. The heavy torque G2 of Joint 2 was obtained on the basis of
the robot dynamics equation by the DH parameter. In the experiment, in addition to Joint 2, the
remaining joints maintained the initial zero state of the robot. The force analysis of Joint 2 is shown
in Fig. 6.

Figure 6: Force analysis of Joint 2

4 Parameter Identification Experiment
4.1 Parameter Identification Experiment Process

Low-speed dynamic balance movement was adopted for parameter identification. During the
movement, the angular acceleration of the motor end was θ̈ = 0, the angular velocity of the connecting
rod end was q̇ = 0 and the angular acceleration was q̈ = 0. No external force existed during the process
(τext = 0). At this time, on the basis of the Eq. (16), the dynamic equation of the single-link system, as
shown below, was obtained:

G(q) = HTQ = [
Km − τf

]T
[i1] . (18)

MATLAB was used to simulate the robot motion planning. Joint 2 of the robot moved and rotated
at a low speed on the basis of the planned motion, whereas other joints maintained the initial state of
the robot. Given that the planned movement was low-speed rotation, and it was close to the uniform
movement, it ignored the effects of the torque value brought about by the rotational inertia B of the
robot joint itself. The force of friction was approximately static friction τf . At any moment during the
motion, the torque balance equation of the sections of the joints and connectors above Joint 2 was

τ2 =
6∑

i=2

migTri + τf . (19)

where mi was the quality of the link i. The mass of the centre was the sum of the mass of all joints
above Joint 2 (including Joints 3–6) and the connecting rod. r2 was the position vector of the centre of
mass p in the Joint 2 coordinate system.

Assume that the generalized coordinate of Joint i was θi. In this experiment, r2 was only related
to θ2 (the remaining joint rotation angle θ1, θ3, θ4, θ5, θ6 all are 0). θ2 indicates that the rotation angle
of the robot Joint 2 can be read directly by the joint encoder. τ2 was the output torque of Joint 2
after deceleration, and the torque was improved by the harmonic reducer, which can be expressed
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as τ2 = 100Km2i2. The deceleration ratio of the harmonic reducer used in the joint was 100, and the
torque sensitivity of the motor was assumed to be Km2. The current during the rotation of Joint 2 was
recorded as i2. τf was the friction torque of the joint in the process of rotating at a low speed, which
was approximately the maximum static friction torque.

This experiment adopts the parameter identification method of torque sensitivity and friction
under low-speed dynamic balance. Let the motor of Joint 2 rotate at a low speed in position mode.
The joint positions and motor current values during the whole movement were collected as excitation
signals of the system and input into the parameter identification equation.

When the robot joint rotates at a low speed, it can approximately satisfy the torque balance
equation. During the whole movement, robot Joint 2 always rotates at a low speed. It can be assumed
that the friction torque τf was approximately constant, and the Eq. (19) can be written as follows:

100Km2i2 = Mgf (θ2) + τf (20)

The Eq. (20) was rearranged to obtain the following equation:

Mgf (θ2) = 100Km2i2 − τf (21)

In the Eq. (21), Mg was the gravity moment of Joint 2, the friction torque τf was approximately
constant, and there existed a linear relationship between the current i2 and θ2. By collecting the data
of the current value i and the rotation angle of the joint θ2, the linear equation can be identified by the
least square method.

As a result, the values of torque sensitivity km2 and friction torque τf were obtained. The steps of
the identification experiment are as follows.

According to the motion range of Joint 2, the joint trajectory was planned with the expected
reciprocating low-speed motion, and the spline programming method was used for interpolation.
Acceleration and deceleration in the starting and commutation area of the joint motion are conducted,
which will move at a low speed in the rest of the state, as shown in Fig. 7.
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Figure 7: Joint velocity curve

The robot joint was set to reciprocate at a low speed, and the maximum speed in the whole process
was roughly 2 degrees per second (joint axis). The current value i and rotation angle θ2 of robot Joint 2
were collected in the 100 s control period, which is the excitation signal of the parameter identification.
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The sampling period was 10 ms, and the variation curve of joint acceleration with time is shown in
Fig. 8.

Figure 8: Joint acceleration curve

4.2 Identification Results and Verification of Torque Sensitivity Coefficient and Static Friction
The parameter identification experiment was carried out on the basis of the above two steps. The

data of the current value i and the rotation angle θ2 of Joint 2 during the motion were collected. The
collected data were analysed and processed. Firstly, the curve of the rotation angle θ2 of Joint 2 and
the change of current value i with time were drawn, as shown in Figs. 9 and 10.
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Figure 9: Curve of joint angle θ2
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Figure 10: Curve of joint current

On the basis of the experiment, the motor current and angle changed when the positive and
negative rotation of Joint 2 were taken, and the relationship between them is shown in Fig. 11.
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Figure 11: Relationship between the current and angle change values

Fig. 9 shows that the joint velocity changes with time. The speed of the robot joint changed
minimally and was basically in a state of uniform motion. On the basis of the speed change, the gravity
torque and motor current under uniform motion were selected, and the straight line was fitted on the
basis of the relationship between the collected gravity moment and motor current value, as shown in
Figs. 12 and 13.

Figure 12: Fitting curves of heavy moment G and current i under forwarding rotation
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Figure 13: Fitting curves of heavy moment g and current i under rotation

Finally, the estimated values of torque sensitivity and friction torque of Joint 2 in the case of
positive rotation are 0.0874 Nm/An and 8.1200 Nm, respectively. The corresponding straight-line
equation is

Mgf (θ2) = 8.74i − 8.1200. (22)

In the case of reversal, the estimated values of torque sensitivity and friction torque of the motor
are 0.0922 Nm/An and −11.5242 Nm, respectively. The corresponding linear equation is

Mgf (θ2) = 9.22i + 11.5242. (23)

From the estimated value of motor torque sensitivity and friction torque identified in the case
of the positive and negative rotation of Joint 2, the estimated value of motor torque sensitivity was
roughly 0.09 Nm/An, but a certain difference existed in the friction in the process of positive and
negative rotation of Joint 2, so the smooth dragging and teaching function can be realised, and the
compensation of Joint 2 can be set as follows:

Mgf (θ2) = 9i + τf . (24)

Given the difference of friction during the positive and negative rotation, the following expression
of friction torque can be obtained

τf =
⎧⎨
⎩

8.1200, if θ̇2 > vlim

−11.5242, if θ̇2 < −vlim

0, if − vlim < θ̇2 < vlim

. (25)

vlim was a preset critical value of speed after the robot entered the teaching mode. On the basis of
the experiment, the upper limit of the speed was set to approximately 3 deg/s, because extremely low
speed will lead to the vibration of the manipulator.

When the robot was in a teaching mode, once the speed of the robot’s joint exceeds this preset
value, it means that the operator begins to drag the robot. At this time, the compensation value of
friction must be added.

The traditional small and medium-sized collaborative robot can realise zero-moment drag teach-
ing on the basis of the torque compensation control without using an external force sensor. The key
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technology was the compensation of gravity torque and friction of the robot joint. On the basis of the
parameter identification method of robot torque sensitivity and friction based on low-speed dynamic
balance, the parameter estimation of motor torque sensitivity can be realised in a certain precision
range, and the joint friction torque can be identified simultaneously. The free drag of the robot can be
easily realised by compensating gravity torque and friction torque in real time.

In this chapter, on the basis of the dynamic model, the key compensation value of the robot
joint was solved by the robot single joint parameter identification method, and finally, the robot drag
teaching was realised.

5 Experiment of Dragging and Teaching Function and Trajectory Repetition

This part is mainly for experimental verification for the torque compensation control. The
experimental purpose was to verify the reliability of collaborative robot joint structure, the feasibility
of zero control algorithm. Dragging and teaching experiments in torque compensation mode verified
the accuracy of dynamic modelling and friction parameter identification.

The zero-moment control technology of robot torque compensation is mainly used in robot
dragging and teaching. To realise the easy dragging, the torque value of the robot’s joint compensation
must be calculated in real-time. The key to zero-moment drag was to compensate for the two dynamic
parameters of gravity and friction.

The current gravity term G(q) of each joint was calculated based on the changing positions of
the robot. By controlling the output torque (output current) of the motor to realise the compensation
of gravity and friction to make the drag smoother. According to the structural characteristics of the
robot, the mass of each connecting rod of the robot is m1, m2, m3, m4, m5 and m6, respectively, as shown
in Fig. 14. The mass matrix of each connecting rod mi (i = 1 ∼ 6) was

m =

⎡
⎢⎢⎢⎢⎢⎢⎣

m1

m2

m3

m4

m5

m6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3.75
8.24
2.4
1.46
1.46
0.2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Figure 14: The mass distribution of the robot
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The compensating torque of joint gravity can be calculated by using the dynamic equation. The
gravity torque compensation function of each connecting rod of the robot was

G1 = 0

G2 = −40.87 cos(q2) − 18.64 cos(q23) − 0.35 cos(q234) sin(q5)

+1.69 cos(q23) sin(q4)+1.69 sin(q23) cos(q4)

G3 = −18.64 cos(q23) − 0.35 cos(q234) sin(q5) + 1.69 cos(q23) sin(q4)+1.69 sin(q23) cos(q4)

G4 = −0.35 cos(q234) sin(q5)+1.69 cos(q23) sin(q4)+1.69 sin(q23) cos(q4)

G5 = −0.35 cos(q234) sin(q5)

G6 = 0

The current compensation of the gravity torque can be calculated by Ig = Gx/Km [13].

The joint friction torque can be obtained through dynamic modelling and parameter identifica-
tion. The static friction of each joint of the robot was obtained by the method in Section 4.2, which
was transformed into the compensation current produced by the system to overcome the static friction
through the equation If = τf /Km.

It is difficult to completely establish the robot joint friction model, and approximate modeling
is generally adopted. Friction mainly includes static friction, viscous friction, and Coulomb friction.
The static friction torque is the main research object in this paper because static friction torque is the
most important part of the robot friction torque compensation. Compensating for viscous friction and
Coulomb friction is mainly to make the robot smoother when dragging. Static friction torque has a
linear relationship with the current generated by static friction torque, and the proportional coefficient
is the torque constant Km of the motor. This work has been described in detail in the author’s previous
paper [14]. The current to compensate for the friction can be got from the equation If = τf /Km.

The stability analysis is more important in the entire closed-loop control system. When the robot
is dragged and taught at a low speed, the compensation current calculated according to the torque
compensation control algorithm can perfectly overcome gravity and friction. However, in the actual
teaching process, it is inevitable that the dragging speed is too fast. At this time, due to the influence
of the motor’s back electromotive force, the compensation current calculated according to the torque
compensation control algorithm cannot meet the robot’s dragging and teaching process. At this time,
the compensation current value meets the following process:

I = Is − Kbw
Rm

. (26)

where, Kb is the motor’s counter electromotive force, w is the motor’s angular velocity, and Rm is
the motor resistance. The compensation current value obtained according to Eq. (26) can satisfy the
dragging process at any speed.

To verify the accuracy of the algorithm, the 6DOF collaborative robot was used as the experi-
mental platform for zero-moment dragging and teaching. The robot can easily realise the dragging
and teaching function in the zero-torque mode. To show the superiority and practicability in the zero-
torque mode, three positions p1, p2, and p3 were dragged randomly during the experiment, as shown in
Fig. 15.
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Figure 15: Robot drags to teach

The absolute position encoder of the robot was used to record the three-position points in the
process of dragging. After completion of dragging and teaching, the planned linear interpolation or
circular interpolation mode in the system was called to connect the trajectories of the three points
smoothly. Fig. 16 shows the trajectory of the smooth transition with circular interpolation mode.

Figure 16: Robot trajectory reconstruction

As can be seen from Fig. 16, the robot can perfectly reproduce the trajectory, and the cyclic motion
of the robot can be realised after setting the reciprocating motion. The analysis of the experimental
results reveals that the zero-moment control algorithm based on torque control realised the zero-
moment dragging and teaching of the robot by obtaining the compensation of gravity torque and
friction.

6 Conclusion

The experimental results show that, compared with the traditional zero-moment control algorithm
based on position control, the zero-moment control algorithm based on torque compensation control
abandons the torque sensor. The accurate compensation torque was obtained through dynamic
modelling and parameter identification. When the robot was dragged, the system can calculate the
compensation current in real time and send it to each joint motor to overcome the gravity torque and
friction. The robot can easily be dragged by overcoming its inertia force, which simplifies the whole
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robot system, making the teaching process simple and flexible. Ultimately, this study provides new
ideas and methods for torque compensation control of all kinds of light collaborative robots.
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