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ABSTRACT

For a 5G wireless communication system, a convolutional deep neural network (CNN) is employed to synthesize a
robust channel state estimator (CSE). The proposed CSE extracts channel information from transmit-and-receive
pairs through offline training to estimate the channel state information. Also, it utilizes pilots to offer more helpful
information about the communication channel. The proposed CNN-CSE performance is compared with previously
published results for Bidirectional/long short-term memory (BiLSTM/LSTM) NNs-based CSEs. The CNN-CSE
achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared
with BiLSTM and LSTM-based estimators. Using three different loss function-based classification layers and the
Adam optimization algorithm, a comparative study was conducted to assess the performance of the presented
DNNs-based CSEs. The BiLSTM-CSE outperforms LSTM, CNN, conventional least squares (LS), and minimum
mean square error (MMSE) CSEs. In addition, the computational and learning time complexities for DNN-CSEs
are provided. These estimators are promising for 5G and future communication systems because they can analyze
large amounts of data, discover statistical dependencies, learn correlations between features, and generalize the
gotten knowledge.
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1 Introduction

In the subsequent years, it is expected that exponential growth in wireless throughput for different
wireless services will continue. 5G communication systems have been designed to meet the vast
increase in data traffic and achieve robust communications under the conditions of non-stationary
channel statistics. 5G-orthogonal frequency division multiplexing (OFDM) communication systems
have been deployed to mitigate the frequency selective fading effects and other channels imperfections,
resulting in offering more reliable communication systems and increasing the spectrum efficiency
significantly [1].
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One of the most important factors affecting the effectiveness of CSEs is a priori information about
the wireless communication channel environment provided by pilots. Both the transmitter and receiver
should know the pilot signals to estimate the communication channel information and efficiently
recover the desired signal. Channel state estimate is worthless if no or inadequate a priori knowledge
is available (no or limited pilots) [2].

Least squares (LS) estimation is well-known among conventional channel state estimators has
a low computational cost since it requires no prior channel information. On the other hand, the
LS estimator produces substantial errors of channel estimation in real applications, particularly for
multipath channels. Minimum mean square error (MMSE) CSE, grants the best channel information
estimation compared with LS CSE [3,4]. MMSE-based estimations assume the linearity of the
experienced transmission channel, and the Gaussian probability density function describes all channel
responses [2]. The mean and covariance values of communication channels are challenging to get
or change fast in a short coherence time in many propagation environments, making the MMSE
estimation challenging to implement [3].

Deep learning neural networks-based wireless communication applications recently received a
lot of attention, such as coding and decoding, automatic signals classification, MIMO detection,
and channel estimation [2,5–11]. As a result, several deep learning algorithms, such as recurrent
neural networks (RNNs) (e.g., LSTM and BiLSTM NNs), convolutional neural networks (CNNs),
and hybrid CNN and RNN structures, have utilized to estimate the channel state in 5G wireless
communication networks.

In [12], the channel response feature vectors and channel estimation were extracted using CNN
and BiLSTM deep learning-based estimators, respectively. The main target was to enhance the estimate
performance at the downlink, in communication environments concerning high-speed mobility. In
[13], an online-trained CSE that integrates CNN and LSTM have developed. In addition, the authors
have developed a way for combining offline and online learning for 5G systems. In [5], for OFDM
systems which deal with frequency selective channels, a feedforward DLNN-based joint CSE was
presented. When uncertain imperfections are taken into account, the suggested approach outperforms
the classic MMSE estimate technique. In [14], Feedforward DNNs were used to develop an online CSE
for doubly selective channels. The suggested CSE was found to be better than the classic LMMSE one
in all circumstances studied. In [8], 1D-CNN-based CSE have introduced. Using different modulation
methods, the authors compared the proposed estimator performance against FFNN, MMSE, and
LS CSEs in terms of MSE and BER. 1D-CNN outstripped the conventional, and FFNN CSEs.
In [9], A recurrent LSTM deep learning neural network was employed to construct an online CSE
for OFDM communication systems. The developed estimator is dependent on pilots’ utilization. The
suggested CSE achieved superior performance than the conventional estimators using a small number
of pilots and uncertain channel models. Sarwar et al. [15] built a CSE using a genetic algorithm-
optimized artificial neural network. The suggested estimator was designed for MIMO-OFDM systems
that use space-time block-coding. The provided CSE outperformed both LS and MMSE estimators
at high signal-to-noise ratios (SNRs), but it performed similarly at low ones. Senol et al. [16] have
proposed ANN-based CSE for sparsely multipath channels. The suggested estimator outperformed
both matching and orthogonal matching pursuit-based CSEs in terms of SER while having a reduced
computational complexity. Le et al. [17] have proposed two fully-connected DNN (FDNN)-based CSE
structures for a 5G MIMO-OFDM system over frequency-selective fading channels. Two alternative
scenarios depending on the receiver velocity are then used to test the performance of the proposed
CSEs. The tapped delay line type A model (TDL-A), which is provided by 3GPP and covers realistic
situations, is used to produce channel parameters in each scenario. The two proposed FDNN-based
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CSEs are compared to the standard LS and Linear MMSE estimations. Le et al. [18] expanded
their previous work in [17] by proposing DNN-based CSEs that use a neural network to learn the
characteristics of real channels using the channel estimates produced using LS estimation as input.
They use three different DNN structures: FDNN, CNN, and bi-LSTM. The performance of the three
DNN-based CSEs was numerically evaluated, and their usefulness was shown by comparing them to
classic LS and LMMSE CSEs. Li et al. [19] proposed a denoising autoencoder DNN-based CSE to
mitigate the presence of impulsive noise in OFDM systems, since impulsive noise may cause a serious
decline in channel estimation performance. The simulation findings showed that the proposed CSE
improves the OFDM channel information estimation process and outperforms the existing peers,
such as LS, MMSE, and orthogonal matching pursuit CSEs. Hu et al. [20] did some preliminary
research on deep learning-based channel estimation for single-input multiple-output (SIMO) systems
to better understand and explain their internal mechanisms. Using the ReLU activation function
efficiently, the suggested estimator can approximate a vast family of functions. They show that the
suggested CSE is not restricted to any particular signal model and may be used to estimate MMSE in
numerous contexts. The findings show that the DL CSE based on ReLU DNNs may closely mimic the
MMSE CSE with numerous training samples. Coutinho et al. [21] suggested employing CNNs without
forward error correction codes to solve the issue of cascaded channel state estimation in 5G and
future communication systems. The findings reveal that the proposed CNN-based CSE approaches
perfect (theoretical) channel estimation levels in terms of bit error rate (BER) values and beats LS
practical estimation in terms of mean squared error (MSE). Xiong et al. [22] presented a novel real-
time CNN-based CSE that uses the latest reference signal (RS) for online training and extracts the
temporal features of the channel, followed by prediction employing the optimal model. For high-speed
moving scenarios, the proposed CSE is used in OFDM systems, such as long-term evolution (LTE)
and 5G systems, to track the fast time-varying and non-stationary channels using a real-time RS-based
training algorithm and obtain an accurate CSI without changing the radio frame. Experiments show
that the proposed CSE outperforms conventional peers, and that even more improvement is possible
at higher speeds.

In this work, we expand our preceding research work [2] and [9]. In [9] the focus was on proposing
the online LSTM-based CSE for OFDM wireless communication systems. A comparative study
was conducted utilizing the adaptive moment estimation (Adam), root mean square propagation
(RMSProp), and stochastic gradient descent with momentum (SGdm) optimization algorithms to
assess the performance of the proposed estimator. Compared to the conventional estimators, the
suggested estimator outperforms at a few pilots. In [2] a pilot-dependent estimator for 5G OFDM
and coming systems have proposed by employing deep learning BiLSTM neural networks. This work
was the first to develop the recurrent BiLSTM NN-based CSE without integration with CNN. As a
result, the developed CSE requires no prior knowledge of channel characteristics and performs well
using small pilots. In addition, two novel classification layers were proposed using loss functions:
mean absolute error and sum of squared of the errors. Finally, the proposed BiLSTM estimator
was compared to the most utilized LS and MMSE; and LSTM CSEs. The findings revealed that
the BiLSTM CSE performs similarly to the MMSE CSE using many pilots and outperforms the
conventional peers at a few pilots. Furthermore, the suggested estimator enhances the transmission
rate of OFDM systems by outperforming the other estimators using a limited number of pilots. The
developed LSTM and BiLSTM CSEs are favourable for 5G and future systems.

The current study will propose a CNN DNN-based CSE for OFDM networks. This is the first
time a CNN network has been used as a CSE without the use of BiLSTM or LSTM recurrent
DNNs. The previous certainty of channel statistics is not required for the CNN-based CSE. The
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performance of the recent CNN estimator will be compared with previously developed LSTM and
BiLSTM estimators, and of course, the conventional estimators in terms of symbol error rate. The
comparative study between the three CNN-, BiLSTM-, and LSTM-based CSIEs will be conducted
using adaptive moment estimation (Adam) optimization algorithm and three classification layers. One
of the three classification layers is built using the most common loss function crossentropyex, while
the other two classification layers are that proposed in [2,23]. The findings indicate that the suggested
BiLSTM CSE performs similarly to the MMSE, LSTM, and CNN CSEs at many pilots. It also
outperforms the LSTM, CNN, and traditional LS and MMSE CSEs at limited pilots. Furthermore,
compared to the CNN, LS, and LSTM CSEs, the suggested BiLSTM and LSTM CSEs increase the
transmission rate of 5G-OFDM networks because they demonstrate optimal performance at a few
pilots. The proposed DNNs-based CSEs are data-driven approaches; so, they can analyze, recognize,
and understand the propagation channels statistics in the presence of different imperfections.

The rest of this paper is organised as follows. The recurrent (LSTM and BiLSTM) DNN-based
CSEs are illustrated in the Section 2. Section 3 explored the CNN-based CSE. The OFDM model,
and offline learning concept are introduced in A and B subsections of the Section 4. The outcomes of
the simulation are presented in the Section 5. The Section 6 contains the conclusions and future plans.

2 DNN-Based CSE

A recurrent BiLSTM-based CSE is provided in this part. The BiLSTM network is a variant of
recurrent LSTM NN, which can learn long-term relationships between input data time steps [24–26].

The BiLSTM architecture comprises two distinct LSTM NNs with forward and backward
information propagation directions. The LSTM architecture comprises input, forget, and output, gates
as well as a memory cell. LSTM NN can successfully store long-term memory because to the forget
and input gates. The primary structure of the LSTM cell is depicted in Fig. 1. The forget gate allows
the LSTM NN to delete unwanted information from the currently utilized input xt and cell output ht

of the last process. The input gate locates the data that will be utilised with the previous LSTM cell
state ct−1 to obtain a new cell state ct based on the current cell input xt and the previous cell output
ht−1. LSTM can pick which information to discard and which to keep using the forget and input gates.
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Figure 1: Long short-term memory (LSTM) cell

The output gate determines present cell output ht by using the preceding cell output ht−1 at present
cell state ct and input xt. The LSTM NN architecture model can be defined using Eqs. (1)–(6).

it = σg(wixt + Riht−1 + bi), (1)
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ft = σg(wf xt + Rf ht−1 + bf ), (2)

gt = σc(wgxt + Rght−1 + bg), (3)

ot = σg(woxt + Roht−1 + bo), (4)

ct = ft � ct−1 + it � gt, (5)

ht = ot � σc (ct) , (6)

where i, f , g, o, σc, σg and � represent the input gate, forget gate, cell candidate, output gate, hyperbolic
tangent (tanh) state activation function, sigmoid gate activation function and Hadamard product
respectively. W = [wiwf wgwo]T , R = [RiRf RgRo]T and b = [bibf bgbo]Tare input weights, recurrent
weights and bias, respectively.

The output unit receives both the forward and backward propagation information simultaneously.
As a result, as illustrated in Fig. 2, previous and future information may be recorded. At time t, the
input is delivered to forward and backward LSTM networks. BiLSTM NN final output may be stated
as follows:

ht = −→
h t � ←−

h t, (7)

where �ht is forward output and
←−
h t is backward output of BiLSTM architecture.

Figure 2: BiLSTM-NN architecture

The constructed BiLSTM-based CSE uses a cross-entropy function for the kth mutually exclusive
class (crossentropyex)-based classification layer as the last CSE layer. In addition, authors have been
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developed a mean absolute error (MAE)-based classification layer and a sum of squared errors (SSE)-
based classification layer [2]. Finally, the suggested estimator’s weights and biases are optimized using
the adaptive moment estimation (Adam) optimization algorithm and each of the classification layers,
seeking to get the most accurate and robust CSE under the conditions of uncertain channel statistics
and restricted pilots.

An array with the following five layers is used to construct the BiLSTM NN-based channel
state estimator: sequence input, BiLSTM, fully connected, softmax, and output classification. The
maximum input size was set at 256. The BiLSTM layer comprises 16 hidden units and displays the
last element of the sequence. The size four fully connected (FC) layer, followed by a softmax layer,
and finally a classification layer, specifies four classes. The construction of the suggested BiLSTM and
LSTM estimators is seen in Fig. 3.

Figure 3: Structure of BiLSTM and LSTM estimators

3 CNN-Based CSE

CNN architectures have been suggested for image denoising techniques and have received
significant attention in the image processing field. CNN architectures may learn how to map noisy
images to clean images [27], hence reducing image noise. A CNN can also reduce the number of
parameters by sharing its biases and weights, and thus reducing the system’s complexity. CNN can be
trained to map noisy channels to genuine channels based on these notions. The CNN-based channel
state estimator weights and biases will be updated during the training phase by minimizing one of
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the three loss functions (13)–(15). Fig. 4 depicts the structure of the proposed CNN-based estimator.
It has one 2D input layer, two convolution layers, two layers of batch normalization, two “ReLU”
activation layers, one max pooling layer, one fully connected layer, one “Softmax” layer, and one
output classification layer. These layers are depicted in Fig. 4, and briefly described in the following
subsection.

Figure 4: CNN channel state estimator structure

3.1 Convolutional Layer (CL)
In convolutional layers, there are several convolution filters to process the received signal. Assume

that the lth CL of the CNN-based CSE, Ns is the number of inputs, Ll
s is the input length, Nl

k is the
filters’ number, and Ll

k is the length of filters of the lth layer. The convolution process in the lth layer is
formulated as follows:

hl
k = f

(
xl × W l

k + bl
k

)
(8)
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(
xl × W l

k

)
(i) =

∞∑
a=−∞

x(a)W l
k(i − a) (9)

where hl ∈ RNl
k×Ll

s represents the output set, often known as the feature map, x ∈ RNs×Ll
s represents

inputs, W ∈ RNl
k×Ll

k rpresents set of filters, b ∈ RNs represents the outputs’ biases, and f (.) is the
activation function. It is chosen as (Relu) in the proposed estimator. The output of the kth_filter is
denoted by (9), where k = 1, 2, . . . , Nl

k.

3.2 Batch Normalization (BN) Layer
Deep network training may be made faster by lowering the internal covariate shift, which is

achieved via the BN layer. In the context of layer training, the internal covariate shift is defined as the
change in the distribution of output from each layer. Most of the time, imbalanced nonlinear mapping
is to blame for the changes. Frequently the BN layer is exploited before the activation function when
it is suggested.

3.3 ReLU Layer
The activation function serves as a way to map outputs in a nonlinear fashion. Sigmoid and tanh

are the most common use activation function. In this paper the rectified linear unit (ReLU) is adopted
as the activation function, it can be defined as

f (x) =
{

x, x ≥ 0
0, x < 0

(10)

3.4 Max-Pooling Layer
In CNN, the pooling layer is an essential sort of layer. The convolutional layer uses many

convolutions to generate a series of outputs, each of which is run using the (ReLU) function. The
layer’s output is then further modified using a pooling mechanism. A pooling function substitutes a
net’s output at a particular position with a summary statistic of neighboring outputs. In this research,
max pooling is employed, which reports the highest output inside a pooling window.

3.5 Full Connected Layer
A fully connected (FC) layer multiplies the input by a weight matrix and then adds a bias vector.

In this paper, the convolutional layer is followed by one FC layer. In a FC layer, all neurons are
connected to all the neurons in the previous layer. This layer combines all the features learned by
the previous layers across the transmission channel to estimate the channel information. For channel
state estimation problems, the last FC layer combines the features to estimate the information state of
a particular channel.

3.6 Output (Softmax and Classification) Layers
A softmax layer applies a softmax function to the input. The softmax function is the output unit

activation function after the last FC layer for multi-class classification problems. It is also known as
the normalized exponential and can be considered the multi-class generalization of the logistic sigmoid
function.

For typical classifiers, the classification layer generally comes after the softmax layer. During
the training process, in the classification layer, the optimization algorithm receives the outputs from
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the softmax function and assigns each input to one of the K mutually exclusive classes using the
crossentropy function for a 1-of-K coding scheme.

4 DNNs-Based CSEs for 5G–OFDM Systems

The next subsections describe the conventional OFDM wireless communication technology as
well as deep offline learning of the proposed channel state estimators.

4.1 OFDM Model
Fig. 5 depicts the construction of the classic OFDM system [9].

Figure 5: Conventional OFDM system [9]

A serial-to-parallel (S/P) converter is utilized on the transmitter side to transform the transmitted
symbols with pilot signals into parallel data streams. Then, inverse discrete Fourier transform (IDFT)
transforms the signal into the time domain. Finally, to mitigate the effects of inter-symbol interference
(ISI), a cyclic prefix (CP) must be inserted. The CP length must be greater than the channel’s maximum
spreading delay.

A multipath channel formed by complicated random variables in a sample space {h(n)}N−1
n=0 is

counted. Subsequently, the received signal can be calculated using the following formula:

y (n) = x(n) ⊕ h(n) + w(n), (11)

where x(n) ⊕, w(n), y(n) are input signal, circular convolution, additive white Gaussian noise and
output signal, respectively.

In the frequency domain, the received signal may be described as

Y (k) = X (k) H (k) + W (k) , (12)

where the DFT of x(n), h(n), y(n) and w(n) are X(k), H(k), Y(k) and W(k), correspondingly. These
DFTs are calculated after CP eliminating.

The pilot symbols from the first OFDM block are included in the OFDM frame and the
transmitted data from the subsequent blocks. The channel may appear stationary during one frame,
yet it can shift between frames. The offered BiLSTM-based CSE accepts data at its input and recovers
it at its output [5,9].
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4.2 Offline Learning of the DNNs-Based CSEs
In the realm of wireless communication, DNNs are the state-of-the-art technique, but they have

high computational complexity and a lengthy training period. The most dominant devices for training
DNNs are GPUs [28]. Because of the proposed CSE’s long training time and the vast number
of BiLSTM NN biases and weights that must be optimized the training process should be done
offline. The trained channel state estimator is then used to extract the transmitted data in an online
implementation [5,9].

The learning dataset for one subcarrier is randomly generated during offline training. Through
the adopted channel, the transmitting end sends OFDM frames to the receiving end. The received
signal is retrieved using transmitted frames that have been exposed to various channel defects.

Traditional CSEs are strongly reliant on theoretical channel models that are linear, stable, and
follow Gaussian statistics. However, existing wireless systems contain other flaws and unidentified
circumferent effects that are difficult to account for with precise channel models; as a result, researchers
have created several channel models that accurately characterize practical channel statistics. Modelling
may produce trustworthy and practical training datasets utilizing these channel models [9,29,30].

In The 3GPP-5G TR 38.901 version 16.1.0 Release 16 channel model [30] is utilized to mimic
the behaviour of the practical transmission channel in wireless systems. Specifically, we use the
tapped delay line (TDL) models with the carrier frequency, fc = 2.6 GHz, the sampling rate, the
number of main paths, L = 24, and the number of subcarriers, K = 64. The considered channel
model simulates both the frequency-selective fading and time-selective fading caused by multipath
and Doppler shifting, respectively.

Adam optimization trains the proposed CSEs by minimizing a specific loss function. The
difference between the estimator’s reactions and the originally sent data is defined as a loss function.
A variety of functions can represent the loss function. The loss function is an indispensable part of
the classification layer. The frequently used classification layer is mainly based on the crossentropyex
loss function in MATLAB/software. Two more classification layers employ (MAE and SSE) loss
functions were established in this study. The suggested estimators’ performance is studied when three
classification layers are used. The used loss functions can be defined as follows:

crossentropyex = −
N∑

i=1

c∑
j=1

Xij(k) log(X̂ij(k)) (13)

MAE =
∑N

i=1

∑C

J=1

∣∣∣Xij(k) − X̂ij(k)

∣∣∣
N

(14)

SSE =
N∑

i=1

C∑
J=1

(Xij(k) − X̂ij(k))2 (15)

where N is the number of samples, c is the number of classes, Xij(k) is the i th transmitted sample for
the j th class and X̂ij is the DNN-based CSE response for sample i for class j.

Fig. 6 depicts the steps involved in creating the training data sets and performing offline deep
learning to create a learned CSE based on deep learning CNN, LSTM, or BiLSTM neural networks.
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Figure 6: Offline learning process of the examined DNNs-based CSEs

In the offline training phase, the initially created DNN-based CSE takes the training data as pairs.
Each pair consists of a specific input (transmitted data x(n) influenced by channel conditions with
specific statistical characteristics (CSI)) and its corresponding received data y(n). Offline training
results in learned DNN-based CSE, which in sequence is used in the deployment phase where the
trained model accepts the observed signal y(n) and successfully retrieves the original transmitted data
x(k) without explicitly estimating the wireless channel.

5 Results of Simulation
5.1 Analyzing the Effectivness of the Conventional and DNNs-Based CSEs

Many simulations are carried out to assess the performance of the suggested estimators. The
proposed DNN-based (CNN, LSTM [9], and BiLSTM [2]) estimators’ SER performance is compared
to that of the optimal conventional LS and MMSE estimators. Conventional CSEs exploit the
statistical information of the transmission channel to recover original data streams at receiving end.
However, for all current simulations. As far to the authors’ knowledge, it is the first study to present
and examine the CNN-based CSE’s performance without integration with other deep NN approaches
using a few pilots. Furthermore, the Adam optimization algorithm trains the suggested estimators
by employing various classification layers to get the most reliable channel state estimator among the
examined ones. Finally, 2019b MATLAB/software is used to implement the suggested estimators.

The properties of the provided DNNs-based CSEs, as well as their training settings, are listed
in Table 1. A trial-and-error method is used to determine these parameters. The OFDM system and
channel model properties are listed in Table 2.

The CNN architecture consists of two 2D-convolution layers (2D-CL) and a single FC layer. First,
2D-CL is followed by a batch normalization (BN) layer, the rectified linear unit (ReLU) activation
layer, and max-pooling layer. The second 2D-CL is followed by a BN layer, ReLU layer, and F. C.
layer with size 4. The softmax activation is in the output layer. CNN’s training options such as loss
functions-based classification layers, mini-batch size, epoch number, learning algorithm are the same
as in Table 1.
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Table 1: DNN-based CSEs structures’ and training parameters

Parameter Value

Input layer size 256
BiLSTM layer size 30 H. N.
LSTM layer size 30 H. N.
CNN layers sizes 32, and 175 H. N.
F. C. layer size 4
Classification layers Based on Crossentropyex,

MAE, and SSE loss functions
Min. batch size 1000
Epochs No 1000
Iterations No 8000
Optimization
algorithm

Adam

Table 2: 5G, OFDM system and channel factors

Parameter Value

Modulation scheme QPSK
C. Freq. 2.6 GHz
Paths No 24
CP length 16
Subcarrier No 64
Pilots No 64, 8 and 4

The performance of the analyzed estimators is assessed using crossentropyex, MAE, and SSE-
based classification layers and 4, 8, and 64 pilots. For all simulation investigations, the Adam
optimization algorithm is employed.

Using the crossentropyex-based classification layer and enough pilots (64), the developed
BiLSTM(crossentropyex) CSE beats LSTM(crossentropyex), CNN(crossentropyex), and conventional CSEs throughout
the whole SNRs, as depicted in Fig. 7.

Fig. 8 shows that using the MAE-based classification layer and a pilot number of 64, CNNMAE

outperforms both BiLSTM(MAE), and LSTM(MAE). The BiLSTM(MAE), and LSTM(MAE) CSEs outperform
the LS CSE throughout the SNRs of [0–18 dB], and [0–15 dB], respectively. The BiLSTM(MAE),
LSTM(MAE), and CNN(MAE) estimators are comparable to the MMSE CSE throughout the SNRs of
[0–10 dB], [0–4 dB], and [0–12 dB], respectively. The MMSE CSE outperforms the others outside
these SNRs.
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Figure 7: Comparison of the DNNs-based and conventional CSEs at pilots of 64 and the
crossentropyex-based classification layer

Figure 8: Comparison of the DNNs-based and conventional CSEs at pilots of 64 and the MAE-based
classification layer

When the same number of pilots are used and the SSE-based classification layer is employed,
Fig. 9 illustrates that the BiLSTM(SSE), LSTM(SSE), CNN(SSE), and MMSE CSEs are on par at low SNRs
[0–7 dB]. Also, the MMSE CSE outstrips both BiLSTM(SSE) and LSTM(SSE) CSEs from 8 dB. The
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LS CSE beats LSTM(SSE), BiLSTM(SSE), and CNN(SSE) starting from 13, 15, and 18 dB, respectively.
BiLSTM(SSE) outperforms LSTM(SSE) starting from 9 dB, while CNN(SSE) outperforms both BiLSTM(SSE)

and LSTM(SSE) starting from 8 dB.

Figure 9: Comparison of the DNNs-based and conventional CSEs at pilots of 64 and the SSE-based
classification layer

Concisely, at pilots (64), BiLSTM(crossentropyex) outperforms all examined MMSE, LSTM(crossentropyex),
LSTM(MAE), LSTM(SSE), CNN(crossentropyex), CNN(MAE), CNN(SSE), and LS estimators. Furthermore, at low
SNRs to 7 dB, BiLSTM(crossentropyex), BiLSTM(MAE), BiLSTM(SSE), LSTM(crossentropyex), LSTM(MAE), LSTM(SSE),
CNN(crossentropyex), CNN(MAE), CNN(SSE) and MMSE CSEs achieve similar performances.

As LS does not exploit channel statistics priorly in the estimation phase, it performs poorly
compared to MMSE. Conversely, MMSE exhibits superior performance using second-order channel
statistics, especially with sufficient pilot numbers.

At 8 pilots, Figs. 10–12 illustrate that the developed BiLSTM(crossentropyex), BiLSTM(MAE), BiLSTM(SSE)

CSEs beat LSTM(crossentropyex), LSTM(MAE), LSTM(SSE), CNN(crossentropyex), CNN(MAE), CNN(SSE) and the
conventional CSEs at examination SNRs. At low SNRs to 7 dB, the presented BiLSTM(crossentropyex),
BiLSTM(MAE), BiLSTM(SSE) CSEs deliver comparable performance. Furthermore, the developed
BiLSTM(SSE) beats the BiLSTM(crossentropyex), and BiLSTM(MAE) CSEs. Also, it is clear that CNN(crossentropyex),
CNN(MAE), and CNN(SSE) estimators suffer due to limited pilots and providing such a lousy performance
compared to all examined estimators.
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Figure 10: Comparison of the DNNs-based and conventional CSEs at pilots of 8 and the
crossentropyex-based classification layer

Figure 11: Comparison of the DNNs-based and conventional CSEs at pilots of 8 and the MAE-based
classification layer
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Figure 12: Comparison of the DNNs-based and conventional CSEs at pilots of 8 and the SSE-based
classification layer

At 4 pilots, Figs. 13–15 demonstrate the effectiveness of the provided BiLSTM(crossentropyex),
BiLSTM(MAE), and BiLSTM(SSE) estimators compared to the examined estimators. They also show
the superiority of BiLSTMSSE over BiLSTM(crossentropyex), BiLSTM(MAE), LSTM(crossentropyex), LSTM(MAE),
and LSTM(SSE). At SNRs to 3 dB, the presented BiLSTM(crossentropyex), BiLSTM(MAE), and BiLSTM(SSE)

CSEs deliver comparable performance. Also, it is clear that CNN(crossentropyex), CNN(MAE), and CNN(SSE)

estimators have slightly better performance than the conventional estimators starting from 8 dB, but
they are still suffering from the limited pilots.

Figure 13: Comparison of the DNNs-based and conventional CSEs at pilots of 4 and the
crossentropyex-based classification layer
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Figure 14: Comparison of the DNNs-based and conventional CSEs at pilots of 4 and the
crossentropyex-based classification layer

Figure 15: Comparison of the DNNs-based and conventional CSEs at pilots of 4 and the SSE-based
classification layer

The given findings highlight the robustness of BiLSTM-based CSEs against a few pilots and priori
channel statistics information uncertainty. They also show how important it is to evaluate the use of
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multiple loss functions-based classification layers on the training process to find the best architecture
for each suggested estimator.

Fig. 16 shows that at pilots of 64, 8, and 4; the presented BiLSTMcrossentropyex, BiLSTMSSE, and
BiLSTMSSE CSEs have comparable performance. Also, BiLSTMSSE performance at 8 pilots is identical
to BiLSTMcrossentropyex performance at 64 pilots. Therefore, 5G OFDM systems should use the suggested
estimators with limited pilots that is BiLSTMSSE to considerably improve their data transmission rate.
Also, it is clear that some loss functions are preferable in some situations than others. The proposed
estimator is robust to a priori uncertainty for channel statistics since it uses a training data set-driven
technique.

Figure 16: Comparison of the BiLSTM-based CSEs performances at 64, 8, and 4 pilots and the
presented loss functions-based classification layer

5.2 Loss Curves
Exploring the training loss curves helps effectively check the quality of the DLNNs’ training

process. The loss curves deliver feedback on how the learning process is going, allowing to determine
if it is worthy of continuing with the learning process or not. Figs. 17–19 illustrate the loss curves of
the DNN-based CSEs (BiLSTM, LSTM, and CNN) with the three loss functions-based classification
layers and pilot numbers of 64, 8, and 4. All collected results are emphasized and verified by the loss
curves.
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Figure 17: DNNs-based CSEs loss curves comparison at pilots of 64, Adam optimization approach
and loss functions-based classification layers

Figure 18: DNNs-based CSEs loss curves comparison at pilots of 8, Adam optimization approach and
loss functions-based classification layers
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Figure 19: DNNs-based CSEs loss curves comparison at pilots of 4, Adam optimization approach and
loss functions-based classification layers

5.3 Accuracy Calculation
The suggested and other evaluated estimators’ accuracy measures how well they accurately retrieve

transmitted data. Accuracy is the ratio of the correctly received symbols, and the transmitted symbols.
As mentioned in the previous subsection, the suggested estimators are trained in various conditions,
and we want to see how well they perform with a new data set. Therefore, the achieved accuracies for
investigated CSEs are presented in Tables 3–5.

Table 3: Comparison of the investigated CSEs’ accuracy with 64 pilots

Pilots of 64

BiLSTM LSTM CNN MMSE LS

Crossentropyex 100 99.99 99.96 100 99.94
SSE 99.23 97.88 99.78 100 99.96
MAE 99.87 99.52 99.96 100 99.97

Table 4: Comparison of the investigated CSEs’ accuracy with 8 pilots

Pilots of 8

BiLSTM LSTM CNN MMSE LS

Crossentropyex 99.84 99.53 26.21 91.34 91.62
SSE 100 99.95 27.20 91.60 91.49
MAE 100 99.94 26.44 91.53 91.50
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Table 5: Comparison of the investigated CSEs’ accuracy with 4 pilots

Pilots of 4

BiLSTM LSTM CNN MMSE LS

Crossentropyex 98.61 97.94 24.86 0.24 0.02
SSE 100 99.28 26.05 0.24 0.09
MAE 99.97 99.05 25.52 0.26 0.04

The proposed BiLSTM-based CSE achieves accuracy, as shown in Tables 3 to 5 from 98.61%
to 100%; the second LSTM-based CSE has accuracy from 97.88% to 99.99%, while the CNN-based
CSE has accuracies of 24.86% to 99.96%. The gotten accuracies show that the presented CSEs has
learned effectively and emphasize the obtained SER performances in Figs. 6–14. Also, the accuracies
of the CNN-based CSE, and conventional estimators in Tables 1–3 emphasize the provided SER
performances in Figs. 6–14 and show that when the number of pilots lowers, the efficiency of the
CNN and conventional CSEs drops.

The RNN (LSTM and BiLSTM)-based CSEs can assess enormous data sets, discover statistical
correlations, construct relationships between features, and generalize the gained knowledge for new
inputs. As a result, they are applicable to 5G and future systems.

5.4 Training Time Comparison and Complexity
The computational complexity of both CNN-based CSEs and DNN-based CSEs is provided

empirically in this section in terms of the training time. Training time can be defined as the amount
of time expended to get the best NN parameters (e.g., weights and biases) that will minimise the error
using a training dataset. Because it involves continually evaluating the loss function with multiple
parameter values, the training procedure is computationally complex.

Table 6 lists the consumed training time for the examined CNN-based CSEs and RNN-based
CSEs. The used computer is equipped with an Intel(R) Core (TM) i5-2400 CPU running with a
3.10–3.30 GHz microprocessor and 4 GB of RAM.

Table 6: Processing time Comparison between the investigated CSEs

64 pilots 8 pilots 4 pilots

Bi-
LSTM
(M:S)

LSTM
(M:S)

CNN
(H:M)

Bi-
LSTM
(M:S)

LSTM
(M:S)

CNN
(H:M)

Bi-
LSTM
(M:S)

LSTM
(M:S)

CNN
(H:M)

Crossentropyex 10:13 8:2 15.72 9:14 6:9 15.95 8:33 7:53 16:02
SSE 10:48 6:57 16.54 8:18 7:40 15.37 7:43 7:11 14.95
MAE 10:43 6:32 17:39 9:1 7:24 16.47 7:23 7:10 16:30

The LSTM-based CSEs consume the lowest training time, followed by BiLSTM-based CSEs,
while the highest training time is consumed by CNN-based CSEs at all pilots’ scenarios and the
same training parameters. CNN-based CSEs’ training time is in hours, which indicates its high
computational complexity in comparison to its peers.
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6 Conclusions and Future Work
6.1 Conclusions

All presented DNNs-based CSEs are online pilot assisted estimators. The findings are summarised
as follows:

At sufficient pilots = 64:

• The proposed CNN(crossentropyex)-based CSEs provide comparable performance to the
RNNs(crossentropyex)-based CSEs, as depicted in Fig. 7.

• The proposed CNN(MAE, and SSE)-based CSEs outperform the RNNs(MAE, and SSE)-based CSEs, as
depicted in Figs. 8 and 9.

• The proposed CNN(crossentropyex, MAE, SSE)-based CSEs outperform the traditionally used LS CSE, as
depicted in Figs. 7–9.

• The proposed CNN(MAE, SSE) provide a comparable performance as MMSE CSE at low SNRs as
depicted in Figs. 8 and 9.

• The proposed CNN-based CSEs superior the conventional estimators where the last first
estimate channel state information explicitly and then detect/recover the transmitted symbols
using the estimated information, while the proposed CNN-based CSEs estimate channel
information implicitly and recover the transmitted symbols directly.

At fewer pilots = 4,

• The proposed CNN-based CSEs outperform the LS, and MMSE conventional estimators.

Generally:

• RNN-based CSEs win the proposed CNN-based CSEs in terms of training time, and achieved
accuracies at pilots = 8, and 4. While they provide approximately the accuracies at pilots = 64.

• The best loss function is SSE (SSE-based classification layer), and the best RNN structure is
BiLSTM(SSE), as illustrated in Fig. 16.

• Some of loss functions are preferable in some situations than others.

• The proposed CSEs are more suitable for communication systems with modeling errors or
non-stationary channels, such as high-mobility vehicular systems and underwater acoustic
communication systems.

6.2 Future Work
Using other learning techniques such as Adadelta, Nadam and Adagrad to investigate the

proposed estimators’ performance and accuracy. Using m-estimators robust statistics cost functions
such as Huber, Tukey, Welch, and Cauchy to develop more robust classification layers. Developing
other DNN-based CSEs by employing other recurrent networks such as gated recurrent unit (RGU)
and simple recurrent unit (SRU). Studying the effectiveness of these CSEs using crossentropyex-,
MAE-, and SSE-based classification layers.
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