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ABSTRACT

Cases of COVID-19 and its variant omicron are raised all across the world. The most lethal form and effect of
COVID-19 are the omicron version, which has been reported in tens of thousands of cases daily in numerous
nations. Following WHO (World health organization) records on 30 December 2021, the cases of COVID-19 were
found to be maximum for which boarding individuals were found 1,524,266, active, recovered, and discharge were
found to be 82,402 and 34,258,778, respectively. While there were 160,989 active cases, 33,614,434 cured cases,
456,386 total deaths, and 605,885,769 total samples tested. So far, 1,438,322,742 individuals have been vaccinated.
The coronavirus or COVID-19 is inciting panic for several reasons. It is a new virus that has affected the whole
world. Scientists have introduced certain ways to prevent the virus. One can lower the danger of infection by
reducing the contact rate with other persons. Avoiding crowded places and social events with many people reduces
the chance of one being exposed to the virus. The deadly COVID-19 spreads speedily. It is thought that the
upcoming waves of this pandemic will be even more dreadful. Mathematicians have presented several mathematical
models to study the pandemic and predict future dangers. The need of the hour is to restrict the mobility to control
the infection from spreading. Moreover, separating affected individuals from healthy people is essential to control
the infection. We consider the COVID-19 model in which the population is divided into five compartments.
The present model presents the population’s diffusion effects on all susceptible, exposed, infected, isolated, and
recovered compartments. The reproductive number, which has a key role in the infectious models, is discussed.
The equilibrium points and their stability is presented. For numerical simulations, finite difference (FD) schemes
like nonstandard finite difference (NSFD), forward in time central in space (FTCS), and Crank Nicolson (CN)
schemes are implemented. Some core characteristics of schemes like stability and consistency are calculated.
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1 Introduction

In December 2019, the world encountered the most destructive disease named COVID-19.
Humankind did not face such crises after World War II, which wreaked great havoc on the nations
with the dwindling economies and inadequate health care facilities. It raised the causality rate by
5,534,735 and the fall in trade, movements, and traveling. According to a survey done by international
traveling cooperation, about 4 billion people cannot travel due to traveling curbs. This pandemic
ceased the government and private medical units as most countries were unprepared and were unaware
of the multiplication of causative agents. Today, the coronavirus has produced a new chapter for
mathematical researchers who found modeling the most appropriate tool for investigating the spread
of a disease in a community.

According to the union health ministry, 653 omicron cases were detected across India in December
2021. However, a dramatic rise has been seen from 29 to 30 December 2021. On 30 December 2021,
13,187 new cases of omicron variant were reported, which were 77% of the total population of India,
and the states like Mumbai, Delhi, Pune, Bengaluru, Chennai, Thane, Kolkata, and Ahmedabad
were considered as the most susceptible ones. Mumbai showed an 80% rise in the cases daily with
an approximation of 2510 cases, leading to a 400% rise weekly. Additionally, 923 cases were detected
in New Delhi, which revealed a 600% rise weekly, along with Bengaluru 400 cases (90%), Chennai 294
(100%), and Mumbai (15%). These cases are of the omicron variant, the type of SARS-CoV-2 virus,
and have been in destructive action in India since December 2021. The target of vaccination endorse
63% of adults.

The development of vaccines and medicines rectified the pandemic but did not reduce the chance
of disease spreading, which has become a great challenge for scientists. This problem can be solved
using equilibrium points of COVID-19. People have followed intense SOPs (standard operational
procedures) to combat this variant, including quarantine, hand wash, suitable distance, and isolation.

NIH (National Institute of Health) reported that Pakistan had 75 cases since 27 December. Thirty-
three were from Karachi, 17 from Islamabad, and 13 from Lahore. Individuals in these cases were
found to be international travel. NIH revealed that these patients were immediately isolated and
contacted their relatives to control the spread in a statement. On 13 December, The News, the largest-
selling paper in Pakistan, coated the figures of NIH and revealed that the first case of omicron was
from Karachi.

NIH further stressed the need to follow SOPs and advise people to get vaccinated. The government
of Pakistan allowed all the vaccines to be administered as early as possible to get rid of the dire
consequences of the omicron variant. NCOC (National Command and Operation Centre) urged
people to administer vaccines and booster doses with criteria and precautions. NIH revealed that
omicron is a lethal variant whose aftermaths have been multiplying in several countries.

Today, the NCOC issued the latest COVID-19 statistics for the last 24 h in Pakistan, which
was 0.69%. Yesterday, 291 new COVID-19 cases were reported while 41,869 diagnostic tests were
conducted, whereas three died due to the omicron variant.

Coronavirus was first reported in China city of Wuhan and named COVID-19 by WHO as it shares
a common phylogenetic lineage with SARS COVID-II. It is mainly transferred from one person to
another due to coughing, sneezing, or contact with infected individuals. Salivary droplets released by
infected individuals are denser than air and immediately fall on the ground or nearby. WHO allocated
some safety measures, including the distance of six feet, hand washing, wearing masks and gloves, and
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the quarantining [1,2]. Reportedly, 1,458,000 people were getting infected in more than 180 countries,
raising the number of infected individuals by 4 million [3].

A model named as retrofitted state SIR model was proposed by [4] to predict and reckon the
numeric of infected and susceptible individuals. Nesteruk focuses on the epidemic and calculates
the number of infected individuals. Based on his assumptions, the mortality rate was higher than
estimated. Nesteruk et al. [5–8] proved that infection multiplies quickly in densely packed areas, which
moves the hypothesis towards applying social distancing and quarantining measures. In [9], authors
have investigated the SIR model to estimate the primary cause of coronavirus spread.

Okhuese [10] demonstrated a framework of a stochastic model. The condition dictates extinction
and persistence. Also, they debated the threshold of the stochastic model proposed when small or large
noise occurs. A method of the potential besides misinformation transmission within the population is
the basic reproduction number, mathematically disease-free threshold and stability are related to an
epidemic peak and final size [11–15]. The purpose of the present article is to investigate the effects of
diffusion on the spread of disease; the reproductive number of the model is given, which is the key
element of such models, and the numerical results are obtained through some schemes such as NSFD,
FTCS, and Crank Nicolson scheme.

A disease-free equilibrium’s local and global stability is linked to the calculation and epidemiolog-
ical interpretation of this threshold parameter [16–18]. Following the spread of the disease, researchers
have activated to speed innovative diagnostics and are in the throes of several vaccines to guard
against COVID-19. Zeb et al. [19] considered the model comprised of five compartments. After the
emergency of the acute syndrome coronavirus in 2002, which spread to 37 countries, COVID-19 is
the third emerging human application purposes disease in the current century and the middle east
respiratory syndrome coronavirus in 2012, which spread to 27 countries bilateral lung infiltration
including dry cough, fever, trouble, breathing, fatigue and related symptoms caused by COVID-19
[20–26]. Alqarni et al. [27] constructed a new mathematical model for transmission dynamics of
COVID-19. The model is based on the data from Saudi Arabia. The authors have discussed the
concentration of the disease by introducing first-order ODE into the model. The whole population is
divided into five compartments (SEIAR). Analysis of the model is performed by considering the basic
reproduction number [28]. Deals fractional form of projectile motion (wind-influenced) is discussed
in detail. Inverse singular spectral problems are discussed in [29] by Ozarslan et al. [30] discussed the
Lewis model for the soybean drying process using fractional differential operators. The results are
compared with Caputo fractional derivative.

One of the most effective ways to uncover the truth about diseases is through mathematical
modeling. For the most part, determining differential equations is difficult and does not yield closed-
form solutions. To accomplish this, we turned to a variety of numerical methods.

The detail of the rest of the sections is as follows. The Section 2 discusses the COVID-19 epidemic
with an isolated compartment and presented the proposed model. Moreover, we prove the positivity
of the model in this section also. The basic reproduction number and equilibrium points are discussed
in Section 3. Furthermore, the stability of the equilibrium point is discussed in the same section.
In the Section 4, numerical schemes are applied, and the stability and consistency of FTCS, Crank
Nicolson, and NSFD schemes are investigated. Sections 5 and 6 are respectively presenting the results
and conclusion.
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2 Proposed Model for COVID-19

We consider the model for COVID-19, which comprises five compartments susceptible, exposed,
infected, isolated, and recovered. The compartments are denoted by S, E, I , Q, and R, see [19].

Most infectious disease models comprise ordinary differential equations of the first order. Such
models cannot give an accurate picture of disease because of the mobility of the population within the
area; therefore, to study pandemic diseases, the spatial content cannot be ignored. Due to the mobility
of individuals, the spread of disease may differ from one area to the other.

2.1 Why Diffusion?
The movement of people happens in special regions like countries and cities and generally in the

local domain. Let’s look at the movement of people in the United States and China (densely populated
regions). The mobility of people may be covering millions of square kilometers, whereas, in small
countries, it may reduce to just several square kilometers. To what extent does mobility have larger
effects on the variation in ecology. This may variate cultural values and health concerns.

Contrary to typical mathematical models, which deal with the spread and control of epidemics,
the present model deals with the greater mobility of humans getting mixed rapidly. The specialty of
this model is that it keeps the spatial content into consideration. In the case of pandemics, we cannot
ignore the factor of mobility because the disease may spread faster in one area than others due to
mobility [31–40]. The following flow map in Fig. 1 shows the different compartment SEIQR of the
population and the factors affecting the said compartment.

Figure 1: Flow map for COVID-19 model

∂S
dt

= δS

∂2S
∂x2

+ A − μS − βNS (E + I)

∂E
dt

= δE

∂2E
∂x2

+ βNS(E + I) − πE − (μ + γ ) E

∂I
dt

= δI

∂2I
∂x2

+ πE − ςI − μI

∂Q
dt

= δQ

∂2Q
∂x2

+ γ E + ςI − θQ − μQ

∂R
dt

= δR

∂2R
∂x2

+ θQ − μR

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)
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With initial condition as
S (x, 0) ≥ 0, E (x, 0) ≥ 0
I (x, 0) ≥ 0, Q (x, 0) ≥ 0

R (x, 0) ≥ 0

⎫⎬
⎭ . (2)

As the first four equations are independent of R(t), so we modify the system as follows:

∂S
dt

= δS

∂2S
∂x2

+ A − μS − βNS (E + I)

∂E
dt

= δE

∂2E
∂x2

+ βNS(E + I) − πE − (μ + γ ) E

∂I
dt

= δI

∂2I
∂x2

+ πE − ςI − μI

∂Q
dt

= δQ

∂2Q
∂x2

+ γ E + ςI − θQ − μQ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3)

Consider the following assumptions

N = A
μ

, s = S
N

, e = E
N

, i = I
N

, q = Q
N

. (4)

With initial conditions
s (x, 0) = s0 ≥ 0, e (x, 0) = e0 ≥ 0
i (x, 0) = io ≥ 0, q (x, 0) = q0 ≥ 0

}
.. (5)

We rewrite the system (3) as follows:

st = δs

∂2s
∂x2

+ μ − μs − βNs (e + i) ;

et = δe

∂2e
∂x2

+ βNs(e + i) − πe − (μ + γ ) e;

it = δi

∂2i
∂x2

+ πe − ς i − μi;

qt = δq

∂2q
∂x2

+ γ e + ς i − θq − μq;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

Lemma.1

Under the initial conditions (5), all the solutions of system (6) are non-negative for t ≥ 0.

Proof: By the I. C. s (0) = s0 ≥ 0, e (0) = e0 ≥ 0, i (0) = i0 ≥ 0, q (0) = q0 ≥ 0.

st|s=0 = δs

∂2s
∂x2

+ μ ≥ 0

et|e=0 = δe

∂2e
∂x2

+ βNs (e + i) ≥ 0

it|i=0 = δi

∂2i
∂x2

+ πe ≥

qt|q=0 = δq

∂2q
∂x2

+ γ e ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (7)

Eq. (7) proves the positivity of the model.



1724 CMES, 2023, vol.135, no.2

2.2 Basic Reproductive Number
It is the key element in the disease model whose value is a quick check to tell whether the disease

has spread or not. The basic reproductive number for the model is given as

R0 = βN
(

ς + μ + π

(μ + π + γ )(ς + μ)

)
. (8)

where δs = δe = δi = δq = 0.

2.3 Existence and Stability of Equilibrium Points
Equilibrium points are those critical points that yield a constant solution of differential equations.

These points may be stable or unstable depending upon the basic reproductive number R0. The system
(6) has two equilibrium points as follows:

C0 = (so, eo, io, qo), C1 = (s1, e1, i1, q1) .

where so = 1, eo = io = qo = 0

s1 = ς (π + μ + γ ) + μ (π + γ ) + μ2

βN (π + μ + γ )

e1 = βN (π + μ + γ ) − ς (π + μ + γ ) − μ (ς + μ)

βN (ς (π + μ + γ ) + π (π + γ ) + 2πμ + γμ + μ2)

i1 = μπ(βN (ς + μ + γ ) − ς(π + μ + γ ) − 2μ(γ + μ)

βN(ς 2 (π + μ + γ ) + ςπ 2 + ςπγ + 3ςπμ + 2ςγμ + 2ςμ2 + π 2μ + πγμ + 2πμ2 + γμ2 + μ3

q1 = μ[(βN(ς + μ + γ ) − ς(π + μ + γ ) − πμ − γμ − μ2](γ π + γμ + ςπ)

βN(ς2(π + μ + γ ) + ςπ(π + γ ) + 3ςπμ + 2ςγμ + 2ςμ2 + π2μ + πγμ + 2πμ2 + γμ2 + μ3(θ + μt)

2.4 System Stability at Equilibrium Point
For the stability of the system, we perturb (6) at the equilibrium point C1 = (s1, e1, i1, q1) as

under [28].

∂s1

∂t
= b11s1 + b12e1 + b13i1 + b14q1 + d1

∂2s1

∂x2

∂e1

∂t
= b21s1 + b22e1 + b23i1 + b24q1 + d2

∂2e1

∂x2

∂i1

∂t
= b31s1 + b32e1 + b33i1 + b34q1 + d3

∂2i1

∂x2

∂q1

∂t
= b41s1 + b42e1 + b43i1 + b44q1 + d4

∂2q1

∂x2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

where

δs = d1, δe = d2, δi = d3, δq = d4.

and

b11 = −μ, b12 = −βN, b13 = −βN, b14 = 0,

b21 = 0, b22 = −π − μ + βN, b23 = βN, b24 = 0,

b31 = 0, b32 = π , b33 = −ς − μ, b34 = 0,
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b41 = 0, b42 = γ , b43 = ς , b44 = −θ − μ.

Suppose the above system possesses a Fourier solution

s1 (x, t) = ∑
K skeλtCos (kx)

e1 (x, t) = ∑
K ekeλtCos (kx)

i1 (x, t) = ∑
K ikeλtCos (kx)

q1 (x, t) = ∑
K qkeλtCos (kx)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

For k = nπ

2
where n is a natural number, called the wave number at node n, by substituting the

values of s1, e1, i1, q1 in the above equations. We get

λ
∑

k

sk = b11

∑
K

sk + b12

∑
K

ek + b13

∑
K

ik − d1

∑
k

k2sk

λ
∑

k

ek = b21

∑
K

sk + b22

∑
K

ek + b23

∑
K

ik − d2

∑
k

k2ek

λ
∑

k

ik = b31

∑
K

sk + b32

∑
K

ek + b33

∑
K

ik − d3

∑
k

k2ik

λ
∑

k

qk = b41

∑
K

sk + b42

∑
K

ek + b43

∑
K

ik − d4

∑
k

k2qk.

This leads to the following:
∑

K

(
b11 − λ − d1k2

)
sk +

∑
K

b12ek +
∑

K

b13ik +
∑

k

b14qk = 0

∑
K

b21sk +
∑

K

(
b22 − λ − d2k2

)
ek +

∑
K

b23ik +
∑

k

b24qk = 0

∑
K

b31sk +
∑

K

b32ek +
∑

K

(
b33 − λ − d3k2

)
ik +

∑
k

b34qk = 0

∑
K

b41sk +
∑

K

b42ek +
∑

K

b43ik +
∑

k

(
b44 − λ − d4k2

)
qk = 0.

The variational matrix V can be written as

V =

⎛
⎜⎜⎝

b11 − d1k2 b12 b13 b14

b21 b22 − d2k2 b23 b24

b31 b32 b33 − d3k2 b34

b41 b42 b43 b44 − d4k2

⎞
⎟⎟⎠ .

The characteristic polynomial for the above matrix can be written as

P (λ) = F0λ
4 + F1λ

3 + F2λ
2 + F3λ + F4 = 0.

where

F0 = 1

F1 = −b11 − b22 − b33 − b44 + (d1 + d2 + d3 + d4) k2
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F2 = −b12b21 − b13b31 − b23b32 − b14b41 − b24b42 − b34b43 + b33b44 − (b44 (d1 + d2 + d3) + b33(d1 + d2

+ d4))k
2 + (d3d4 + d2 (d3 + d4) + d1 (d2 + d3 + d4))

(
k2)2 + b22

(
b33 + b44 − (d1 + d3 + d4) k2)

+ b11

(
b22 + b33 + b44 − (d2 + d3 + d4) k2)

F3 = b11b23b32 − b11b22b33 + b14b22b41 + b14b33b41 − b14b21b42 + b11b24b42 + b24b33b42 − b23b34b42 − b14b31b43

− b24b32b43 + b11b34b43 + b22b34b43 − b11b22b44 + b23b32b44 − b11b33b44 − b22b33b44 + (−b24b42d1

− b34b43d1 + b33b44d1 + b11b33d2 − b14b41d2 − b34b43d2 + b11b44d2 + b33b44d2 − b14b41d3 − b24b42d3

+ b11b44d3 + b11b33d4 − b23b32 (d1 + d4) + b22 (b44 (d1 + d3) + b33 (d1 + d4) + b11 (d3 + d4)))k
2

− ((b22d1 + b11d2) d3 + b44 (d1d2 + (d1 + d2) d3) + (b22 (d1 + d3) + b11 (d2 + d3)) d4

+ b33 (d2d4 + d1 (d2 + d4)))
(
k2)2 + (d2d3d4 + d1 (d3d4 + d2 (d3 + d4)))

(
k2)3 + b13(−b21b32 − b34b41

+ b31

(
b22 + b44 − (d2 + d4) k2)

) − b12

(
b23b31 + b24b41 + b21

(−b33 − b44 + (d3 + d4) k2))

F4 = b12b24b33b41 − b12b23b34b41 − b11b24b33b42 + b11b23b34b42 − b12b24b31b43 + b11b24b32b43 + b12b21b34b43

− b11b22b34b43 + b12b23b31b44 − b11b23b32b44 − b12b21b33b44 + b11b22b33b44 + (b22b34b43d1 − b22b33b44d1

+ b11b34b43d2 − b11b33b44d2 + b12b21b44d3 − b11b22b44d3 + b24(b33b42d1 − b32b43d1

+ (−b12b41 + b11b42)d3) + (b12b21 − b11b22)b33d4 + b23(−b34b42d1 − b12b31d4 + b32(b44d1 + b11d4)))k
2

+ (−b34b43d1d2 + (−b24b42d1 + b44(b22d1 + b11d2))d3 − (b23b32d1 + (b12b21 − b11b22)d3)d4

+ b33(b44d1d2 + (b22d1 + b11d2)d4))
(
k2)2 − (b44d1d2d3 + (b33d1d2 + (b22d1 + b11d2)d3)d4)

(
k2)3

+ d1d2d3d4

(
k2)4 + b14(b23(b32b41 − b31b42) + b21(b33b42 − b32b43) + ((b33b41 − b31b43)d2 − b21b42d3)k

2

− b41d2d3

(
k2)2 + b22(b31b43 + b41(−b33 + d3k

2
))) − b13(b24(b32b41 − b31b42) + b21(b34b42 − b32b44)

+ ((b34b41 − b31b44)d2 + b21b32d4)k
2 + b31d2d4

(
k2)2 − b22(b34b41 + b31(−b44 + d4k

2
))).

According to Routh Hurwitz’s criterion, the system is stable under the following condition:

F1 > 0, F1F2 − F0F3 > 0, (F1F2 − F0F3) F3 − F1
2F4 > 0, F4 > 0.

Theorem: 1 If R0 < 1 then the system (6) is globally stable.

Proof: We construct the Lyapunov function as

L = (e − e0) + βN
ς + μ

(i − i0)

L′ = et + βN
ς + μ

it

L′ ≤ βNe − (π + μ + γ ) e + βN
(ς + μ) (πe)

+ δe

∂2e
∂x2

+ βN
ς + μ

+ δi

∂2i
∂x2

a

L′ ≤ βNe − (π + μ + γ ) e
(ς + μ) (πe)

≤ (R◦ − 1) e
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This implies that L′ < 1 when Ro < 1, therefore, the system is globally stable.

3 Numerical Methods

In this section, we construct numerical methods for system (6).

st = δs

∂2s
∂x2

+ μ − μs − βNs (e + i) ;

et = δe

∂2e
∂x2

+ βNs(e + i) − πe − (μ + γ ) e;

it = δi

∂2i
∂x2

+ πe − ς i − μi;

qt = δq

∂2q
∂x2

+ γ e + ς i − θq − μq;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9)

For t ≥ 0, x ∈ [0, L] and the initial conditions are

s (x, 0) = s0 ≥ 0, e (x, 0) = e0 ≥ 0
i (x, 0) = io ≥ 0, q (x, 0) = q0 ≥ 0

}
. (10)

Dividing [0, L] × [0, T ] into G × P grid points. Define the step size as h = L
P

& t = T
G

xj = jh, j = 0, 1, 2, . . . , P
tg = gt, g = 0, 1, 2, . . . , G.

We denote the values sn
j , en

j , in
j and qn

j as finite-difference approximate values for s(jh, nt), e(jh, nt),
i(jh, nt), q(jh, nt), respectively.

3.1 FTCS Scheme
The FTCS scheme for the above system can be written as

sn+1
j = sn

j + δsΔt
Δx2

(
sn

j+1 − 2sn
j + sn

j−1

) + μΔt − μΔtsn
j − βΔtNsn

j

(
en

j + in
j

)
sn+1

j = sn
j + d1

(
sn

j+1 − 2sn
j + sn

j−1

) + μΔt − μΔtsn
j − βΔtNsn

j

(
en

j + in
j

)
sn+1

j = sn
j

(
1 − 2d1 − μΔt − βNΔt

(
en

j i
n
j

)) + d1

(
sn

j+1 + sn
j−1

) − μΔt

en+1
j = en

j

(
1 − 2d2 + βNΔtsn

j − πΔt − Δt (μ + γ )
) + d2

(
en

j+1 + en
j−1

) + ΔtβNsn
j i

n
j

in+1
j = in

j (1 − 2d3 − ςΔt − −μΔt) + d3

(
in
j+1 + in

j−1

) + πΔten
j

qn+1
j = qn

j (1 − 2d4 + Δtθ − −μΔt) + d4

(
qn

j+1 + qn
j−1

) + γΔten
j + ςΔtin

j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

d1 = δs
t

x2

, d2 = δe
t

x2

, d3 = δi
t

x2

, d4 = δq
t

x2

(11)

3.2 Stability of FTCS

We carry out stability using Von Neumann stability analysis.

Consider the following:

sn+1
j = sn

j + δs

Δt
Δx2

(
sn

j+1 − 2sn
j + sn

j−1

) + Δt
(
μ − sn

j − βnsn
j

(
en

j + in
j

))
.
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Using the following values:

sn
j = eαnkeι̃φjh, sn+1

j = eα(n+1)keι̃φjh,

sn
j+1 = eαnkeι̃φ(j+1)h, sn

j−1 = eαnkeι̃φ(j−1)h.

where ı̃ = √−1

eαk = 1 + d1

(
eι̃ϕh − 2 + e−ı̃ϕh

) − (μ + βNlm) 
t
∣∣eαk

∣∣ = |1 + 2d1 (cos ϕh − 1) − (μ + βNlm) 
t| .

For
cos ϕh = −1∣∣eαk

∣∣ = |1 − 4d1 − 
t (μ + βNlm)|
−1 ≤ 1 − 4d1 − 
t (μ + βNlm) ≤ 1.

After some simplification, we get

−μ + βNlm
4

≤ d1 ≤ 2 − μ − βNlm
4

.

Similarly,

ej
n+1 = ej

n + d2(ej+1
n − 2ej

n + ej−1
n) + 
t(−(μ + γ )ej

n − πej
n + βNsj

n(ej
n + ij

n)).

Putting values of ej
n, ej

n+1, ej+1
n, ej−1

n,

We get the following relation after some simplification:

eαk = 1 + d2(2 cos ϕh − 2) + (βNa − π − (μ + γ ))
t

|eαk| = |1 + 2d2(cos ϕh − 1) + (βNa − π − (μ + γ ))
t|
|eαk| = |1 − 4d2 − 
t(μ + γ ) + βNa − π)|.

For zero linear constants

eαnk = |1 − 4d2 − (π + μ + γ )| ≤ 1.

Now similarly,

in+1
j = in

j + d3

(
in
j+1 − 2in

j + in
j−1

) + (
πen

j − (ς + μ)in
j

)

t.

Using values of in+1
j , in

j+1, in
j , in

j−1 ,

eαk = 1 + 2d3 (cos ϕh − 1) − (μ + ς) 
t∣∣eαk
∣∣ = |1 + 2d3 (cos ϕh − 1) − (μ + ς) 
t| .

For
cos ϕh = −1∣∣eαk

∣∣ = |1 − 4d3 − 
t (ς + μ)|
−1 ≤ 1 − 4d3 − 
t (μ + ς) ≤ 1.
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After some simplification, we have

− (μ + ς)
Δt
4

≤ d3 ≤ 2 − (μ + ς)
Δt
4

.

qn+1
j = qn

j + d4

(
qn

j+1 − 2qn
j + qn

j−1

) + (
γ en

j − ς in
j − (θ + μ) qn

j

)

t.

Using values of qn+1
j , qn

j+1, qn
j , qn

j−1, etc.

eαk = 1 + 2d4 (cos ϕh − 1) − (μ + θ) 
t∣∣eαk
∣∣ = |1 + 2d4 (cos ϕh − 1) − (μ + θ) 
t| .

For
cos ϕh = −1∣∣eαk

∣∣ = |1 − 4d4 − 
t (θ + μ)|
−1 ≤ 1 − 4d4 − 
t (μ + θ) ≤ 1.

After some Simplification

− μ + θ

4
≤ d4 ≤ 2 − (μ + θ)
t

4
. (12)

Therefore, for the system described by (10), the FTCS scheme is conditionally stable.

3.3 Consistency of FTCS
A finite difference scheme is said to be consistent if the truncation error tends to zero by decreasing

the mesh and time step size.

sn+1
j = sn

j + d1

(
sn

j+1 − 2sn
j + sn

j−1

) + μ
t − μ
tsn
j − β
tNsn

j

(
en

j + in
j

)
sn+1

j = s (x, t + 
t) ;

= sn
j + 
t

∂s
∂t

+ (
t)2

2
∂2s
∂t2

+ . . .

sn
j+1 = s (x + 
x, t) ;

= sn
j + 
x

∂s
∂x

+ (
x)2

2
∂2s
∂x2

+ . . .

sn
j−1 = sn

j − 
x
∂s
∂x

+ (
x)2

2
∂2s
∂x2

+ . . .

so
∂s
∂t

+ 
t
2

∂2s
∂t2

+ . . . = δs

(
∂2s
∂x2

+ . . . O(
x)2

)
+ μ
t − μ
tsn

j − β
tNsn
j

(
en

j + in
j

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

When Δ x and Δt → 0 , we get

st = δs

∂2s
∂x2

+ μ − μs − βNs (e + i) . (14)

which implies that the FTCS scheme is consistent with the first equation of the system.

Similarly, the same procedure can be used to prove the other equations of the system.



1730 CMES, 2023, vol.135, no.2

3.4 Crank Nicolson Scheme
Among finite difference schemes, the Crank Nicolson scheme is one of the best schemes to

implement for numerical computation. It gives a better approximation of the solution, which has a
temporal error of O (
t)2. This scheme is an implicit one and gives unconditional stability. For the
proposed model, we can write the first equation as follows:

sn+1
j = sn

j + δs

Δt

2 (Δx)
2

{(
sn+1

j+1 − 2sn+1
j + sn+1

j−1

) + (
sn

j+1 − 2sn
j + sn

j−1

)} + Δt
(
μ − μ

2

((
sn

j + sn+1
j

)

−Δtβ
N
2

(
sn+1

j

(
en+1

j + in+1
j

) + sn
j

(
en

j + in
j

))))

sn+1
j = sn

j + d1

{(
sn+1

j+1 − 2sn+1
j + sn+1

j−1

) + (
sn

j+1 − 2sn
j + sn

j−1

)} + Δt
(
μ − μ

2

((
sn

j + sn+1
j

)

−β
N
2

(
sn+1

j

(
en+1

j + in+1
j

) + sn
j

(
en

j + in
j

))))

d1 = δ
Δt

2 (Δx)
2

sn+1
j

(
1 + 2d1 + μ

2Δt
+ Δtβ

N
2

(
en+1

j + in+1
j

)) − d1sn+1
j+1 − d1sn+1

j−1

= sn
j

(
1 − 2d1 − μ

2Δt
− βΔt

N
2

(
en

j + in
j

) + d1sn
j+1 + d1sn

j−1

)
. (15)

Similarly,

en+1
j

(
1 + 2d2 − Δtβ

N
2

(
sn+1

j + π

2Δt
+ Δt

2
(μ + γ )

))
− d2en+1

j+1 − d2en+1
j−1 = en

j

(
1 − 2d2 + βΔt

N
2

sn
j − πΔt

2
− Δt

μ + γ

)
+ d1en

j+1 + d1en
j−1 + Δtβ

N
2

sn+1
j in+1

j + Δtβ
N
2

sn
j i

n
j

where d2 = δe
t
2(
x)2

.

Also

in+1
j

(
1 + 2d3 + ς

2Δt
+ μ

2Δt

)
− d3in+1

j−1 − d3in+1
j+1 = inj

(
1 − 2d3 − Δt

ς

2
− μ

2Δt

)
+ d3inj+1 + d3inj−1 + π

2Δt

(
en

j + en+1
j

)

where d3 = δi
t
2(
x)2

.

In the same manner, we have the following:

qn+1
j

(
1 + 2d4 + μ + θ

2Δt

)
− d4qn+1

j+1 − d4qn+1
j−1 = qn

j

(
1 − 2d4 − μ + θ

2Δt

)
+ d4qn

j+1 + d4qn
j−1 + ς

2Δt

(
in+1
j + in

j

)

where d4 = δq
t
2(
x)2

.

3.5 Stability of Crank Nicolson Scheme
We carry out stability analysis using the Von Neumann method.
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Consider the following equation of (6).

st = δs

∂2s
∂x2

+ μ − μs − βNs(e + i); (16)

Here, d1 = δsΔt
(Δx)2

eαk

(
1 + 2d1 + μ

Δt
2

+ ΔtβN
a
2

)
− d1eαk

(
eĩφh + e−ĩφh

) =
(

1 − 2d1 − μ

2Δt
− β

2NΔtb

)
+ d1

(
eĩφh + e−ĩφh

)

∣∣eαk
∣∣ =

∣∣∣∣1 − 2d1 − μ

2

t − βN

2

tb + 2d1 cos φh

1 + 2d1 + μ

2

t + βN

2
a
t − 2d1 cos φh

∣∣∣∣ . (17)

For cosφ = −1

|eαk| =
∣∣∣∣1 − 4d1 − μ

2

t − βN

2

tb

1 + 4d1 + μ
t
2

+ βN
2

ta

∣∣∣∣ ≤ 1. (18)

Similarly, for 2nd equation of the system

eαk

(
1 + 2d2 + (μ + γ )

Δt
2

− ΔtβNa
2

+ π

2Δt
− d2eαk

(
eĩφh + e−ĩφh

))

=
(

1 − 2d2 − π

2
− μ + γ

2Δt
− β

2NΔtb

)
+ d2

(
eĩφh + e−ĩφh

) + βN
2cΔt

∣∣eαk
∣∣ =

∣∣∣∣∣
(
1 + 2d2 + (μ + γ ) Δt

2
− ΔtβNa

2
+ π

2Δt
− d2

(
eĩφh + e−ĩφh

))
(
1 − 2d2 − π

2
− μ+γ

2Δt
− β

2NΔtb

) + d2

(
eĩφh + e−ĩφh

) + βN
2cΔt

∣∣∣∣∣ < 1

Now for 3rd equation of the system

∣∣eαk
∣∣ =

∣∣∣∣∣∣∣
1 − 2d3 − ς

2Δt
− μ

2Δt
+ 2d3cosφh

1 + 2d3 + ς

2Δt
+ μ

2Δt
− 2d3cosφh

∣∣∣∣∣∣∣

∣∣eαk
∣∣ =

∣∣∣∣∣∣∣
1 − 4d3 − ς

2Δt
− μ

2Δt

1 − 4d3 + ς

2Δt
+ μ

2Δt

∣∣∣∣∣∣∣
< 1.

Similarly, Eq. (4) of the system can be written as

∣∣eαk
∣∣ =

∣∣∣∣1 − 2d4 − θ+μ

2Δt
+ 2d4cosφh

1 + 2d4 + θ+μ

2Δt
− 2d4cosφh

∣∣∣∣

∣∣eαk
∣∣ =

∣∣∣∣∣∣∣
1 − 4d4 − θ + μ

2Δt

1 − 4d4 + θ + μ

2Δt

∣∣∣∣∣∣∣
< 1. (19)

Similarly, we can prove the other two equations of the system.

3.6 Consistency of Crank Nicolson Scheme
Consider the following equations:
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sn+1
j = sn

j + d1

(
sn+1

j+1 − 2sn+1
j + sn+1

j−1 + sn
j+1 − 2sn

j + sn
j−1

) + μ

Δt
− μ

2Δt

(
sn

j + sn+1
j

) − βΔt
N
2

sn+1
j

(
en+1

j+1 + in+1
j

)

− βΔt
N
2

sn
j

(
en

j + in
j

)

sn+1
j = s (x, t + 
t)

= sn
j + 
t ∂s

∂t
+ (
t)2

2
∂2s
∂t2

+ ..

sj+1 = s (x + 
x, t) ;

= sn
j + 
x ∂s

∂x
+ (
x)2

2
∂2s
∂x2 + . . .

sn
j−1 = sn

j − 
x ∂s
∂x

+ (
x)2

2
∂2s
∂x2 + . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

So, we can proceed as

∂s
∂t

+ Δt
2

∂2s
∂t2

+ . . . = δs

2 (Δx)
2

[
Δx

∂s
∂x

+ Δt
∂s
∂t

+ (Δx)
2

2
∂2s
∂x2

+ (Δt)2

2
∂2s
∂t2

+ (Δx) (Δt)
∂s
∂x

∂s
∂t

−2Δt
∂s
∂t

− (Δt)2

2
∂2s
∂t2

− Δx
∂s
∂x

+ Δt
∂s
∂t

+ (Δx)
2

2
∂2s
∂x2

+ (Δt)2

2
∂2s
∂t2

− (Δx) (Δt)
∂s
∂x

∂s
∂t

+ 2 (Δt)
∂s
∂t

+(Δt)2

2
∂2s
∂t2

− Δt
∂s
∂t

+ (Δt)2

2
∂2s
∂t2

]
+ μ

2

(
2sn

j + Δt
∂s
∂t

+ (Δt)2

2
∂2s
∂t2

+ . . .

)

− βN
2

(
sn

j + Δt
∂s
∂t

+ (Δt)2

2
∂2s
∂t2

) (
en+1

j + in+1
j

) + sn
j

(
en

j + in
j

)
When Δx and Δt → 0, we get

st = δs

∂2s
∂x2

− μ + μs − βNs (e + i) . (20)

Hence the Crank Nicolson scheme is consistent for the first equation of (6). One can prove other
equations of the system in the same way.

4 NFSD Scheme

Among various numerical techniques used to approximate the differential equations, NFSD is a
technique that can effectively be used to approximate differential equations. It holds the property of
positivity which is the fundamental property of the pandemic models. Many types of NFSD schemes
are formulated according to the rules described by Mickens [17,18].

Consider the following equation of (6).
∂s
∂t

= δs
∂2s
∂x2

+ μ − μs − βNs (e + i) . (21)

It can be written as
sn+1

j − sn
j

Δt
= δs

(Δx)
2

(
sn

j+1 − 2sn+1
j + sn

j

) + μ − μsn+1
j − βNsn+1

j

(
en

j + in
j

)
,

sn+1
j = sn

j + d1

(
sn

j+1 − sn
j−1

)
1 + 2d1 + βN
t

(
en

j + in
j

) + μ
t
,
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∂e
∂t

= δe

∂2e
∂x2

+ βNs (e + i) − πe − (μ + γ ) e,

en+1
j = en

j + d2

(
en

j+1 − 2en+1
j + en

j−1

) + ΔBNsn
j

(
en

j + in
j

) − πen+1
j − (μ + γ )en+1

j

en+1
j (1 + 2d2 + Δt (π + μ + γ )) = en

j + d2

(
en

j+1 − 2en+1
j + en

j−1

) + ΔtβNsn
j

(
en

j + in
j

)

en+1
j = en

j + d2

(
en

j+1 − 2en+1
j + en

j−1

) + 
tβNsn
j

(
en

j + in
j

)
(1 + 2d2 + 
t (π + μ + γ ))

.

Similarly, the other equation can be written as

in+1
j = in

j + d3

(
in
j+1 + in

j−1

) + Δtπen
j

1 + 2d3 + Δt (θ + μ)

qn+1
j = qn

j + d4

(
qn

j+1 + qn
j−1

) + Δtγ en
j + Δtς in

j

1 + 2d4 + Δt (θ + μ)
. (22)

where d1, d2, d3 and d4 possess the same values as described earlier.

4.1 Stability of NSFD Scheme
We carry out stability analysis using the Von Neumann method. Consider the first equation of

system (6)

st = δs

∂2s
∂x2

+ μ − μs − βNs (e + i) ;

The discretization of the above equation according to NSFD is as under

sn+1
j = sn

j + d1

(
sn

j+1 + sn
j−1

)
1 + 2d1 + βN
t

(
en

j + in
j

) + μ
t
(23)

sn
j = eαnkeι̃φjh, sn+1

j = eα(n+1)keι̃φjh, sn
j+1 = eαnkeι̃φ(j+1)h, sn

j−1 = eαnkeι̃φ(j−1)h.

where ı̃. = √−1. Using the above in (23), we have

eαk = 1 + d1

(
eι̃φh + e−ι̃φh

)
1 + 2d1 + βN
t� + μ
t

eαk = 1 + 2d1 cos(φh)

1 + 2d1 + βN
t� + μ
t
.

For cos(φh) = −1

eαk = 1 − 2d1

1 + 2d1 + βN
t� + μ
t

∣∣eαk
∣∣ =

∣∣∣∣ 1 − 2d1

1 + 2d1 + βN
t� + μ
t

∣∣∣∣ .

For stability, we must have
∣∣eαk

∣∣ ≤ 1.

Further simplification leads to the following stability condition:

d1 ≤ (βN� + μ)
t
4

.
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4.2 Consistency of NSFD scheme
The discretization according to NSFD for the first equation of the system can be written as below:

sn+1
j(1 + 2d1 + βN
t

(
ej

n + ij
n
) + μ
t) = ej

n(sj+1
n + sj−1

n).

We can write

sj
n+1 = s (x, t + 
t)

= sj
n + 
t

∂s
∂t

+ (
t)2

2
∂2s
∂t2

+ . . .

sj+1
n = s (x + 
x, t)

= sj
n + 
x

∂s
∂x

+ (
x)2

2
∂2s
∂x2

+ . . .

sj−1
n = sj

n − 
x
∂s
∂x

+ (
x)2

2
∂2s
∂x2

+ . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Therefore,
(

sn
j + 
t

∂s
∂t

+ δt2

2
∂2s
∂t2 + . . .

) (
1 + 2
t

δs


x2
+ βN
t

(
ej

n + ij
n
) + μ
t

)

= sj
n + 
t

δs

(
x)2

(
2sn

j + 2(
x)2 ∂2s
∂x2

)
+ μ
t.

This leads to the following:
(

sn
j + 2
t

δs

(
x)2
sn

j + βN
t
(
ej

n + ij
n
)

sn
j + μ
tsn

j

)
+ 
t

∂s
∂t

+ 2
(
t)2

(
x)2

∂s
∂t

+ βN(
t)2
(
ej

n + ij
n
) ∂s

∂t
μ(
t)2 ∂s

∂t
+ (
t)2

2
∂2s
∂t2 + 
t3

(
x)
2 ∂2s

∂t2

+ βN (
t)3

2
(
ej

n + ij
n
)

∂2s
∂t2

+ μ (
t)3

2 ∂2s
∂t2

= sj
n + 2
t

δs

(
x)
2 sn

j + 2
t
s
∂2s
∂t2 + μ
t.

Simplifying further and taking 
t → 0 and 
x → 0, we have
∂s
∂t

= δs
∂2s
∂x2

+ μ − μs − βNs(e + i).

A similar procedure leads to the consistency of the other equations of the system.

Table 1 compares the schemes applied, with execution time measured in seconds for both cases of
Reproductive Number at 
t = 0.30.

Table 1: Comparison of numerical schemes with execution time measured in seconds

Methods Execution time (R0 < 1) Execution time (R0 > 1) Stability Consistency

FTCS 3.5612 3.6782 Conditional Consistent
Crank Nicolson 6.0370 8.2255 Unconditional Consistent
NSFD 4.7155 4.7341 Unconditional Consistent
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5 Results

For numerical simulations, we have considered two cases depending upon the value of the
reproduction number R◦. Figs. 2 and 3 show respectively the results obtained by the FTCS scheme
when R◦ > 1 and R◦ < 1. It is evident from the plots that for the higher value of the basic reproductive
number R◦ the number of the infectious individual rises rapidly, and it becomes difficult to control
the disease, whereas the situation changes when the basic reproductive number R◦ has a smaller value.
Figs. 4 and 5 demonstrate the results of the Crank Nicolson scheme. These plots also present a similar
impact on infected individuals. Figs. 6 and 7 present the plots obtained by NSFD.

Figure 2: FTCS Scheme with μ = 0.001, β = 0.08, π = 0.03, γ = 0.35, = 0.001, θ = 0.4 and
δs = δe = δi = δq = 0.1 with δr = 0.25. ICs are 0.6, 0.1, 0.1, 0.1, 0.1 with R0 > 1
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Figure 3: FTCS Scheme with μ = 0.001, β = 0.008, π = 0.03, γ = 0.35, = 0.001, θ = 0.4 and
δs = δe = δi = δq = 0.1 with δr = 0.25. ICs are 0.6, 0.1, 0.1, 0.1, 0.1 with R0 < 1

All the plots obtained through these numerical schemes show that the rate β at which susceptible
individuals move to the infected and exposed class is the key element in the spreading or controlling of
the pandemic. Figs. 2, 4 and 6 show that the disease becomes uncontrollable with a higher contact rate
of susceptible people with infected and exposed class (β = 0.08). It is evident from Figs. 3, 5 and 7 that
the pandemic is controllable under the condition when the contact rate is low (β = 0.008). Therefore
to overcome the disease, the individuals must stay away from infected and exposed compartments by
restricting themselves in their homes.
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Figure 4: Crank Nicolson Scheme with μ = 0.001, β = 0.08, π = 0.03, γ = 0.35, = 0.001, θ = 0.4
and δs = δe = δi = δq = 0.1 with δr = 0.25. ICs are 0.6, 0.1, 0.1, 0.1, 0.1 with R0 > 1
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Figure 5: Crank Nicolson Scheme with μ = 0.001, β = 0.008, π = 0.03, γ = 0.35, = 0.001, θ = 0.4
and δs = δe = δi = δq = 0.1 with δr = 0.25. ICs are 0.6, 0.1, 0.1, 0.1, 0.1 with R0 < 1
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Figure 6: NSFD Scheme with μ = 0.001, β = 0.08, π = 0.03, γ = 0.35, = 0.001, θ = 0.4 and
δs = δe = δi = δq = 0.1 with δr = 0.25. ICs are 0.6, 0.1, 0.1, 0.1, 0.1 with R0 > 1
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Figure 7: FTCS Scheme with μ = 0.001, β = 0.008, π = 0.03, γ = 0.35, = 0.001, θ = 0.4 and
δs = δe = δi = δq = 0.1 with δr = 0.25. ICs are 0.6, 0.1, 0.1, 0.1, 0.1 with R0 < 1

The execution time for both cases of the basic reproductive number R◦ is displayed in Table 1.
The table also demonstrates that the execution time for each scheme is also dependent on the basic
reproductive number R◦. The execution time reduces when the value of R◦ < 1 and shows reverse
behavior otherwise.
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6 Conclusion

This paper presents the COVID-19 reaction-diffusion model comprising five compartments
(SEIQR). Here we investigated the effects of the basic reproductive number R◦ on the five compart-
ments of the population. The study reveals that basic reproductive numbers remarkably impact the
population compartments. To reduce the upcoming risks of the spread of diseases, there is a need
of the hour to adopt a social distancing policy. The mobility of the population should be decreased.
The disease can be controlled if we reduce individuals’ mobility and mix up. A comparison between
the relatively low and high values of R◦ is presented through graphs. We discussed the positivity of the
model, which is the core characteristic of pandemic models. The stability of the model is discussed with
respect to basic reproduction numbers using the Routh Hurwitz criterion. Moreover, we applied three
different numerical techniques to study the model. The numerical schemes are further investigated
by some core properties like stability and consistency and illustrated that NSFD gives better results
concerning stability, consistency, and execution time. Low execution time is a plus of the FTCS scheme,
whereas it has few limitations. The model displays that the current coronavirus spreads through contact
with people, which depends on mobility and the mixing of the population. It also depicts that a
significant contact rate increases the risk of new infections. The new infection induces the epidemic.
We believe this study could help us better predict the spread of the disease on these sites.

Future Directions: In the present work, we have studied a reaction-diffusion COVID-19 model using
first-order ordinary differential equations and discussed the non-negativity of the model. We have
found the equilibrium points and discussed their stability. We have applied three numerical schemes for
the simulations and discussed the characteristics of schemes like stability and consistency. Fractional
calculus provides rich dynamics in fields like engineering and mathematical ecology. In the future, the
present work can be studied using fractional-order derivatives.
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