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ABSTRACT

This work puts forward an explicit isogeometric topology optimization (ITO) method using moving morphable
components (MMC), which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis
as the solver of physical unknown (SGTHB-ITO-MMC). By applying properly basis graded constraints to the
hierarchical mesh of truncated hierarchical B-splines (THB), the convergence and robustness of the SGTHB-ITO-
MMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated, due to
the improved accuracy around the explicit structural boundaries. Moreover, an efficient computational method is
developed for the topological description functions (TDF) of MMC under the admissible hierarchical mesh, which
consists of reducing the dimensionality strategy for design space and the locally computing strategy for hierarchical
mesh. We apply the above SGTHB-ITO-MMC with improved efficiency to a series of 2D and 3D compliance design
problems. The numerical results show that the proposed SGTHB-ITO-MMC method outperforms the traditional
THB-ITO-MMC method in terms of convergence rate and efficiency. Therefore, the proposed SGTHB-ITO-MMC
is an effective way of solving topology optimization (TO) problems.

KEYWORDS
Isogeometric topology optimization; moving morphable components; truncated hierarchical B-spline; suitably
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1 Introduction

TO is an engineering optimization method that seeks the optimal material distribution in a pre-
scribed design domain with specified conditions. In the last three decades, a series of TO methods have
been proposed and evolved, including solid isotropic material with penalization [1,2], evolutionary
structural optimization [3,4], and level set method (LSM) [5–7]. Most of these traditional TO methods
use the finite element method (FEM) as the solver for the unknown physical field over the design
domain, which suffers from numerical instability and geometric discretization errors, due to the low
discontinuity between adjacent elements and the disconnection between computer aided design (CAD)
and computer aided engineering (CAE).

Hughes et al. [8] proposed isogeometric analysis (IGA) to substitute the FEM method, which uses
the CAD mathematical primitive to represent the field unknowns of the partial differential equations
(PDEs). Since IGA has the advantages of high boundary continuity between adjacent elements and
elimination of geometric discretization errors, Qian [9] used the relative density of control points
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as design variables and embedded the physical design domain into a rectangular parametric design
domain parametrized by the tensor product B-spline. Gao et al. [10] used ITO for the continuum
structure using the enhanced density distribution function. Wang et al. [11] designed a new high-
efficiency ITO, which improves the efficiency in three aspects: mesh scale reduction, acceleration
strategy for the solver, and design variables reduction. Yu et al. [12] presented a multiscale ITO method,
where the configuration and layout of microstructures are optimized synchronously. Zhao et al. [13]
developed an ITO method for the design problems with an arbitrarily shaped design domain in the
framework of T-spline based IGA. Chen et al. [14,15] applied the isogeometric boundary element
based TO method to the design problems of acoustic structures for enhancing the sound-absorption
performance. Due to the element-wise discreteness inherited from the variable density method, the
ITO methods mentioned above easily get into trouble with the curse of dimensionality for generating
accurate structural boundaries.

To resolve the issues that occurred in the variable density-based ITO methods, one alternative is
the explicit TO method by Guo et al. [16] using MMC, which originated from the fact that the TO
results can be viewed as the optimal distribution of a limited number of components. In the explicit
TO method, the geometric characteristic parameters of a limited number of discrete components,
e.g., the coordinates of the centroid and the inclination angle of a component, are treated as the
design variables, by which the explicit geometric information of structural boundaries can be generated
directly from the converged design variables. Zhang et al. [17] devised the finite-circle method to avoid
the overlapping of components for the explicit TO method. Hou et al. [18] adopted the NURBS-
based IGA method to obtain the structural response analysis and sensitivity analysis for the MMC-
based explicit TO method. Then, an explicit ITO method is proposed with the geometric parameters
of moving morphable voids (MMV) [19] treated as the design variables, which utilizes two mesh
resolution schemes at different discretization levels. Gai et al. [20] proposed an explicit ITO method
that uses the closed B-splines curves to describe the MMV. Zhang et al. [21] integrated the MMV
method and the NURBS-based IGA to optimize the 3D shell structure. Since the sensitivity analysis
of the explicit ITO depends on the structural boundaries, the accuracy of sensitivities around the
structural boundaries determines the optimization accuracy of the explicit ITO method. However,
due to the tensor product structure of B-splines, the analytical mesh of explicit ITO cannot perform
local refinement of the boundary through the adaptive refinement technique, which leads to a severe
contradiction between the analytical efficiency and optimization accuracy.

To resolve the contradiction between the efficiency and accuracy of the explicit ITO method, the
problem of enforcement of global refinement for IGA mesh must be solved first. Currently, the main
solutions for this issue are listed as: hierarchical B-splines [22], T-splines [14], LR-splines [23] and
hierarchical box-splines [24]. Among these methods, the hierarchical B-spline is the most widely used
one because of its provable linear independence and subdivision property [25]. Noël et al. [26] used
truncated hierarchical B-splines to describe the parametrization of the level set function for LSM,
which improved the accuracy of the structural boundaries with limited increased computational effort
for the updating of design variables. Xie et al. [27] proposed an adaptive explicit ITO method based
on hierarchical B-splines, which refines the isogeometric mesh associated with the regions near the
optimized structural boundaries locally and achieves a significant balance between the computational
efficiency and optimization accuracy. It has been stated that the THB is superior to the hierarchical B-
splines in adaptive IGA because it improves the conditionality of the stiffness matrix and reduces the
bandwidth of the stiffness matrix [28]. Subsequently, Xie et al. [29] put forward the fully adaptive
explicit ITO method with more advanced computing efficiency in terms of truncated hierarchical
B-splines, where the isogeometric mesh is locally refined and coarsened simultaneously and the
corresponding basis function space recovers the property of partition of unity. However, in the current
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adaptive explicit ITO method, tiny holes are easily observed in the optimized structures, which should
be eliminated for the benefits of both the numerical robustness of the optimization process and the
manufacturing of optimized structures. The underlying reason for the aforementioned weaknesses of
the adaptive explicit ITO method is that the analytical accuracy of the THB-based IGA method is
deteriorated in the regions of structural boundaries, resulting from the non-constrained hierarchical
differences between the non-vanishing THB basis functions.

As pointed out in [30], the admissible mesh can effectively improve the accuracy of the THB-based
IGA method. To overcome the shortcoming of the current adaptive explicit ITO method, the present
work proposes an advanced adaptive explicit ITO method using MMC in terms of suitably graded
truncated hierarchical B-spline (SGTHB-ITO-MMC). Based on the marking strategy proposed in
[31], this work develops a constrained marking strategy for imposing the suitably graded constraint
on the hierarchical mesh, which enlarges the set of active elements marked to be refined and shrinks the
set of deactivated elements marked to be coarsened. With the imposed suitably graded constraint, the
accuracy and robustness of the adaptive explicit ITO method are improved. Besides, to further improve
the efficiency in computing the TDF values for the hierarchical mesh, we designed an improved TDF
calculation strategy for the deletion of the micro components and the local TDF computing strategy
for the Gaussian quadrature points.

The rest of this paper is organized as follows: Section 2 “Suitably graded THB based ITO using
MMC” introduces the basic theory of the SGTHB-ITO-MMC method, including the definitions
corresponding to THB and admissible hierarchical meshes. The optimization model and marking
strategy as well as the improved TDF calculation strategy for SGTHB-ITO-MMC are introduced
in detail in Section 3 “Optimization model of SGTHB-ITO-MMC”. Section 4 “Overview scheme for
SGTHB-ITO-MMC” presents an overall procedure for SGTHB-ITO-MMC. In Section 5 “Numerical
examples”, the effectiveness of SGTHB-ITO-MMC is validated by several 2D and 3D benchmarks.
Finally, this work is concluded in Section 6 “Conclusions”.

2 Suitably Graded THB Based ITO Using MMC

This section provides the theoretical foundation for the proposed SGTHB-ITO-MMC, which
mainly includes the following two aspects: the construction of THB and the related concepts of
admissible hierarchical meshes.

2.1 Truncated Hierarchical B-Splines
2.1.1 Hierarchical B-Spline Spaces

For a given knot vector � = {
ξ1, ξ2, · · · , ξn+p+1

}
, n and p represent the number of control points

and the order of basis function, respectively. Supposing that several function spaces of B-spline are
nested: V 0 ⊂ V 1 ⊂ . . . ⊂ V n−1, these nested spaces are obtained by a sequence of knot vectors{
Ξ0, Ξ1, . . . , ΞN−1

}
and defined on an initial domain Ω0. For multivariate case, V l (l = 1, 2, . . . , N − 1)

is constructed by the tensor product structure of the univariate basis function space with the knot
vector �l bisected from �0 l-times. Then, the knot intervals constituting a mesh Ql and an arbitrary
knot interval are referred to as an element of level l. Define Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1 as a nested sequence
of domains, where Ωl is the domain of level l and represents the union of the elements on l − 1 level
marked to be subdivided. Subsequently, a hierarchical mesh HE is made up of active elements on
different levels and is defined as:

HE = {
Q ∈ Γl, l = 0, · · · , N − 1

}
(1)

where Γl represents the union of active cells of level l with Q ⊂ �l ∧ Q �⊂ �l+1.
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Once the hierarchical mesh HE is determined [32], the corresponding hierarchical B-spline
function space can be constructed by the following steps:

• Initialization: H (HE)
0 = {

β ∈ B0 : supp β �= ∅

}
;

• A recursive formula: H (HE)
l+1 = Hl+1

A ∪ Hl+1
B , l = 0, 1, . . . , N − 2,

where Hl+1
A = {

β ∈ H (HE)
l : supp β �⊂ �l+1

}
and Hl+1

B = {β ∈ Bl+1 : supp β ⊆ Ωl+1},
with supp β = {

x : β (x) �= 0 ∧ x ∈ Ω0
}
;

• H (HE) = H (HE)
N−1.

2.1.2 Truncated Operation

The hierarchical B-splines basis functions are inevitably spanning the active elements belonging to
different levels, which results in the lacking of the essential property of partition of unity for numerical
analysis. To recover this important property, a truncated operation should be applied to the two-scale
relationship existing in the basis functions of hierarchical B-splines on two consecutive levels, which is
formulated as:

truncl (s) =
∑

β∈Bl+1,supp β /∈�l+1

cl+1
β

(s) β,

where s =
∑

β∈Bl+1

cl+1
β

(s) β, s ∈ V l (2)

where truncl (s) is a truncated active basis function of s of level l, cl+1
β

(s) is termed as the coefficient of
β belonging to level l + 1. Therefore, the THB function space H T can be generated by the extended
truncated operation for active basis functions on non-consecutive levels, as follows:

TRUNCl+1(s) = truncN (
truncN−1 (

. . .
(
truncl+1(s)

)
. . .

))
HT (HE) = {

TRUNCl+1(s) : s ∈ Bl ∩ H (HE) , l = 0, · · · , N − 2
} ∪ {

sN−1 ∈ (
BN−1 ∩ H (HE)

)}
(3)

An illustration of hierarchical B-splines basis function space and its corresponding THB basis
function space are shown in Fig. 1.

Figure 1: Illustration of hierarchical B-splines space H (HE) and THB space H T (HE)

2.2 Suitably Graded Admissible Meshes
To ensure that the hierarchical computational mesh of the proposed SGTHB-ITO-MMC model

satisfies the specified suitably graded constraints, this section reviews the key definitions related to the
admissible hierarchical mesh for THB [30,33], which are elaborated as follows.

Definition 2.1. For an admissible mesh HE of class m, the truncated basis functions in THB basis
function space H T (HE) taking nonzero values over any active element belong to no more than m
successive levels, as shown in Fig. 2.
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Figure 2: Admissible hierarchical meshes and their associated THB basis function with three different
suitably graded constraints

Definition 2.2. The multilevel support extension of any an element Q ∈ Ql on level k (0 ≤ k ≤ l) is
defined as:

S (Q, k) = {
Q′ ∈ Qk : ∃β ∈ Bk, supp β ∩ Q′ �= ∅ ∧ supp β ∩ Q �= ∅

}
(4)

Definition 2.3. For a level l element Q, the refining neighborhood Nr (HE, Q, m) with admissibility
m is defined as:

Nr (HE, Q, m) = {
Q′ ∈ Ql−m+1 : Q′′ ∈ S (Q, l − m + 2) , Q′′ ⊆ Q′} (5)

Definition 2.4. For a level l element Q, the coarsening neighborhood Nc (HE, Q, m) with admissi-
bility m is defined as:

Nc (HE, Q, m) = {
Q′ ∈ Ql+m : Q′′ ∈ Ql+1 ∧ Q′′ ∈ Q, with Q′ ∈ S (Q′′, l + 1)

}
(6)

Fig. 3 illustrates the definitions shown in Eqs. (4) and (5) as well as (6), which is vital to implement
the suitably graded refinement and coarsening for the THB hierarchical mesh. The green elements in
Fig. 3 represent adjacent elements of level 0 for the active element Q (marked as yellow), which is
an essential parameter for the admissible refinement and coarsening algorithms to check whether the
active element Q violates the suitably graded constraint or not. The combination of Eqs. (4) and (5)
can determine the grid cells adjacent to the marked refining active cell that should be refined locally
to satisfy the specified admissible elements, and the combination of Eqs. (4) and (6) can determine the
coarsening cells during the admissible coarsening of the hierarchical mesh.

Figure 3: Illustration of the multilevel support extended domain S, refined neighboring domain Nr,
and coarsened neighboring domain Nc for an active element Q
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3 Optimization Model of SGTHB-ITO-MMC

The mathematical optimization model of the SGTHB-ITO-MMC method is firstly proposed
in this section. Then, the constrained marking strategy is devised by integrating the fully adaptive
marking strategy with the suitable constraint imposed on the hierarchical mesh, which controls
the local refinement and coarsening of the hierarchical mesh for SGTHB-ITO-MMC. Finally, the
improved TDF calculation strategy is described to improve the efficiency of SGTHB-ITO-MMC.

3.1 Mathematical Optimization Model
According to the optimization model presented in [27], the optimization model of SGTHB-ITO-

MMC is formulated as:

find d = (
dT

1 , dT
2 , . . . , dT

N

)T
, u (x)

minimize C =
N0−1∑

l=0

Nl
e∑

e=1

(
ul

e

)T
K

l

eu
l
e

(
ul

e = C̃
l

eu for e = 0, 1, . . . , Nl
e

)

s.t.

K · u = F

with K =
⎛
⎝N0−1∑

l=0

(
C̃

l
)T

Nl
e∑

e=1

K
l

eC̃
l

⎞
⎠ ,

N0−1∑
l=0

Nl
e∑

e=1

ρ l
eV

l
e ≤ V , d ⊂ Ud (7)

In the above formula, d represents explicit geometric design variables of MMC, which are similar
to the shape explicitly expressed by seven parameters, u(x) is the displacement vector of the active
control points of the admissible hierarchical mesh, C denotes the objective function of the optimization
model representing the structural compliance, N0 − 1 is the maximum level of the hierarchical mesh,
Nl

e denotes the number of active elements of level l, ul
e is the local displacement vector of the e-th active

element belonging to level l, K
l

e and K represent the stiffness matrix of the e-th active element of level

l, and the global stiffness matrix, respectively, which are related by the transformation matrix C
l
with

C̃
l

e collecting the components of C
l

non-vanishing on the e-th active element of level l, F represents
the vector of external force, ρ l

e is the relative material density of the e-th element of level l, V and V l
e

represent the volume constraint limit and the elemental volume of the e-th active element of level l,
and Ud denotes the admissible space for the explicit geometric design variables.

It should be noted that the ersatz material model and the sensitivity analysis are rather straight-
forward for SGTHB-ITO-MMC, which can be referred to [29] and are not provided in this work for
brevity. In this work, the concept of suitably graded constraint is implemented by altering the marking
strategy of hierarchical mesh, which can be presented in the next section.

3.2 Constrained Marking Strategy
To implement the adaptivity of hierarchical mesh under the specified suitably graded constraint,

a constrained marking strategy is developed. The proposed marking strategy in this work consists of
three aspects: triggering strategy, local refining, and local coarsening strategies under suitably graded
constraints, where the triggering strategy is calculated in the same way as the one proposed in [29]. The
local refining strategy and the local coarsening strategy are divided into two stages: (1) initial marking
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based on TDF values at Gaussian quadrature points; (2) updating the initial marked set under suitably
graded constraints.

3.2.1 Local Refined Marking Strategy

Once the marking strategy is triggered, the initial local refining of the marking strategy formulated
as Eq. (8) finds the elements to be refined by resorting to the topological description function (TDF)
values of the active element Gaussian points, as indicated by the green elements shown in Fig. 4.

M lev
ref ,e =

{
1, if ∃ ∣∣ϕ lev

g,e

∣∣ ≤ t lev
ref

(
g = 1, . . . , ngp

)
0, otherwise

with lev = 0, 1, . . . , N0 − 1 and e = 1, 2, . . . , N l (8)

where Mle
ref ,s represents the flag determining whether the e-th element of the lev-th level is to be refined

or not, ϕ le
s,e is the TDF value of the s-th Gaussian quadrature point of the e-th active element of the

l-th level, tle
ref is the tolerance limit describing the neighborhood of the structural boundaries.

If the initial refining element set marked to be refined is obtained, the updating procedures for the
initial marked set are described in Algorithms 1 and 2 to fulfill the specified suitably graded constraint
during the local refinement of the hierarchical mesh. Algorithm 1 takes the original hierarchical
mesh HE, THB basis function space T , and the set of initial refining for marking elements Mref

as well as the specified suitably graded constraint m as the input parameters, which plays a role in
updating the marked elements in a manner of level-by-level and the entry point for the Algorithm 2.
Then, Algorithm 2 refines the elements that do not satisfy the hierarchical constraints by checking
the refinement neighborhood of each initial refining element belonging to Mref , which obtains from
Eq. (8). These elements are added to the Mref , thus ensuring that the hierarchical mesh still satisfies
the suitably graded requirements of the hierarchical mesh. The newly added elements marked to be
refined are shown in the green striped element in Fig. 4.

Algorithm 1 updating_refining_set
Input: HE, T , Mref , m
Output: Mnew_ref

1: for lev = 1 : numel (Mref ) do
2: Mnew_ref ← mark_recursive (HE, T , Mref , lev, m)
3: end for

Algorithm 2 mark_recursive
Input: HE, T , Mref , lev, m
Output: M ′

ref

1: neighbors ← hspace_get_H_neighborhood (T , HE, lev, Mlev
ref , m)

2: if neighbors! = ∅ then
3: k = lev – m + 1
4: Mk

ref ← Mref ∪ neighbors
5: M ′

ref ← mark_recursive (HE, T , Mk
ref , lev, m)

6: end if
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Figure 4: Illustration of the differences in the variations of the hierarchical mesh between different
suitably graded constraints with m = 2 and m = ∞: (a) Initial hierarchical mesh; (b1) Mesh to refined;
(c1) Mesh to coarsened; (d1) Final hierarchical mesh; (b2) Mesh to refined; (c2) Mesh to coarsened;
(d2) Final hierarchical mesh

3.2.2 Local Coarsened Marking Strategy

When the local refinement of the hierarchical mesh is accomplished, the elements away from
the structural boundaries should be marked to be coarsened for SGTHB-ITO-MMC. Similar to the
refining strategy, the local coarsening strategy is also divided into two stages: (1) obtaining the initial
marking set to be coarsened; (2) updating the coarsened element set. According to the TDF values
of the Gaussian quadrature points of the children for each deactivated element, the status of that
deactivated element to be refined or not is determined as follows:

Mlev
coa,b =

{
1, if ∀ϕ lev+1

u,v,b > tlev
coa||∀ϕ lev+1

u,v,b < −tlev
coa

(
u = 1, . . . , ngp and v = 1, . . . , 4

)
0, otherwise

with b = 1, 2, . . . , Nl
ad,D and lev = 0, 1, . . . , N0 − 2 (9)

where Mlev
coa,b denotes the flag that determines the b-th deactivated element of the lev-th level in the set

of admissible deactivated elements Elev
ad,D to be coarsened or not with Elev

ad,D defined by Eq. (10), ϕ lev+1
u,v,b

denotes the TDF value of the u-th Gaussian quadrature point of the v-th child for the b-th deactivated
element of lev-th level, tl

coa is the limit value used to define the regions far away from the structural
boundaries.

Elev
ad,D = {

e ∈ (
Elev

D /Elev
refine

)
: ∀children (e) ∈ Elev+1

A

}
(10)
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where Elev
D is the union of deactivated elements of lev-th level, Elev

refine and Elev+1
A are the union of active

elements of level lev and lev+1, children(e) denotes all children of a deactivated element which belongs
to the subtraction between Elev

D and Elev
refine.

Then, the marked coarsened set is updated by the procedures presented in Algorithm 3 to guar-
antee the admissible requirement resulting from the suitably graded constraint. In Algorithm 3, the
deactivated element should be reactivated and its children should remain unchanged in the hierarchical
mesh, if its coarsening neighborhood with admissibility m is null; otherwise, that deactivated element
should be removed from the reactivated element set Mcoa, which is indicated by the blue stripes in
Fig. 4.

Algorithm 3 hmsh_coarsen_admissible
Input: HE, T , Mcoa, m
Output: HE, new_deactivated_elements, M ′

coa

1: for Q ∈ Rc do
2: if Nc(HE, Q, m) == ∅ then
3: Qc← get_children (Q)
4: update HE by activating Q and removing its children Qc

5: M ′
coa ← Mcoa ∪ Q

6: end if
7: end for

Fig. 4 shows the variations of the hierarchical mesh during the complete mesh adaptivity under the
suitably graded constraints with m = 2 and m = ∞, from which can be observed that the constrained
marking strategy proposed in this work generates smaller and controllable differences in hierarchical
level between adjacent active elements.

3.3 Improved TDF Calculation Strategy for SGTHB-ITO-MMC
To improve the computational efficiency of SGTHB-ITO-MMC method, this work proposes the

following strategy for the benefit of accelerating the calculation of TDF values for the hierarchical
mesh. On the one hand, the computing complexity of TDF is reduced by removing the unnecessary
TDF computing associated with micro components, with the micro components removed from the
design space. On the other hand, the TDF generation is calculated locally inconsistent with the
hierarchy feature of the hierarchical mesh.

3.3.1 Dimensionality Reduction Strategy

To avoid the numerical singularity, the lower limit of the geometric design variables of MMC is
set to an extremely small positive value. It can lead to the numerical phenomenon that the islanding
micro component exists in the optimized structure, as shown in Fig. 5.

Figure 5: Illustration of the occurrence of islanding micro component in the optimized result
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These islanding micro components result in the continuously refined mesh around them and that
leads to the increasing deteriorative mesh quality. It also results from an excessive number of degrees of
freedom, which decreases the computational efficiency of IGA. Therefore, it is necessary to reduce the
dimensionality of the geometric design space by removing the design variables associated with micro
components in the optimization process. If a component satisfies the requirements of Eq. (11) in the
specified consecutive iterations, the associated micro-component is removed from the design space of
SGTHB-ITO-MMC.

Li < ε||t1i < ε||t2i < ε||t3i < ε (11)

where Li is the half length of the i-th component, t1i and t2i as well as t3i is the half thickness of the i-th
component at locations of two ends and middle, ε is the user-defined size threshold for determining
the micro components.

3.3.2 Local Computing Strategy

Apart from the micro components, the redundant TDF calculation also resulted from the way of
calculating the TDF values for determining the ersatz material model. In this model, the Gaussian
points of the hierarchical mesh inside the active elements are properly graded, and the Gaussian
quadrature points do not span different levels of active elements, which enables the local updating
of TDF for the hierarchical mesh. Besides, the active elements away from the structural boundaries do
not require calculating the TDF values of the Gaussian quadrature points, since SGTHB-ITO-MMC
is an essentially boundary-driven TO method. Therefore, the values of TDF of a structural component
can be calculated only by Gaussian quadrature points near the boundary of the component, as shown
in Fig. 6.

Figure 6: Active Gaussian points (red) and inactive Gaussian quadrature points (black) when ϕn

setting 0

In the proposed local TDF computing strategy, the set of active Gaussian quadrature points is
defined in Eq. (12) for the hierarchical mesh.

Pactive = {
ϕ j

i ≥ ϕn, j ∈ P
}

(12)
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where Pactive is the n-th level mesh, ϕ
j
i is the TDF value of the i-th component at the j-th Gaussian

quadrature point, ϕn is the TDF value threshold for the n-th level, and P is the point set of Gaussian
quadrature points, which are dynamically altered with the adaptivity of the hierarchical mesh.

4 Overview Scheme for SGTHB-ITO-MMC

This section mainly describes the execution process of the SGTHB-ITO-MMC method. The
execution flow of the SGTHB-ITO-MMC method is shown in Fig. 7, which mainly consists of
six modules: input module, mesh adaptivity module, ersatz material model module, IGA module,
sensitivity analysis module, and output module.

Figure 7: Illustration of the flowchart of the SGTHB-ITO-MMC algorithm

Among them, the input module takes the mathematical model parameters in Section 3.1 “Math-
ematical optimization model” as the input parameters and initializes these parameters. The mesh
adaptivity module performs the local refinement and coarsening of hierarchical mesh based on the
constrained marking strategy as described in Section 3.2 “Constrained marking strategy”. In the ersatz
material model module, the improved TDF calculation strategy presented in Section 3.3 “Improved
TDF calculation strategy for SGTHB-ITO-MMC” is used to improve the efficiency of determining
the material physical properties for all active elements. IGA module is represented as the IGA, which
is used to calculate the structural responses under the hierarchical mesh. For the sensitivity analysis
module, SGTHB-ITO-MMC uses the method of moving asymptotes (MMA) as the optimizer for
updating the geometric design variables to achieve the minimization of the structural compliance.
Finally, the output module is used to output the optimized explicit geometric parameters of all MMC.
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5 Numerical Examples

Four numerical examples are used to demonstrate the effectiveness of the SGTHB-ITO-MMC
framework with an improved TDF calculation strategy, which is running on MATLAB R2021a with
Windows 10 as the software operating system, Intel (R) Core (TM) i5-10210U CPU @ 1.60 GHz–
2.11 GHz and 16 GB of RAM as the hardware system. These examples adopted MMA as the
optimizer. Young’s modulus E and Poisson’s ratio υ are set to 1 and 0.3 as the constant physical
values for solid material, respectively. Besides, SGTHB-ITO-MMC with m = ∞ is identical to the
THITO-MMC method presented in [29].

Through the Messerschmidt-Bolkow-Blohm beam (MBB) problem, Section 5.1 “MBB beam
problem” verifies the validity of the suitably graded constraint in improving the optimized results
and convergence, and the effectiveness of the improved TDF calculation strategy in enhancing the
efficiency for SGTHB-ITO-MMC. In Section 5.2 “Short beam problem”, the effectiveness of SGTHB-
ITO-MMC and the improved TDF calculation strategy are validated at two different scales of
geometric design space. Finally, the SGTHB-ITO-MMC method is extended to the 3D problem in
Section 5.3 “3D cantilever beam problem”.

5.1 MBB Beam Problem
This section chooses the MBB beam as the first example to verify the effectiveness of SGTHB-

ITO-MMC. Fig. 8 depicts the problem configurations and initial design of MMC, where the
aspect ratio of the rectangular design domain is 3:1 and the design domain is initially divided into
45 × 15 uniform IGA mesh. Moreover, the upper limit of the volume fraction is 0.4 for solid material.
Maximum iterations equaling 300 and the convergence criterion are used to control the termination
of the proposed optimization algorithm.

Figure 8: Problem model and the initial design for MBB beam problem

Fig. 9 presents the optimized results between different SGTHB-ITO-MMC with m = 2, m = 3,
and m = ∞, where the tiny holes that occurred in the converged design of SGTHB-ITO-MMC with m
= ∞ are eliminated in these results by SGTHB-ITO-MMC with m = 2, m = 3 and the iterative steps
is increasing reduced as the stricter suitably graded constraint imposed on the hierarchical mesh.

Figure 9: Optimized results by SGTHB-ITO-MMC with (a) m = 2, (b) m = 3, and (c) m = ∞
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The convergence histories and the variations of the number of DOFs are illustrated in Fig. 10,
where Iterations and Obj are referred to as the number of iteration steps and the value of the objective
function, respectively. According to the curves presented in Fig. 10a, the objective functions are
simultaneously reduced as the increase of iterative steps for SGTHB-ITO-MMC, and the SGTHB-
ITO-MMC with m = 3 and m = 2 reduce the iteration steps by 7.33% and 36.00% than the one with
m = ∞, respectively. Moreover, the variations in the number of DOFs are depicted in Fig. 10b, which
indicates that stricter suitably constraint leads to a significant increase in DOFs. However, due to the
significant reduction in iterations at the stage with the hierarchies equaling four levels for SGHTB-
ITO-MMC with m = 2, the increase in computational effort is very limited for the increased DOFs.
Therefore, it is concluded that imposing suitably graded constraints is very necessary to implement the
adaptive explicit ITO method in terms of both the convergence rate and numerical robustness.

Figure 10: Convergence curve of the objective function and the variations of the number of DOFs for
SGTHB-ITO-MMC with m = 2, m = 3, and m = ∞: (a) Convergence curve of the objective function;
(b) Number of DOFs

For validating the effectiveness of the improved TDF calculation strategy described in Section 3.3,
this work applies it to SGTHB-ITO-MMC with m = 2. The optimized structures are depicted in
Fig. 11 for the SGTHB-ITO-MMC with or without using the proposed improved TDF calculation
strategy. Compared with SGTHB-ITO-MMC without using the improved TDF calculation strategy,
the number of iteration steps and DOFs are reduced by 9.38% and 12.36% by applying the improved
TDF calculation strategy to SGTHB-ITO-MMC, without altering the objective function and the
final converged structure. It can be observed that with the use of the improved TDF calculation
strategy, the dense mesh disappears away from the structural boundaries as shown in the red box in
Fig. 11, which contributes to reducing the number of DOFs and improving the optimization efficiency.
Fig. 12 illustrates the variations of the objective function and the TDF calculation time during the
optimization process of SGTHB-ITO-MMC using an improved TDF calculation strategy or not.
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According to the results presented in Fig. 12a, the number of iterative steps for SGTHB-ITO-MMC
is reduced by 9.38%, and the total TDF calculation time is decreased by 76.29% when the improved
TDF calculation strategy is used. In Fig. 12b, the calculation time has abruptly changed at the 80-th,
110-th, 124-th, and 146-th, which is caused by the fact that the TDF values on Gaussian quadrature
of all active cells should be calculated to determine the marked cells when the hierarchical mesh is
required to be altered, and the improved TDF calculation strategy is triggered to reduce the calculation
time once the adaptivity of the hierarchical mesh is finished. Therefore, the proposed improved
TDF calculation strategy has a positive impact on SGTHB-ITO-MMC in both convergence rate and
optimization efficiency.

Figure 11: Comparisons of the optimized results without using and using the improved TDF calcu-
lation strategy for SGTHB-ITO-MMC: (a) Without using the improved TDF strategy; (b) Using the
improved TDF strategy

Figure 12: Optimization process of between without using and using the improved TDF strategy: (a)
Convergence histories of the objective function; (b) Variations of TDF calculation time
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5.2 Short Beam Problem
This section discusses the effectiveness of the SGTHB-ITO-MMC for the short beam and

validates the improved TDF calculation strategy under two different dimensionalities of the geometric
design space.

5.2.1 Regular Geometric Design Space Case

The problem setting and initial design of MMC are described in Fig. 13. In this problem, the
aspect ratio of the design domain is 2:1, which are initially divided into 28 × 14 uniform IGA mesh.
The upper limit of the volume fraction is 0.4 for solid material. The maximum number of steps and
convergence criteria are identical to those in Section 5.1 “MBB beam problem”.

Figure 13: Problem model and initial design for short beam problem

Fig. 14 illustrates the optimized results generated by SGTHB-ITO-MMC with m = 2,
m = 3 and m = ∞. It is not difficult to find that the convergence rate of SGTHB-ITO-MMC
with m = 3 and m = 2 are respectively improved by 13.99% and 27.16% than SGTHB-ITO-MMC
with m = ∞. At the same time, the optimized results exist a tiny hole for SGTHB-ITO-MMC with
m = ∞ and m = 3, which vanishes on the optimal design by SGTHB-ITO-MMC with m = 2. Fig. 15
depicts the convergence curves of the objective function for the aforementioned three cases, and it
shows the numerical stability of the proposed SGTHB-ITO-MMC method. Finally, the effectiveness
of SGTHB-ITO-MMC is verified for the 2D cantilever in a regular geometric design space.

Figure 14: Optimized results by SGTHB-ITO-MMC with (a) m = 2, (b) m = 3 and (c) m = ∞
Fig. 16 illustrates the effect of the improved TDF calculation strategy on the converged results.

Using the improved TDF calculation strategy, the number of iteration steps is reduced by 5.65%. The
variation curves of the objective function and TDF calculation time are presented in Fig. 17, which
show the advantages of the proposed improved TDF calculation strategy in enhancing the convergence
rate and the computational efficiency for SGTHB-ITO-MMC. It can be concluded that the improved
TDF calculation strategy is valid for the short beam optimized by the SGTHB-ITO-MMC method.
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Figure 15: Convergence curve of objective function for short beam for SGTHB-ITO-MMC with
m = 2, m = 3 and m = ∞

Figure 16: Optimization results of between without using and using the improved TDF strategy: (a)
Without using the improved TDF strategy; (b) Using the improved TDF strategy

Figure 17: Optimization process of between without using and using the improved TDF strategy: (a)
Convergence histories of the objective function; (b) Variations of TDF calculation time
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5.2.2 Enlarged Geometric Design Space Case

To verify the effectiveness of the proposed SGTHB-ITO-MMC in an enlarged geometric design
space, the initial designs are shown in Fig. 18 for the MMC, with the design domain divided into 4×2
equal sub-regions. During the optimization process, the central coordinates of the MMC must stay in
their original sub-regions. The design domain is discretized into 56 × 28 uniform IGA mesh initially,
and the upper limit of volume fraction is 0.4 for solid material. As for the convergence criteria, the one
used here is identical to the one presented in Subsection 5.2.1 “Regular geometric design space case”,
except that the maximum iteration steps are set to 1000.

Figure 18: Initial design for the short beam with enlarged geometric design space

Based on the optimized results illustrated in Fig. 19 for SGTHB-ITO-MMC with m = 2 and
m = ∞, the boundaries smoothness and the connections of components are significantly improved
by applying the suitably graded constraint with m = 2 than these obtained by SGTHB-ITO-MMC
without considering suitably graded constraint for hierarchical mesh. Moreover, the convergence
histories are compared between m = 2 and m = ∞, where the number of iterative steps can be
reduced from 1000 to 809 by applying the suitably graded constraint. Meanwhile, Fig. 20 expresses
the convergence histories are compared between m = 2 and m = ∞, where the number of iterative
steps can be reduced from 1000 to 809. Finally, it finds that the proposed SGTHB-ITO-MMC with
m = 2 is superior to the one with m = ∞ for the enlarged design space, which shows the robustness of
the proposed method concerning the dimensionality of the geometric design space.

5.3 3D Cantilever Beam Problem
In this section, the SGTHB-ITO-MMC method is extended to the 3D design problem by taking

the 3D cantilever as the last numerical example. As shown in Fig. 21, the left facet of the design domain
is fixed and the right bottom side is subjected to a uniform vertical downward line load. To obtain the
displacement field, the design domain is initially discretized into 15×15×2 tri-quadratic IGA elements
with the suitably graded constraints taken as m = 2 imposed on the hierarchical mesh. The maximum

number of steps is 300 and the convergence criterion θk =
(∣∣∣Ck − Ck

∣∣∣ /Ck

)
≤ 10−6.

The initial structural components layout for the 3D cantilever, and two intermediate optimized
structural layouts, as well as the final convergent result, are shown in Fig. 22, which also includes
variations of hierarchical mesh and the convergence process. Under the suitably graded constraints, the
boundaries of the 3D cantilever become smoother and the hierarchical mesh is properly graded in the
neighborhood of structural boundaries, which verifies the effectiveness of the proposed SGTHB-ITO-
MMC method in 3D structural TO problems. In addition, the objective function tends to converge
with the increase of the iteration step, and there is no obvious oscillation in the objective function
value during the duration of the TO process, which reflects the robustness of the SGTHB-ITO-MMC
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method in solving the 3D design problems. These results show that the SGTHB-ITO-MMC method
proposed in this work can effectively solve the 3D compliance TO problem.

Figure 19: Optimized results by SGTHB-ITO-MMC with (a) m = 2 and (b) m = ∞ in large geometric
design space

Figure 20: Convergence curve of the objective function for SGTHB-ITO-MMC with m = 2 and m = ∞
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Figure 21: Problem model for 3D cantilever beam problem

Figure 22: 3D cantilever beam convergence curve in the objective function and optimization process
for MMC as well as the variations of hierarchical mesh

6 Conclusions

This work proposes an explicit ITO method in the framework of suitably graded truncated
hierarchical B-splines, which is established based on taking the suitably graded constraint into the
consideration of the marking strategy. Furthermore, an improved TDF calculation strategy is put
forward by reducing the dimensionality of the geometric design space and generating the TDF values
locally for the active elements of the hierarchical mesh. By incorporating the suitably graded constraint
into the explicit adaptive ITO method, the drawbacks existing in the optimal MMC designs, such
as component discontinuities, tiny holes inside the structure, and zigzag boundaries, can be either
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eliminated or mitigated to a large extent. Besides, with the stricter suitably graded imposed, the
convergence rate of SGTHB-ITO-MMC is increasingly accelerated. With the aid of the proposed
improved TDF calculation strategy, the computational efficiency in generating the TDF values and
convergence rate are simultaneously improved for SGTHB-ITO-MMC without affecting the optimal
designs. Moreover, the proposed method can be applied to 3D design problems.

In the current explicit adaptive ITO method, the versatility is limited by the basic geometric
configuration of MMC. To overcome the aforementioned issue, we will extend the current explicit
adaptive ITO method to the MMV framework in the future. Furthermore, the stress-constrained
problem solved by the adaptive explicit ITO method is also taken as one of our aims.
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