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ABSTRACT

Cloud computing technology is favored by users because of its strong computing power and convenient services.
At the same time, scheduling performance has an extremely efficient impact on promoting carbon neutrality.
Currently, scheduling research in the multi-cloud environment aims to address the challenges brought by business
demands to cloud data centers during peak hours. Therefore, the scheduling problem has promising application
prospects under the multi-cloud environment. This paper points out that the currently studied scheduling problems
in the multi-cloud environment mainly include independent task scheduling and workflow task scheduling based
on the dependencies between tasks. This paper reviews the concepts, types, objectives, advantages, challenges,
and research status of task scheduling in the multi-cloud environment. Task scheduling strategies proposed in the
existing related references are analyzed, discussed, and summarized, including research motivation, optimization
algorithm, and related objectives. Finally, the research status of the two kinds of task scheduling is compared, and
several future important research directions of multi-cloud task scheduling are proposed.
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1 Introduction

As a kind of efficient resource, cloud computing [1,2] provides users with supercomputing power
over the Internet. It can easily obtain the required network, server, storage, and other resources
from the configurable computing resource sharing pool. These resources can be used quickly and
normally with less management work. Cloud computing [3,4] mainly uses virtualization technology
to share datacenter resources between multiple virtual machines for more energy-efficient resource
management, such as integrated development environment, server, application software, CPU, etc.
It means that users can purchase complex IT infrastructures without any investment and they can
pay for the services from anywhere in the world. In recent years, related research on fog computing
[5,6] and edge computing [7] has further expanded the cloud computing framework to address the
communication pressure due to distance.
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The rapid development of cloud computing technology [8] is inseparable from the policy support
of various countries. However, with the Internet of Things (IoT) [9,10] becoming more prosperous,
the unprecedented data explosion has continuously increased the demand for resources. And the
single cloud is likely to fail applications due to localized failures, resulting in business interruption
and low availability. At the same time, it is prone to problems such as provider monopoly, Service
Level Agreement (SLA) violation, low user data privacy security, and Quality of Service (QoS)
reduction. Therefore, various countries advocate further innovation of key technologies such as hyper
scale distributed storage elastic computing to improve the performance of cloud computing. Against
this backdrop, the multi-cloud environment has emerged, which consists of multiple different IaaS
providers with different advantages. It will provide help when users encounter difficulties in choosing,
and the reason is that the heterogeneous advantages of a multi-cloud environment can provide users
with diversified virtual resources to meet their QoS requirements. At the same time, existing multi-
cloud computing research also considers fog computing and edge computing frameworks to construct
collaborative computing resources, creating a better resource environment for real-time and efficient
task execution.

Scheduling problems [11] can be seen everywhere in our daily life and production, such as
workshop scheduling [12], reservoir benefit scheduling [13], path planning [14] scheduling. A good
scheduling scheme can optimize [15] cost efficiency, reduce time consumption, and improve the overall
business level, which is of great significance to the convenience of users and the economic prosperity
of the country. With the continuous growth of the scale of various industries, most scheduling
problems [16] require the processing of massive data and higher computing power platforms, and the
characteristics of cloud computing can just provide a high-quality platform for existing large-scale
scheduling problems. Cloud task scheduling [17] has become the main research focus of scholars from
all walks of life, especially in the multi-cloud environment.

The multi-cloud environment [18] can prevent data loss and reduce the risk of downtime due
to local component failure, avoid cloud provider lock-in, and have high scalability. In this paper,
independent task scheduling and workflow scheduling are analyzed as two different task scheduling
types, and there are a lot of references on these two kinds of scheduling strategies in the multi-cloud
environment. In order to enable scholars to better and faster grasp the research history and current
situation of multi-cloud scheduling [19], and pay attention to the future research trends, priorities,
and hotspots of this discipline. It is essential to review the scheduling problems and highlight their
functions and features.

This paper conducts a comprehensive analysis and research on the task scheduling strategy
[20] under the multi-cloud environment. Firstly, the background of multi-cloud task scheduling is
introduced, including the advantages and the challenges faced by multi-cloud task scheduling at
this stage. It then further introduces the common objectives, constraints and scheduling algorithms
of multi-cloud task scheduling. In addition, existing references on scheduling strategies for the
independent task and workflow in the multi-cloud environment are reviewed according to task
dependencies. And the detailed summary and comparative analysis of these references are carried on.
Finally, several future research directions are summarized. It is worth noting that because the multi-
cloud task scheduling strategy contains extremely abundant content and the algorithms [21] used are
intricate, it is difficult for this paper to cover all methods. However, it is committed to systematically
opening discussions on the potential research direction of multi-cloud task scheduling so that scholars
can better and faster grasp the research history, current situation, future research trends, priorities,
and hotspots of multi-cloud scheduling. This paper provides the necessary reference for the current
research in the field of multi-cloud task scheduling.
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The rest of this paper is structured as follows: Section 2 provides the related characteristics,
advantages, and challenges under the multi-cloud environment. On the basis of the latest and
representative research references, the third section review, and summary of motivation, objectives,
constraints, test environments and scheduling strategies. Finally, the fourth part summarizes and
points out the future research direction.

2 Background

Scheduling problems [22], also known as combinatorial optimization [23] problems, exist in all
walks of life and have an important impact on output value and capacity. Such as workshop scheduling
[24], vehicle scheduling [25–27], UAV scheduling [28–30], cloud computing scheduling [31], and other
task scheduling. As the scheduling scale gradually expands, the scheduling algorithm [32] is constantly
updated and iterative, from static algorithm to dynamic algorithm, from single-objective algorithm to
multi-objective algorithm [33]. Among them, multi-cloud computing, as an important representative
of high-performance computing power in the new century, has far-reaching significance in the study
of its scheduling problem [34]. This section first analyzes the advantages of multi-cloud and then
summarizes the challenges faced by multi-cloud scheduling.

2.1 Multi-Cloud Environment
The multi-cloud computing environment has emerged when a single cloud environment cannot

efficiently handle computing tasks during peak hours with the huge demand for virtual resources
by users. The multi-cloud environment consists of multiple single clouds, specifically, it consists of
several different IaaS cloud service providers that provide virtual machines with different prices and
performance, and these cloud providers do not voluntarily connect and do not share virtual resources.
It can realize the integrated utilization of cloud resources from the perspective of users or cloud
providers. Users can build workload management programs by themselves to satisfy task scheduling
needs [35], and each cloud provider designs corresponding API interfaces to achieve communication.
In general, it is crucial for multi-cloud application portability [36].

The purpose of cloud resource scheduling [37] is to allocate reasonable resources to users. In
the multi-cloud environment, in order to satisfy the diversity of customer needs, there is a resource
manager on each cloud platform to send the current information of virtual machine resources to users
in real-time. Users obtain resource information sent by different cloud platforms through a unified
API interface or external agents and transfer tasks to different clouds for processing and calculation
according to their own task conditions. Therefore, the decision-making of many scheduling schemes
has a vital influence not only on users but also on providers.

The multi-cloud environment combines the characteristics of different cloud providers and then
provides users [38] with diversified choices, which can avoid the limitations of single cloud lock-
in. Compared with the traditional single cloud environment, the multi-cloud environment has the
following advantages as shown in Fig. 1.

(1) Performance assurance: Once a single cloud suffers from service interruption, insufficient
resources, etc., server performance can be maintained by the resources of other cloud providers.

(2) Accessibility: The migration of virtual machines and data allows geographical differences
between cloud providers and improves scheduling performance.
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(3) Diversified customer needs: Maintaining customer satisfaction is important to improve the cus-
tomer experience. The heterogeneous nature of different providers offers customers diversified
services.

(4) Regional workloads: Because of geographic dispersion, workloads can be redirected to the
cloud closer to the customer.

(5) Convenience: Provides convenience for users with respect to services through non-operational
and highly integrated virtual resources.

The advantages of 
multi-cloud

Performance 
assurance

 Accessibility
Diversified 

customer needs
Regional 

workloads
Convenience

Figure 1: The advantage of multi-cloud environment

At the same time, data security and elastic services are the distinguishing characteristics of multi-
cloud systems, which are reflected in the decentralization of user data and the ability to adaptively solve
load problems. In other words, different providers offer more heterogeneous resources to complete the
tasks submitted by cloud customers. Therefore, how to design the task scheduling strategy [39], namely
efficient resource management under the multi-cloud environment, is a challenging problem.

2.2 Inherent Challenges
As an important trend in the development of cloud computing, multi-cloud will become one of the

preferred solutions for most users. Despite the advantages of a multi-cloud environment, compared
to the single cloud, multi-cloud scheduling faces many significant challenges, including data security,
modeling complexity, and scheduling robustness.

(1) Security

First of all, since multi-cloud means mutual cooperation between multiple cloud providers, a very
important issue is security. Although it indirectly reduces the risk of privacy leakage by distributing
the same user-submitted tasks across different clouds, it also increases the risk of the provider being
attacked.

(2) Modeling

Secondly, due to the complex constraints on scheduling tasks during the multi-cloud scheduling
process, including the performance differences of different services in the same cloud or the complexity
of the pricing models of different clouds. Therefore, how to accurately model is an important challenge,
which directly affects the reliability of the scheduling scheme.

(3) Robustness

In the process of multi-cloud scheduling, the problem of task transmission between clouds is often
accompanied. When the transmission is interrupted, the task execution fails or the virtual machine
fails, a reasonable and fast solution needs to be designed to improve the robustness of scheduling.
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3 Scheduling Method under the Multi-Cloud Environment

With the popularization of cloud computing optimization problems [40], scheduling problems [41]
under the multi-cloud environment have attracted widespread attention from many scholars. Based
on some basic scheduling algorithms, the majority of scholars have provided many advanced task
scheduling solutions for the multi-cloud environment, so as to provide better services for customers.

According to the dependency relationship of tasks in the multi-cloud environment, task scheduling
problems are divided into independent task scheduling and workflow scheduling. The task scheduling
process under multi-cloud environment can be expressed in Fig. 2. Firstly, the user submits the tasks
to be processed (independent tasks or workflows) and constraints to the broker. Then, the broker
optimizes an appropriate scheduling scheme through the designed scheduling model. The scheduling
scheme is the matching relationship between tasks and cloud resource virtual machines so that different
tasks are allocated to the most suitable virtual machines for execution. Finally, the broker feeds back
a satisfactory scheduling result to the user.

Broker

Scheduling 
Resurts

Task & 
Constrains

Make a scheduling 
SchemeObjectives

Constrains

Multi-cloud
 Resources

user1 user2

...

Multi-cloud Providers

Independent task

Workflow

Figure 2: The execution of task scheduling in multi-cloud environment

Independent task scheduling [42] means that the tasks have no relationship with each other.
The purpose of scheduling is to make these tasks can be allocated to the most suitable virtual
machine to satisfy the user’s needs under the user’s expectation constraints. At the same time, from the
perspective of providers, we also hope to maximize the benefits as much as possible. And the workflow
scheduling is far more complicated than the independent task scheduling because the workflow tasks
have complex or simple connections with each other, so the execution order of the tasks needs to
be considered during scheduling. A directed acyclic graph is usually used to represent workflow.
Fig. 3 depicts an example of a simple workflow scheduling, where nodes represent tasks and directed
edges represent the execution order between tasks. In this section, some task scheduling objectives,
constraints and several commonly used scheduling optimization algorithms [43,44] will be introduced,
and the two task types of scheduling strategies proposed in the existing references are analyzed and
summarized. At the same time, the constraints and the test environments of experiments in different
references are analyzed.
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Workflow

Figure 3: The example of a simple workflow scheduling

3.1 Related Objectives
The multi-cloud environment provides users with abundant computing resources, while also

increasing user expectations. In order to enable users to obtain a better service experience and
maximize the benefits of providers, it is very important to design a better scheduling scheme under the
condition of limited resources. In this section, we illustrate the common scheduling objectives involved
in the related multi-cloud scheduling reference as shown in Fig. 4. Since we only express the meaning
of the objectives involved in multi-cloud task scheduling and do not discuss the specific calculation
methods, these objectives are equally applicable to independent task and workflow scheduling.

Scheduling 
objectives

Makspan Cost
Energy 

Consumption
Throughput

Load 
balance

Quality of 
Service

Resource 
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Figure 4: The objectives of task scheduling in multi-cloud environment

(1) Makespan

After users put forward service requirements to cloud resources, they hope that the submitted
tasks can be completed as soon as possible. Especially in the case of urgent and real-time tasks, the
corresponding processing results must be obtained within the specified time, so the task Makespan
is an important objective to be considered in the scheduling scheme. And a smaller objective value is
expected.

(2) Cost

This objective refers to the total cost required for all tasks to be executed after a user submits a
task. Generally, it includes virtual machine running costs, data transmission costs, data storage costs,
etc. The lower the cost, the better for the user.

(3) Energy Consumption

The cloud server in the cloud platform consumes a lot of power due to long-term operation and
also reduces the performance due to the heat of the server. Whether it is huge power consumption or a
large number of cooling devices purchased for server cooling, a large amount of energy consumption
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is required. To further push carbon neutrality, the indicator of energy consumption should be reduced
as much as possible during the scheduling process.

(4) Throughput

It refers to the number of tasks completed on the cloud per unit of time. The more tasks performed
per unit time, the stronger the execution capability of cloud resources. So the goal is to obtain a
maximum value.

(5) Load Balance

Cloud providers hope that the tasks in the platform can be distributed on each server as reasonably
and evenly as possible. Load refers to the workload of different computing nodes to process data. In
the process of task processing, the load balance of computing resources is the expected state when
processing tasks. Load balance not only enables tasks to be executed efficiently but also prolongs the
overall service life of servers and improves cloud resource utilization.

(6) Quality of Service

In general, users have a variety of service requirements when processing tasks. And different
users have various requirements, such as safety, cost, time, etc. Since the cloud computing platform
mainly provides services for users, the evaluation made by users on the cloud platform is an important
measure of its reputation. QoS is determined by the user’s initial expectation and the actual degree of
completion when submitting the task. For example, the cost constraints, time constraints, and fault
tolerance given by the user will affect the QoS value. The larger the QoS value, the better for the user.

(7) Resource Utilization

Resource utilization refers to the usage of computing resources during task execution. When the
task can make full use of the computing resources allocated by the provider, the overall efficiency of
the task will be greatly improved. Therefore, the resource utilization is as large as possible.

3.2 Related Constraints
The constraints of scheduling problems usually come from the requests of users, such as task

completion deadlines, budgets, reliability, and specific priorities for task execution. Despite the
increased scheduling complexity, users can obtain better scheduling schemes under the premise of
satisfying user QoS constraints. In this section, scheduling constraints involved in related multi-cloud
scheduling references are introduced as shown in Fig. 5.

1) Deadline: It refers to the maximum acceptable completion time when a user submits a task for
execution on cloud resources, in other words, the cloud provider must complete the task within
this period.

2) Budget: It refers to the maximum cost that the user can pay to complete the task. Therefore, the
total cost of the designed scheduling scheme cannot exceed the budget when executing tasks.

3) Security: It means that the task will not easily lead to data privacy leakage or loss due to
external attacks or internal failures during the execution of tasks.

4) Reliability: It means that when some faults occur during the execution of the task, there is a
reasonable solution to make the task continue to execute smoothly without interruption.
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5) Priority: If the tasks submitted by the user have different importance or sequential dependen-
cies, the tasks will be given different execution orders in the early stage of execution, and the
tasks with higher priority will be executed first.

Scheduling constraints

Deadline Budget Security Reliability Priority

Figure 5: The constraints of task scheduling in multi-cloud environment

3.3 Scheduling Algorithm
At present, in order to address the complex scheduling problem [45] under the multi-cloud

environment, many scheduling algorithms have been designed, which can be roughly divided into two
types: classical scheduling algorithm and heuristic scheduling algorithm [46,47].

Classical scheduling algorithms usually design a simple scheduling mechanism to handle various
types of tasks, including timing, priority, and other issues. In order to obtain an accurate, feasible, and
widely applicable task scheduling scheme, which can simultaneously satisfy multiple QoS objectives
(such as waiting time, response time, maximum completion time, efficiency, delay, energy consumption,
cost, resource utilization, etc.), multi-objective optimization [48,49] task scheduling algorithm based
on heuristic idea emerged.

The intelligent algorithm of heuristic thought usually refers to the algorithm that people construct
according to natural phenomenon, social experience, or biological inspiration, and then by summa-
rizing simulation innovation. The idea is that when addressing multi-constraint problems, a feasible
solution can be given to satisfy multiple objective optimizations [50] as far as possible. The focus is on
multi-objective optimization [51–53], for each instance, the solution obtained now is not the optimal
solution for a single objective, but the best solution under the condition of satisfying the requirements
of multiple objectives as far as possible.

Next, we will introduce some classical scheduling algorithms and two kinds of intelligent multi-
objective optimization [54,55] task scheduling algorithms based on heuristic ideas.

1) Classic scheduling algorithm

The strategy of first come first service (FCFS) [56] is a relatively common real-time scheduling
algorithm. The algorithm is relatively simple, and its advantages and disadvantages are more obvious.
The advantage is low cost, and the disadvantage of using various scenarios is that the optimal task
allocation scheme is not considered, and more tasks may appear in the waiting queue. Max-Min [57],
Min-Min algorithm [58], and the greedy algorithm mechanism are optimized for the above problem.
Considering the task execution time and resource node execution ability, different types of tasks and
resources matched and addressed the long waiting time, but also led to a new problem, namely load
imbalance and low resource utilization. The round-robin scheduling algorithm is more inclined to
the fairness of scheduling and can address the load balancing problem. However, at the same time,
it ignores the objective of execution time and the execution ability of resource nodes, leading to the
decline of the overall scheduling efficiency. The basic idea of Minimum Completion Time (MCT) [59] is



CMES, 2023, vol.135, no.3 1871

to randomly assign existing tasks to the virtual machine that can make it have the earliest completion
time, regardless of whether it can be completed the fastest, which may increase the running time of
tasks on virtual resources.

2) Swarm intelligence optimization scheduling algorithm

By imitating the foraging and behavior of different organisms in nature, many swarm intelligence
optimization algorithms [60,61], such as particle swarm [62–64], bacteria foraging [65], pigeons swarm
[66,67], bats [68], Firefly algorithm [69], bee colony algorithm [70] are derived. The particle swarm
algorithm [71,72] simulates the behavior of bird predation. For each solution, that is, each particle is a
bird, and all particles are given corresponding fitness values. The corresponding state of the particles
is changed by updating the formula of speed and position. Finally, the optimal solution is obtained
by iterating continuously to reach the termination conditions. The ant colony algorithm simulates the
behavior of ants using pheromones to forage and updates the position of the ant colony according to
pheromones to find the optimal solution. The bat algorithm simulated the echolocation principle in
the bat predation and updated the speed and position by adjusting the frequency and pulse loudness,
and finally found the optimal solution. However, these swarm intelligence algorithms [73,74] can only
rely on a single or a few adaptive value functions to optimize the scheduling problem, which still cannot
satisfy multiple problems such as time-load balancing and resource utilization at the same time, and
cannot effectively improve the scheduling efficiency.

3) Evolutionary optimization algorithm

The evolutionary optimization algorithm [75,76] is based on the evolution of nature and simulates
the biological evolution process. Most evolutionary algorithms [77,78] are based on genetic algorithms,
involving selection, crossover, and mutation operations. The current mainstream research direction
is for the selection strategy. For example, the NSGA-II [79] algorithm mainly designs the Pareto
dominant strategy, which has strong convergence ability and is used to select the solution with better
performance. On this basis, the NSGA-III algorithm [80,81] further proposes the reference point strat-
egy to address the problem of insufficient solution diversity. And many similar algorithms are mainly
used to address multi-objective [82] and many-objective optimization problems [83]. Therefore, in the
process of scheduling problem optimization, the multi-objective optimization algorithm [84,85] and
many-objective optimization algorithm [86,87] can efficiently address complex constrained problems
to maximize scheduling efficiency.

In order to satisfy the massive demand for computing resources in the era of big data under the
cloud environment, and also try to reduce the resource energy consumption and computing cost of
the cloud data center, the combination of task scheduling and optimization ideas [88,89] is inevitable.
Due to the complexity of the scheduling problem [90] and the diversity of algorithms, the scheduling
problem has been discussed by more and more scholars. In order to improve scheduling performance
[91], scholars at home and abroad diverge their thinking and conduct in-depth research from different
perspectives. Various intelligent scheduling strategies are provided in the cloud computing reference.
And then, starting from task dependencies, multi-cloud scheduling is analyzed and summarized into
two aspects: independent task scheduling and workflow scheduling. Meanwhile, existing multi-cloud
scheduling strategies and various optimization algorithms [92,93] they use are studied.

3.4 Independent Task Scheduling Methods
Frincu et al. [94] considered factors such as deployment, load, runtime cost, and resource reuse

during server failures. This paper proposes a scheduling algorithm to optimize high application
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availability, low run-time cost, and load balancing nodes and improves the robustness of the scheduling
system. The objective of high application availability refers to the ability of the application to make the
task execute uninterrupted when the application fails during the execution of the task. The strategy
adopted in this paper is to replicate the application components, and the greater the availability of the
application, the better the performance. The author compares the proposed algorithm with the classic
polling strategy, simulation results verify the effectiveness of the method.

Chen et al. [95] recognized the huge advantages of cloud computing and deployed video streaming
media services on the cloud platform to achieve better results. This paper proposes an algorithm for
selecting cloud providers and datacenters as video service managers in the multi-cloud environment
to evaluate the performance of different video service loads. Considering cost and service quality,
and comparing with a single cloud environment, the experimental results show that the multi-cloud
environment is more conducive to making the best choice.

In order to ensure the authenticity of the data supplied by the provider, Geethanjali et al. [96]
applied the game theory to the real-time task scheduling mechanism. And the corresponding optimiza-
tion algorithm is designed while improving the authenticity of the data, with makespan and cost as
the core objectives. And the simulation results are better than traditional multi-objective optimization
scheduling algorithms.

Kang et al. [97] proposed a staged multi-round scheduling method to meet the objectives of high
utilization and load balancing of compute nodes under the multi-cloud environment from static and
dynamic aspects. The simulation results verify the effectiveness of the proposed method.

Rizvi et al. [98] believed that multi-cloud providers must consider promising predefined SLA to
customers. SLA can ensure that the QoS of the customer enables the customer to assert their rights in
the event of a service failure. Therefore, this paper proposes an SLA-based resource allocation auction
mechanism by using Shortest Job First (SJF) scheduling. The essence of the auction mechanism is
to use auctions to obtain available resources when the provider’s resources are insufficient. When
the resources are sufficient to complete the submitted tasks, the SJF scheduling method is adopted.
The total execution time objective involved refers to the time when all tasks are actually completed.
Penalty objective refers to what the cloud provider pays when it fails to meet the constraints of user
expectations. Both total execution time and penalty objectives are as small as possible. Experiments
show that this mechanism can reduce SLA violations and reduce job waiting time.

Miraftabzadeh et al. [99] took into account the heterogeneity of cloud resources and the con-
straints of diversification in a multi-cloud environment, which intensified the competition among
providers. In order to support elastic and inelastic services well, a sorting method combining log-
arithmic function and sigmoidal function is introduced. A dynamic distributed resource allocation
algorithm is proposed to minimize the cost and maximize the benefit. The revenue objective refers
to maximizing the provider’s revenue by maximizing the use of the available resources in the cloud
environment and reducing the provider’s management work. The revenue value should be as much
high as possible.

To improve the multi-cloud scheduling efficiency, Hao et al. [100] modeled and addressed multi-
cloud parallel tasks. The author believes that as the number of virtual machines increases, there will
be more parallel tasks, that is, the two are positively correlated. Therefore, a multi-objective parallel
task scheduling algorithm is proposed to optimize the waiting time of jobs in different lists. Through
comparative experiments under different parameters, compared with other classical algorithms, the
proposed method shows the best performance by the indicators of waiting time and response time.
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By analyzing the big data of content distribution network (CDN) operation, Wang et al. [101]
adopted the long-term resource deployment algorithm to satisfy the needs of users with the lowest
resources and proposed a resource allocation and scheduling optimization strategy supported by the
multi-cloud architecture. At the same time, the multi-cloud scaling algorithm can further schedule
cloud resources from other cloud providers to address the overload problem of the cloud system. And
the results verify the efficiency of the scheduling strategy from the aspects of QoS and cost.

Kang et al. [102] proposed new multi-cloud system architecture for the load scheduling problem
in cloud storage resource management, taking into account the complex internal characteristics of
computing nodes. At the same time, the author puts forward a dynamic scheduling method, which
applied the theory of separable load and the prediction technology of node availability. Simulation
experiments show that the total load processing time is reduced by 44.60%.

Panda et al. [103] believed that tasks are allocated to the cloud based on their current load, and they
did not consider dividing tasks into preprocessing and processing time. Therefore, the task is further
divided into two different stages preprocessing and processing. According to the division method,
the author proposed three different multi-cloud scheduling algorithms and conducted simulation
experiments with utilization and time as performance indicators. The experiments show the superiority
of the proposed algorithm.

Jena et al. [104] used a genetic algorithm to address the scheduling problem in order to satisfy
the dynamic changes in user needs and the arrangement and combination of heterogeneous resources.
Firstly, this method conducted resource allocation by using a genetic algorithm. And then, the priority
is set. That is, the shortest task has the highest priority. By assigning tasks to virtual machines under
the multi-cloud, the shortest completion time and maximum customer satisfaction are obtained.

Roy et al. [105] believed that the multi-cloud environment was more suitable for solving large-
scale tasks. The author takes the reduction of the maximum completion time and the delay as the
optimization objectives. By calculating the execution cost, energy consumption, and required time of
the task, a scheduling algorithm combining task priority is proposed. Simulation experiments prove
that the algorithm has better performance.

Hubert Shanthan et al. [106] decomposed the multi-cloud scheduling problem into two parts:
scheduling and rescheduling. A round-robin scheduling algorithm was adopted in the scheduling stage.
The author found that about 15% of the task execution cost was reduced only in the rescheduling
phase, so the optimization only focused on the cost problem, and the result optimization was achieved
through two-phase scheduling.

Thirumalaiselvan et al. [107] believed that when the ratio of virtual machines to the number of
tasks was different, the requirements for scheduling policies were also different, so the scheduling
problem was considered from the perspective of computing resources and the number of tasks. For the
three keywords of load, priority, and rate, the author proposed three different scheduling algorithms,
and optimized energy consumption, Makespan, and delay at the same time. The delay refers to various
delays generated by cloud computing resources when processing tasks submitted by users. For example,
various delays are caused by tasks in the process of transmitting data, waiting for processing, and
non-essential transaction processing. The smaller the delay, the higher the task processing efficiency.
Compared with existing methods, the results show that the proposed algorithm can achieve higher-
performance multi-cloud computing.

For some urgent tasks in a heterogeneous multi-cloud environment, Zhang et al. [108] tried to
reduce the delay faced during the task execution process as much as possible. In order to reduce
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the delay of task execution, different tasks in a multi-cloud datacenter will compete for edge device
resources as much as possible. In this paper, a reinforcement learning framework is introduced to deal
with resource competition in different datacenters. Simulation results show that the mechanism can
make full use of computing resources to reduce the task delay.

Panda et al. [109] believed that a single cloud environment cannot satisfy the resource capacity
problem during peak demand periods, so the multi-cloud environment is introduced in the article.
The aware-allocation algorithm is proposed by improving the Min-Min and Max-Min algorithms
to improve task scheduling performance. And it includes three steps, namely matching, allocation
and scheduling. Finally, the author measures the performance of the algorithm from three aspects:
throughput, total time, and utilization. Simulation results show the effectiveness of the algorithm.

Due to the delay in response time when files between datacenters in cloud resources are accessed
by each other, Li et al. [110] proposed a data copy-aware scheduling algorithm for this situation.
Among them, Bayesian network technology is used to balance system load and improve data access
speed. Combine transmission calculation with transmission data, and realize resource matching
based on node locality. Compared with the benchmark algorithm, the proposed algorithm has better
performance.

Shanthan et al. [111] planned to introduce a multi-cloud environment for task scheduling in order
to address problems such as vendor lock-in, resource unavailability, and delay. In this paper, a priority
intensive meta task scheduling algorithm is proposed, the task completion time is optimized, and
the priority is introduced for task filtering, in which the optimization background is offline task
scheduling.

Jing et al. [112] considered the problem of massive loss of resource costs caused by the low
efficiency of data-intensive applications under the multi-cloud environment. In order to reduce cost
consumption, the author introduced a cloud-independent system, so that computing resources can be
placed as close as possible to the execution data, and a corresponding scheduling algorithm is designed
to minimize costs. During the experiment, the effectiveness of the system model is evaluated by data
transfer efficiency and cost. And data transfer time refers to the inevitable need for data transfer
during the execution of tasks due to bandwidth between clouds and data transfer across clouds. If
the data transfer efficiency is low, it may lead to an increase in the cost of the overall model and a
decrease in inefficiency. Therefore, the greater the data transfer efficiency, the better the performance.
Experimental results show that cloud-independent systems and cost-aware scheduling algorithms can
improve the data transmission rate and save budget costs.

Considering data privacy, such as data privacy of work, different electricity prices of private
clouds, and different billing strategies/cycles of public clouds, Pasdar et al. [113] proposed a multi-cloud
scheduling recommendation (MCSR) framework based on an artificial neural network to optimize
cost efficiency. Using real Facebook workload data, the experiment demonstrated that the MCSR
framework can efficiently schedule tasks.

Karaja et al. [114], aiming at the heterogeneity of cloud resources and considering that there should
be budget constraints in task scheduling, proposed a dynamic multi-cloud task scheduling algorithm
with budget constraints and conducted experiments by synthesizing datasets. Under the premise of
budget constraints, the simulation results show that the maximum completion time performance of
the algorithm is better.
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Karaja et al. [115] proposed a hybrid bi-level dynamic bag-of-tasks scheduling optimization model
(HB-DBOTSP) in view of the scheduling complexity caused by resource heterogeneity in the multi-
cloud environment. This model takes into account budget constraints, and the objectives are time and
execution cost that ensures load balancing among cloud resources. The experimental results verify that
the HB-DBOTSP model can receive better solutions.

In order to enable users to obtain better services, Mohanraj et al. [116] established a multi-objective
model under the premise of considering Makespan and cost, as well as task waiting time, delay, and
throughput. After the task is scheduled for the virtual machine, it will be stored in the task queue
of the virtual machine. Then the service program in the deployed virtual machine will execute the
tasks in the queue in sequence according to the principle of first come first serve. Therefore, the
waiting time of a task refers to the time that the task needs to wait for execution in the to-be-executed
queue after it is allocated to computing resources. The shorter the waiting time, the higher the task
execution efficiency. And the author proposed a corresponding algorithm for the designed multi-
objective model, a multi-swarm optimization algorithm based on the traditional swarm intelligence
optimization idea. Simulation experiments illustrate that the performance of the optimization model
in terms of throughput and resource utilization has been improved, but with the increase in the number
of tasks, the model efficiency will decrease.

In order to address the problem of trust constraints, Zhu et al. [117] proposed a new multi-
cloud scheduling method—matching the multi-round allocation method, which is used to optimize
all security and reliability constraints. This method first considers the impact of priority on the
task sequence and satisfies safety and reliability as much as possible. At the same time, in order to
improve scheduling performance, a multi-round allocation strategy is used to further minimize the
time objective. The author performed simulations in CloudSim and compared them with other bio-
inspired algorithms, verifying that the algorithm is more effective in reducing completion time and
saving costs.

Selvapandian et al. [118] took into account that multi-cloud task scheduling requires enabling
massive virtualized resources. So, they demonstrated a set of non-dominated solutions using exper-
iments that can be applied in real-world and manufacturing work processes, and these solutions
do not dominate each other. A multi-level task scheduling policy estimation model is proposed for
task planning calculation in the heterogeneous multi-cloud environment. Compared with other multi-
objective optimization algorithms, simulation results show that the proposed algorithm has lower costs
and less time.

Hubert Shanthan et al. [119] improved the particle swarm optimization (PSO) algorithm to
optimize multi-cloud multi-objective scheduling problems. It uses inertial weights and PSO speed
to get a non-dominated scheduling scheme, combining local search and global search methods. The
simulation experiment proves that the algorithm obtains the best performance in terms of optimizing
time and task completion rate.

The task scheduling problem in the existing multi-cloud environment cannot be comprehensively
considered from the perspectives of providers and users. After fully analyzing the factors that should be
included in the scheduling process, Cai et al. [120] established a many-objective model that considers
the needs of both providers and users. An intelligent scheduling algorithm is designed to solve the
model, focusing on convergence in the early stage and in the later stage. The simulation results verify
the effectiveness of the algorithm and model.

In order to obtain higher satisfaction for users, and at the same time, the benefits of providers are
greater. Su et al. [121] combined the edge cloud framework with multi-cloud, designed an interaction
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mechanism based on a game model between users and providers, and proposed a corresponding
algorithm to decide which computing resources to use for the tasks submitted by users. Simulation
results show that under the new framework, this method can meet the expectation of users and make
providers benefit well.

Table 1 summarizes the related strategies for independent task scheduling in the above-mentioned
references in a timeline, and further lists the motivation and optimization objective. Finally, the types
of scheduling strategies are given. And Fig. 6 shows the proportion of various objectives involved in
the multi-cloud independent task scheduling references.

Table 1: Summary of research reference on multi-cloud task scheduling strategy

Ref. Motivation Optimization objective Strategy type

[94] Achieve application
high-availability and
fault-tolerance

Load balance, cost,
application availability

Improved GA

[95] Huge storage capacity for
video streaming service

QoS (Distance between users
and servers and existing
virtual resources) and cost

Dynamic algorithm
based on changes in the
number of users

[96] Ensure authenticity of
provider’s information

Makespan and cost Game theory
mechanism

[97] Achieve high utilization and
load balancing among
compute nodes

Load balance Multi-round scheduling
in stages

[98] Enable customers to assert
their rights with SLAs

Total execution time, Waiting
Time, Penalty

Auction mechanism and
Shortest Job First (SJF)
scheduling

[99] In order to maximize the use
of the resource pool

Cost and revenue Combining the sorting
method of sigmoidal
and logarithmic utility
functions

[100] Modeling and solving parallel
tasks scheduling

Waiting time, Makespan Multi-objective
ZERO-ONE scheduling

[101] Meet the needs of users with
the lowest resources

QoS (Usability, Availability,
Responsiveness, Distance)
and cost

based on Auto
Regressive Integrated
Moving Average
(ARIMA) model to
forecast requests

[102] The load scheduling problem Load balance Dynamic strategy based
on the divisible load
theory and node
availability prediction
techniques

(Continued)
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Table 1 (continued)

Ref. Motivation Optimization objective Strategy type

[103] Consider dividing tasks into
preprocessing and processing
time

Makespan and resource
utilization

Scheduling algorithm
based on task
partitioning

[104] Dynamic changes for
requirements and resources

Makespan and QoS (Expected
time, estimated cost, resource
waiting time)

GA and shortest task
first strategy

[105] Handling large-scale task
scheduling

Makespan, cost and energy
consumption

A priority-based hybrid
task scheduling policy

[106] Dwindle the execution costs
of the VMs

Makespan, cost, resource
utilization

Round-robin scheduling
algorithm and
rescheduling

[107] The impact of quantity (tasks
and virtual machines) on
scheduling problems

Makespan, delay, energy
consumption

Scheduling strategy
based on load, priority
and rate

[108] To reduce delay when dealing
with urgent tasks

Delay Multi-agent
reinforcement learning
(MARL) framework

[109] Multi-cloud scheduling
performance

Makespan, throughput and
resource utilization

Improved
algorithm-based
Min-Min and Max-Min

[110] To reduce response delay
between multi-cloud

Makespan and load balance Replica replication
strategy

[111] Solve the scheduling problem
of independent batch tasks in
a static environment

Makespan Priority is introduced
for task filtering

[112] Reduce costs and speed up the
operation of data-intensive
applications between clouds

Data transfer efficiency, cost Cloud-independent
PIVOT system and
cost-aware scheduling

[113] Optimize cost efficiency
explicitly taking into account
data privacy

Cost Simulated annealing
(SA) and a
recommender using
artificial neural
networks (ANNs)

[114] Task scheduling under budget
constraints

Makespan and cost Undergoes variation
mechanisms using a
local search

[115] Dynamic scheduling to
balancing load

Makespan and cost Bi-level optimization
based on Tabu Search
algorithm and Genetic
Algorithm

(Continued)
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Table 1 (continued)

Ref. Motivation Optimization objective Strategy type

[116] Enhanced Quality of Services
for a multi-cloud environment

Throughput, delay,
Makespan, waiting time,
resource utilization

Multi-swarm
optimization algorithm

[117] Trust constraints problem in a
heterogeneous multi-cloud
environment

Makespan and cost Matching and
multi-round allocation
scheduling algorithm

[118] Enables virtual resource
scheduling to be more efficient

Cost and Makespan Multilevel task
scheduling policy(First
in and First out (FIFO)
+ Continuous
Connected Settlement
(CLS) + Round Robin
scheduling)

[119] Improved maximum
completion time and
completion rate for tasks

Makespan and cost Improved particle
swarm optimization
(PSO)

[120] Improve scheduling efficiency
consider both users and
providers

Makespan, cost, throughput,
energy consumption,
resource utilization, and load
balance

Many-objective
optimization algorithm

[121] Consider the constraints of
different tasks and maximize
user satisfaction

QoS (delay, energy
consumption and cost) and
revenue

The Stackelberg game

Load balance
8%

Cost
22%

Qos
6%

Makespan
27%

Wating time
5%

Revenue
3%

Resource 
utilization

8%

Energy 
consumption

5%

Delay
5%

Throughput
5%

Other
6%

Load balance

Cost

Qos

Makespan

Wating time

Revenue

Resource utilization

Energy consumption

Delay

Throughput

Other

Figure 6: The proportion of objectives involved in the independent task scheduling references



CMES, 2023, vol.135, no.3 1879

Table 1 sorts out the existing references on typical multi-cloud independent task scheduling in
chronological order. Due to the heterogeneous advantages of the multi-cloud environment, it can
be concluded that users can be provided with diversified virtual resources so that both users and
providers can put forward more requirements in the process of task execution. For example, from the
perspective of users and providers, references [116,120] designed the task scheduling model with five
and six objectives respectively, although the core objectives of most of the references are still time and
cost, such as references [117–119]. In order to obtain a better scheduling scheme in the task scheduling
process, the scheduling algorithm is also constantly improving, which can be roughly divided into
heuristic scheduling algorithm, traditional scheduling algorithm, and hybrid scheduling algorithm
combining the advantages of the two. Such as references [94,119] to improve the GA algorithm and
the PSO algorithm, the references [98,109] adopted the traditional scheduling algorithms, and the
references [104,115] use the hybrid scheduling algorithm. In order to obtain better scheduling result,
some scholars have also introduced edge computing and fog computing frameworks into the multi-
cloud environments to further expand computing resources, such as references [108,121]. At the same
time, the security and reliability issues caused by massive virtual resources in multi-cloud platforms
have also been paid attention to by scholars. For example, references [94,117] considered the security
issues of multi-cloud task scheduling and the reliability of task execution. What’s more, neural network
technology [113] has also been applied to the task scheduling process. Fig. 6 shows the percentage of
different objectives in the multi-cloud independent task scheduling references. It can be seen that cost
and makespan are the main concerns of most scheduling references. Secondly, in order to make both
users and providers obtain better benefits, the references also pay more attention to the three objectives
of load balance, resource utilization and QoS.

Table 2 mainly analyzes and summarizes the scheduling constraints and test environments
involved in the multi-cloud independent task scheduling references. Fig. 7 shows the percentage of
different constraints in the independent task scheduling references, which can more intuitively reflect
that deadline and budget constraints are the most critical in multi-cloud independent task scheduling.
At the same time, for the smooth execution of task scheduling, some references also consider reliability
and security constraints. For some user-specific requirements, task priority constraints occasionally
need to be considered in the scheduling process.

Table 2: Constraints and test environments covered in the independent task scheduling references

Ref. Constraint Testing environment
Deadline Budget Security Reliability Priority

[94] √ Real environment

[95] Simulation
[96] √ Simulation (Cloudsim)

[97] Simulation (MATLAB)
[98] √ Simulation (CloudSim)

[99] Simulation
[100] Simulation
[101] Simulation (OpenStack)
[102] Simulation
[103] Simulation (MATLAB)

(Continued)
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Table 2 (continued)

Ref. Constraint Testing environment
Deadline Budget Security Reliability Priority

[104] Simulation (MATLAB)
[105] √ Simulation (MATLAB)

[106] Simulation (CloudSim)
[107] Simulation (Netbeans)
[108] Real environment
[109] Simulation (MATLAB)
[110] Simulation (Java)
[111] √ Simulation (CloudSim)

[112] Real environment
[113] √ √ Simulation

[114] √ Simulation

[115] √ Simulation

[116] Simulation (NetBeans)
[117] √ √ Simulation (CloudSim)

[118] Simulation
[119] Simulation (CloudSim)
[120] Simulation (MATLAB)
[121] Simulation

Without 
constraints

63%

Deadline
13%

Budget
7%

Security
7%

Reliability
7%

Priority
3%

With 
constraints

37%

Without constraints Deadline Budget

Security Reliability Priority

Figure 7: The proportion of constraints involved in the independent task scheduling references

3.5 Workflow Scheduling Methods
In the heterogeneous multi-cloud environment, Panda et al. [122] proposed new scheduling

algorithms, which aim to minimize completion time while maximizing average cloud utilization. These
algorithms include one-stage scheduling and two-stage scheduling. They used various benchmarks and
synthetic data sets to conduct rigorous experiments on the proposed method, and the effectiveness is
verified.
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Taking into account the massive amount of data in multi-cloud workflow scheduling and the
complex dependencies between data. Sooezi et al. [123] applied the communication idea to multi-
cloud workflow scheduling and designed a new algorithm with user deadlines as the constraint. The
algorithm changes the definition of part of the critical path (PCP), and simulation experiments prove
that the algorithm optimizes the cost of the task.

The dynamic multi-cloud workflow requires various cloud service algorithms to facilitate the
completion of workflow task scheduling. Nandhakumar et al. [124] summarized and reviewed the
cloud workflow scheduling strategies proposed in some existing references. The algorithms are
introduced from the perspectives of heuristics and meta-heuristics respectively so that readers have
a better understanding of these existing algorithms.

Lin et al. [125] applied partial of the critical path algorithm to the workflow and designed a
scientific multi-cloud workflow scheduling algorithm. The algorithm can minimize the cost of the
task under the deadline constraint required by the user. Simulation experiments prove the advantages
of this algorithm.

Maheshwari et al. [126] proposed a new scheduling strategy to minimize the cost of data
transmission based on the impact of virtual resources on the execution performance of multi-cloud
workflow tasks. The author used the proposed multi-site multi-cloud scheduling strategy to achieve
lower cost and effectiveness of resource utilization solutions. The experimental results verify that the
algorithm has greater advantages in terms of network throughput and task cost.

Gupta et al. [127] further studied the influence of transmission time on multi-cloud workflow
scheduling. The author divides the workflow scheduling into two stages according to the priority of
the task and designs a two-stage workflow scheduling algorithm, which selects the virtual machine by
calculating the priority of the task. The author takes the maximum completion time and average cloud
utilization as the objectives, and simulates the standard scientific workflow. The experimental results
show that the scheme has good effects.

Suri et al. [128] took into account that multi-cloud task scheduling needs to reasonably assign tasks
to the most appropriate resources. In this paper, the tasks are grouped according to their execution time
and then sorted in ascending order according to the execution time. The authors argue that the shortest
tasks should be executed first, which reduces the largest completion time. The average turnaround time
of the model designed in this paper refers to the sum of the average execution time and the waiting
time of the task, and the completion time refers to the total time it takes to complete the execution
of different grouped tasks. Therefore, the smaller the average turnaround time and the completion
time, the better the performance. Compared with other sorting methods, the proposed model receives
quality solutions.

Panda et al. [129] designed four scheduling algorithms based on normalization technology for
the heterogeneous multi-cloud environment. It should be noted that the four algorithms designed are
suitable for online scheduling in different situations, and there is no comparison between them. The
author uses synthetic datasets and benchmark datasets to simulate the algorithm. Simulation results
show that the algorithm has better performance in terms of time and utilization indicators.

Hu et al. [130] further improved the quality of customer service under multi-cloud workflow
scheduling. The author believes that reliability is a key indicator of service quality. Therefore,
they designed an algorithm that is superior to traditional particle swarms to reduce the maximum
completion time and cost. The corresponding coding strategy also considers the task execution
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position and the task sequence of data transmission. A simulation experiment based on a real scientific
workflow model shows that the proposed algorithm is greatly improved.

Li et al. [131] aimed at the problems in managing and executing big data scientific workflows to
process stream data sets in the multi-cloud environment. To satisfy user constraints while improving
cloud throughput, a new heuristic algorithm is designed: a scheduling algorithm that identifies
global bottlenecks and maximizes throughput. Simulation experiments prove the effectiveness of the
algorithm.

Mohammadi et al. [132] designed a new method to determine the most stable solution of the
weighted sum in order to obtain a better and more stable multi-cloud multi-objective workflow
scheduling solution, taking the maximum completion time and the cost of the task as the optimization
objectives. And the weighted minimum-maximum as a post-optimum analysis. Simulation experiments
show that the algorithm performs better.

Chen et al. [133] considered that large-scale scientific workflows have complex task dependencies,
leading to large execution costs. In order to better implement schedules, the authors proposed an
online multi-cloud adaptive scientific workflow scheduling algorithm. A large number of simulation
experiments show that the algorithm reduces the execution cost of the workflow and improves the
resource utilization of the cloud environment under the constraints of some hardware devices.

Farid et al. [134] considered that the tasks under the multi-cloud workflow are intricate and dense,
and proposed an optimization algorithm that is superior to traditional particle swarms. The algorithm
optimizes the task completion time and resources utilization rate for the transmission sequence of
tasks. The resource utilization objective in this paper is expressed by the ratio of the virtual machine
processing power required by the task to the actual allocation. And the resource utilization is as large
as possible. For objectives such as utilization rate and cost required for task execution, simulation
experiments show that compared with the particle swarm algorithm, the improved algorithm proposed
by the author is better.

Tang et al. [135] constructed a fault-tolerant workflow scheduling framework for multi-cloud
systems considering the existing multi-billing mechanism, virtual resource heterogeneity, and system
reliability. Weibull distribution is used to analyze the reliability and risk rate of tasks and repeat tasks
with high-risk rates to increase the reliability of tasks. At the same time, a multi-cloud scheduling
algorithm combined with fault-tolerant ideas is designed. This algorithm reduces the total completion
time and increases the reliability and cost of workflow task execution. Simulation experiments prove
the advantages of this algorithm.

Ulabedin et al. [136] pointed out that the datacenter is facing huge data transmission. And the
movement of data will lead to a longer execution time for multi-cloud workflows and increase the cost
of task completion. In order to overcome the difficulty of data transmission, the author introduces the
critical path to workflow scheduling. The data movement objective refers to the amount of movement
of datasets between different datacenters or within the same datacenter. Fewer movements can reduce
the execution cost and time for tasks. Simulation experiments prove that the author’s proposed method
optimizes the cost and maximum completion time, and reduces the amount of overall data movement.

Wang et al. [137] realized that there is a certain connection between workflows, and these
connections will lead to complex or simple data communication between tasks. In order to reduce
the loss caused by data communication, this paper introduces the clustering coefficient to reasonably
slice the tasks in the workflow, and dynamically allocate the tasks to the appropriate cloud provider
to reduce the time and cost increase caused by data communication.
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Mohammadzadeh et al. [138] analyzed the respective advantages of the seagull and grasshopper
optimization algorithms and combined the advantages of the two to construct a hybrid multi-objective
optimization algorithm. This paper uses this algorithm to optimize multi-cloud workflow scheduling
problems with the objective of time, energy consumption, cost, and throughput. Multiple scientific
workflow datasets are used for testing on the simulation experiment platform, and the experimental
results show that the algorithm has advantages in multiple indicators.

Sujana et al. [139] believed that some inexperienced users are in a fuzzy state when using a multi-
cloud environment and thus introduced a fuzzy decision-making model. Based on the three objectives
of time, cost, and trust value, this paper defines different fuzzy membership functions and makes
collective decisions. Finally, an intelligent cloud agent based on fuzzy logic is proposed to solve the
workflow scheduling problem in the multi-cloud environment. The trust objective refers to the trust
degree of the task to the computing resource, that is, the probability of selecting the computing resource
to execute the task. In this paper, the user’s trust degree for different resources is determined by the
recommendation trust degree of other users and self-historical evaluation of different resources. The
larger the objective value, the easier it is to be selected.

Chakravarthi et al. [140] considered that the cloud environment has the characteristics of resource
heterogeneity and dynamic change. Also, to ensure that the workflow in the multi-cloud environment
can be executed smoothly within the expectations of users, a highly reliable workflow scheduling
scheme based on user time, cost, and other budgets is proposed. Reliability refers to selecting the
most reliable computing resources for tasks, thereby reducing the possibility of task execution failures
due to various failures. The strategy used in this paper is to select computing resources for tasks by
first calculating the probability of correct execution of tasks on different resources. The strategy first
calculates the probability of tasks being executed correctly on different resources, and finally selects
the most reliable resource under the premise of user expectation constraints.

Table 3 summarizes the multi-cloud workflow scheduling strategies in the above references, and
further lists the motivation, optimization objectives. Finally, the type of scheduling strategy is given.

Table 3: Summary of research reference on the multi-cloud workflow scheduling strategy

Ref. Motivation Optimization objective Strategy type

[122] Minimize completion time under
cloudy conditions while maximizing
average cloud utilization

Makespan, resource
utilization

Independent-phase
scheduling and
two-phase scheduling

[123] Minimize the cost of workflow
execution while meeting a user
defined deadline

Makespan and cost Extended Partial
Critical Paths (PCP)

[124] Review workflow multi-cloud
scheduling algorithms

— —

[125] To better satisfy the users’ quality of
service requirements

Makespan and cost Multi-Cloud Partial
Critical Paths (MCPCP)

[126] Balance workloads between sites
and minimize data execution time

Makespan, resource
utilization

Multi-site performance
prediction

(Continued)
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Table 3 (continued)

Ref. Motivation Optimization objective Strategy type

[127] Makes an exclusive mapping
between tasks and virtual machines
for better performance

Makespan, resource
utilization

Priority scheduling
based on task node
transmission time

[128] Allocate tasks to the most
appropriate resources

Waiting time, average
turnaround time,
completion time and
makespan

Shortest Job First
Strategy (SJF)

[129] Balance multiple cloud scheduling
workloads

Makespan and resource
utilization

Scheduling algorithm
based on normalization
technology

[130] Satisfy reliability constraints Makespan, cost Improved Particle
Swarm Optimization
(PSO)

[131] Manage and execute big data
scientific workflows in multi-cloud
environment to process streaming
datasets

Throughput, cost PCP + Prioritization of
virtual machines

[132] Obtain a stable solution that meets
both the minimum cost and the
maximum completion time

Cost and makespan Integer linear
programming
(ILP)

[133] Handle task scheduling with
deadlines for hardware devices

Cost, resource
utilization

Adaptive resource
allocation and
consolidation

[134] Workflow scheduling under
Reliability constraints

Makespan, cost,
resource utilization

PSO + fuzzy logic

[135] Improve the scientific applications
execution reliability

Cost, Makespan Weibull distribution and
Task cb-level sorting

[136] Reduce the impact of data
movement on workflow execution
time and budget costs

Makespan, cost, energy
consumption and data
movement

Critical path data
locality (R-PCP)
technology

[137] Reduce the data communication loss
of workflow

Makespan and cost Workflow slicing based
on clustering coefficient

[138] Generating pareto optimal solutions
in multi-cloud work applications

Makespan, energy
consumption, cost, and
throughput

Combining the
strengths of seagull and
grasshopper
optimization algorithms

(Continued)
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Table 3 (continued)

Ref. Motivation Optimization objective Strategy type

[139] Satisfy the user’s fuzzy needs Makespan, cost and
trust.

Fuzzy membership
function for each
objective

[140] Tasks can be reliably executed under
budget constraints

Makespan, cost Min-max
normalization,
Grouping workflow
tasks

Table 3 sorts out the existing typical multi-cloud workflow scheduling reference and sorts them by
time. Due to the complex dependencies among workflow tasks, not only the complexity of multi-cloud
resources, but also the execution order of tasks needs to be considered in the task scheduling process.
And a large amount of data transmission time is required during the execution process. Therefore, in
order to improve the efficiency of workflow execution, the references [127,137] designed the scheduling
algorithm from the perspective of transmission time. At the same time, it can be concluded that the
scheduling strategy of the partial critical path is often used in the scheduling process of workflow.
For example, references [125,131,136] adopted the improved version of the partial critical path. The
types of optimization algorithms used in the workflow scheduling process include heuristic algorithms,
traditional scheduling algorithms, and numerical algorithms. As references [130,134,138] use heuristic
algorithms, the reference [140] used the traditional scheduling algorithm, and the reference [134] uses
the integer linear programming method. In addition, the references [134,135,140] further considered
the security and reliability issues that may arise due to the complexity of resources in the multi-cloud
environment and the complex dependencies of workflows. Fig. 8 shows the percentage of different
objectives in the multi-cloud workflow scheduling references. Obviously, makespan and cost objectives
are also mainly considered in multi-cloud workflow scheduling. At the same time, in order to make
full use of cloud resources, resource utilization objective has also attracted much attention.

Makespan
36%

Resource 
utilization

14%

cost
30%

Throughput
4%

Energy 
consumption

5%

Other
11%

Makespan

Resource utilization

cost

Throughput

Energy consumption

Other

Figure 8: The proportion of objectives involved in the workflow scheduling references

Table 4 mainly analyzes and summarizes the scheduling constraints and test environments
involved in the multi-cloud workflow scheduling references. Fig. 9 depicts the different proportions of
constraints in the multi-cloud workflow scheduling reference. It can be intuitively reflected that most
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of the reference on workflow scheduling considers constraints. Deadline and reliability constraints are
the focus, and budget constraints also occupy a large proportion in workflow scheduling.

Table 4: Scheduling constraints and test environments covered in the workflow scheduling references

Ref. Constraint Testing environment
Deadline Budget Security Reliability Priority

[122] Simulation (MATLAB)
[123] √ Simulation

[125] √ Simulation

[126] Real environment
[127] Simulation (MATLAB)
[128] Simulation (MATLAB)
[129] Simulation (MATLAB)
[130] √ Simulation (Python)

[131] √ Simulation (Java)

[132] Simulation
(CPLEX Optimization
Studio)

[133] √ Simulation (Python)

[134] √ Simulation
(Workflowsim)

[135] √ Simulation (CloudSim)

[136] √ √ Simulation
(Workflowsim)

[137] Simulation
[138] Simulation (CloudSim +

Workflowsim)
[139] √ √ Simulation (CloudSim)

[140] √ √ Simulation (CloudSim)

Without 
constraints

40%

Deadline
20%

Budget
10%

Reliability
25%

Priority
5%

With
constraints

60%

Without constraints Deadline Budget Reliability Priority

Figure 9: The proportion of constraints involved in the workflow scheduling references
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3.6 Summary and Classification
Tables 1 and 3 provide an analysis of the strategies used in different multi-cloud task scheduling

references. By summarizing the above scheduling strategies, we mainly divide them into heuris-
tic scheduling strategies, meta-heuristic scheduling strategies and hybrid scheduling strategies. The
detailed classification and summary can be shown in Fig. 10.

Heuristic Scheduling Strategy

Meta-Heuristic Scheduling 
Strategy

Hybrid Scheduling Strategy GA + SJF SA + ANNs
GA + Tabu search 

algorithm
PSO + Fuzzy logic

Scheduling 
strategy  in 
multi-cloud 

environment 

Min-Min Max-MinSJF Round-RobinFIFO

Priority based 
scheduling

Prediction based 
scheduling

Agent based 
scheduling

QoS based scheduling

Game based 
scheduling

Machine learning 
based scheduling

GA PSO
Seagull optimization 

algorithm
Grasshopper 

optimization algorithm
SA

Figure 10: Classification of scheduling strategy in multi-cloud computing

Tables 2 and 4 summarize the test environments of different references, and Fig. 11 depicts the pro-
portion of different test environments in the multi-cloud independent task and workflow scheduling
references. Obviously, most of the experiments are carried out in the simulation environment. Since
the experiment in the real cloud environment is hard to achieve and will consume huge costs, the
simulation environment provided by various simulation tools can easily realize various functions to
satisfy all kinds of needs for cloud environment experiments.

Real 
environment,  

7%

Simulation,  
53%

Real 
environment,  

2%

Simulation,  
38%

Independent 
task,60%

Workflow, 40%

Figure 11: Classification of scheduling strategy in multi-cloud computing

Table 5 categorizes the above references according to journals and conferences and sorts out the
journal names (conference names), years, and their publishers. It includes 28 journal articles and 19
conference articles.



1888 CMES, 2023, vol.135, no.3

Table 5: Classification and summary of references

Ref. Journal/Conference Year Publisher

Journal

[95] Tsinghua Science and Technology 2013
Tsing Hua
University

[122] Journal of Supercomputing 2015 Springer
[126] Future Generation Computer Systems 2016 Elsevier
[100] KSII Transactions on Internet and

Information Systems 2017
Korea Society of
Internet
Information

[102]
Journal of Parallel and Distributed
Computing

Academic Press
Inc.

[130] Journal of Network and Computer
Applications

[129] Information Systems Frontiers 2018
Springer[103,104] Arabian Journal for Science and

Engineering
[105] Advances in Intelligent Systems and

Computing
[110,132] Journal of Supercomputing

Springer[107] Cluster Computing-The Journal of
Networks Software Tools and
Applications

2019

[109] Information Systems Frontiers
[133,134] IEEE ACCESS 2020 IEEE
[116] Soft Computing

Springer[118] DISTRIBUTED AND PARALLEL
DATABASES

[138] Journal of Ambient Intelligence and
Humanized Computing

[136] Journal of Supercomputing 2021
[117] IEEE-CAA Journal of Automatica Sinica

IEEE[120] IEEE Internet of Things Journal
[135] IEEE Transactions on Cloud Computing
[137] Journal of Tongji University Tongji University
[121] Computer Networks Elsevier

[139]
EAI/Springer Innovations in
Communication and Computing

2022
Springer

[140] Cluster Computing

(Continued)
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Table 5 (continued)

Ref. Journal/Conference Year Publisher

Conference

[94] UCC 2011 2011 IEEE
[96] ICRTIT 2014 2014 IEEE
[97] UCC 2014

[123]
2015 IEEE 7th International Conference
on Cloud Computing Technology and
Science (CloudCom)

[124] ICACCS 2015 2015 IEEE
[125] IPDPSW 2015

[98] ICCCS 2016
CRC
Press/Balkema

[99] SoSE 2016 2016
IEEE

[127] ICCCA 2016
[128] ICICCT 2017 2017 Springer

[101] 2017 IEEE International Conference on
Services Computing (SCC)

IEEE

[106] NCCI 2018 2018 IOP Publishing
[131] 16th IEEE International Symposium on

Parallel and Distributed Processing with
Applications

IEEE

[111] NCCI 2019 2019 IOP Publishing
[108] GLOBECOM 2019 IEEE

[112]
NOMS 2020–2020 IEEE/IFIP Network
Operations and Management Symposium

[114] 2020 International Multi-Conference on:
Organization of Knowledge and
Advanced Technologies (OCTA)

2020 IEEE

[113] ICONIP 2020
Springer

[115] HIS 2020
[119] ICACCS 2021 2021 IEEE

In order to facilitate readers to have a more intuitive view of the source of the reference mentioned
above. We classify the literatures analyzed in Table 5 according to their publishers. Fig. 12 shows that
most of the multi-cloud scheduling reference is published in IEEE and springer publications. At the
same time, Fig. 13 analyzes the number of journals and conference papers published each year from
2011 to 2022.
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Figure 13: Number of journal and conference papers published annually on multi-cloud task
scheduling

Fig. 14 depicts the trend of independent task and workflow scheduling related references pub-
lished under the multi-cloud environment in recent years. The figure shows that task scheduling under
the multi-cloud environment has received extensive attention in recent years, and in the early days,
scholars mainly focused on the independent scheduling problem. In recent years, the references on
workflow scheduling have gradually increased, indicating that the complex dependencies between
tasks have been paid more and more attention. However, in terms of overall quantity, the research
references on multi-cloud workflow scheduling are still scarce. Therefore, the follow-up research on
workflow scheduling can be further in-depth.
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Figure 14: Number of references per year on multi-cloud workflows and independent task scheduling

4 Conclusion and Future Work

This paper makes a detailed review and summary of the independent tasks and workflow
scheduling references in the multi-cloud environment based on the dependencies between tasks.
Firstly, the characteristics and advantages of the multi-cloud environment are discussed, and the
challenges faced by multi-cloud task scheduling are analyzed. In addition, various algorithm types,
core objectives and constraints of multi-cloud scheduling are summarized, and then the existing
multi-cloud scheduling references are analyzed in detail, including research motivations, scheduling
strategies, constraints, test environment and optimization objectives. Finally, the research trend of
the latest and representative research references about multi-cloud task scheduling in recent years is
analyzed. On this basis, the direction for the next more in-depth research is proposed.

1) The rapid increase in the amount of data submitted by users will inevitably bring greater
security risks to the operation of multi-cloud scheduling, and will also reduce the probability
of tasks being reliably executed. How to ensure data security and task execution reliability in
the modeling process is still an important research topic.

2) There are many scheduling methods designed to improve scheduling performance. However,
the real-time and dynamic characteristics of task scheduling are more suitable for actual
scheduling.

3) Optimization problems pay more attention to knowledge transfer and experience learning,
so extracting the similarity of tasks in the scheduling process and performing knowledge
interaction can effectively improve the scheduling efficiency, which will be a meaningful
research topic.
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