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ABSTRACT

This study focuses on the dynamics of drug concentration in the blood. In general, the concentration level of a drug
in the blood is evaluated by the mean of an ordinary and first-order differential equation. More precisely, it is solved
through an initial value problem. We proposed a new modeling technique for studying drug concentration in blood
dynamics. This technique is based on two fractional derivatives, namely, Caputo and Caputo-Fabrizio derivatives.
We first provided comprehensive and detailed proof of the existence of at least one solution to the problem; we
later proved the uniqueness of the existing solution. The proof was written using the Caputo-Fabrizio fractional
derivative and some fixed-point techniques. Stability via the Ulam-Hyers (UH) technique was also investigated. The
application of the proposed model on two real data sets revealed that the Caputo derivative was more suitable in this
study. Indeed, for the first data set, the model based on the Caputo derivative yielded a Mean Squared Error (MSE)
of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360. Caputo-Fabrizio-based-
derivative appeared to be the second-best method for the problem, with an MSE of 0.04324 for a corresponding best
fractional derivative order of 0.43532. For the second experiment, Caputo derivative-based model still performed
the best as it yielded an MSE of 0.04066, whereas the classical and the Caputo-Fabrizio methods were tied with
the same MSE of 0.07299. Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional
derivative coincided with the MSE obtained from the classical approach.
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1 Introduction

Drugs are often inoculated in human blood during the treatment of a disease. One interesting fact
is that the concentration of the drug decreases over time once it is inoculated. The initial concentration
of a drug and many other parameters are used by medical practitioners to determine the frequency at
which a specific drug should be administrated to reach the goal of curing a disease.
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The clinical development of a new drug involves many phases. During phase 1 of drug develop-
ment, the experimenter routinely evaluates time elapse until a new regimen reaches its steady state. The
steady state here refers to the state at which the concentration of a drug in the blood does not change
consistently anymore over time. In practice, patients have to take several shots of the drug in order to
recover. However, each time a dose of the drug is administrated, part of it spreads all over the body
and exists through excretions. The remaining part will accumulate to form sediment. The steady-state
is reached when the concentration of the new dose coincides with the concentration of sediment. To
identify the time from the first inoculation to the steady-state, the patient’s blood is sampled at regular
time span intervals and the drug concentration is measured from the sample [1–5].

Many research works were produced in line with the evaluation of the steady-state of a drug in
blood plasma. An overview of the selected method was proposed by Maganti et al. [6] and included
approaches such as a Bayesian approach based on Markov Chain Monte Carlo (MCMC); No-
statistical-significance-of-trend (NOSTASOT; spline regression among others. In the same line, a non-
Newtonian-based important factors approach was introduced by Johnston et al. [7].

Besides the few but consistent methods of evaluating the steady-state during phase I study are
many other approaches that we believe can be used successfully. We think of Fractional Calculus (FC)
in this regard. Indeed, over the past decades, many researchers have successfully applied FC to solve
real-life problems. One can name a few of these successes just to mention. For instance, Reference
[8] was a review of recent trends in the successful application of FC in Biology and medical sciences.
Margin has shown in [9] that FC could be successfully used to describe the dynamic of the events that
occur in human blood tissues. Toledo-Hernandez et al. [10] have produced a piece on fermentation
process modeling using FC. Fatma et al. [11] have studied the spray of omicron SARS-CoV-2 variant of
COVID-19. Naik et al. [12] have investigated the effect of prostitution on HIV transmission dynamics.
Qureshi et al. [13] have studied the concentration of ethanol in blood using a fractional derivative. They
are many such examples in which FC has been successfully applied in modeling real-life phenomena
[14,15]. The list is non-exhaustive however, we would recommend to a reader with an interest in the
application of fractional calculus in Biology and Medicine to read the following selected papers (see
[16–25]).

Almost eighty years ago, more precisely in the year 1940, the mathematician Ulam asked about
the stability of functional equations [26], and a year later the mathematician Heyer responded to the
question. By setting the necessary conditions for the stability of functional equations [27]. This result
was generalized to differential equations, and it was believed that Obloza was the first to make this
generalization [28], after which Alsina and Ger published a scientific paper containing what is known
today as the Hyers-Ulam stability [29], Rus investigated the Hyers-Ulam stability of differential and
integral equations using the Gronwall lemma [30]. Recently, the Hyers-Ulam stability problems of
several differential equations were investigated by using the method of integral operators, see [31–34].

In this work, we kept a similar approach to earlier discussed examples. Indeed, we introduced
modeling of the drug’s concentration blood using two fractional derivatives, namely the Caputo and
the Caputo-Fabrizio fractional derivatives. Moreover, some qualitative analyses of the aforementioned
models were obtained.

The remaining work is organized as follows. A review of FC definitions is provided in Section 2.
The Section 3 focuses on a review of drug concentration modeling in blood. Section 4 establishes the
existence and uniqueness of FC based approach proposed in this work. Section 5 establishes the Ulam-
Hyers stability of the proposed fractional model. Section 6 is dedicated to applications on real-life data
and the final section is the conclusion and discussion.
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2 Some Useful Fractional Calculus Elements

FC has a strong foundation built upon definitions. Nowadays, they exit many fractional deriva-
tives, each of them having its specific advantages and down points. This section focuses on some FC
concepts required for the rest of the paper.

Definition 2.1 [35,36]. Given τ > 0, a positive real number, the one-parameter Mittag-Leffer
function is defined as follows:

Eτ (x) =
∞∑

r=0

xr

� (τ r + 1)
,

where x ∈ R and � stands for the commonly known gamma function, which is defined as follows:

� (x) =
∫ ∞

0

e−μμx−1dμ, ∀x > 0

This function was introduced by the author of the same name in 1903 (see [37]). With the advent
and spread of research in the field of FC, the function quickly became an essential tool for FC
and particularly for fractional differential equations (FDE). In practice, most solutions of FDE are
expressed in terms of the Mittag-Leffer function.

Another important derivative that is among the basis of FC is the Caputo fractional derivative. It
is an integral form-based derivative defined as follows.

Definition 2.2 [35]. The Reimann-Liouville (RL) fractional integrals is defined by(
RLI δ

0+ϑ
)
(�) := 1

� (δ)

∫ �

0

(� − t)δ−1
ϑ (t) dt, � > 0, Re (δ) > 0.

Definition 2.3 [35]. The Caputo fractional derivative of order ν of a function ϑ : R
+ → R is

given by(
CDν

0+ϑ
)
(τ ) =

∫ τ

0

(τ − z)p−ν−1
ϑ(p) (z)

� (p − ν)
dz, p − 1 < ν < p, p = [ν] + 1.

where [ν] stands for the integer part of the real number ν.

Definition 2.4 [35]. Given f , a function defined such that, ϕ ∈ H1 (c, d) , c > d and γ ∈ [0, 1], then
it is possible to define another form of the Caputo Fractional derivative. This form is often called the
new Caputo fractional derivative, and it expressed as follows:(

CFDγ

0 ϕ
)
(τ ) = M (γ )

(1 − γ )

∫ τ

c

ϕ ′ (r) exp
[
− γ

1 − γ
(τ − r)

]
dr.

It is even possible to derive another useful fractional derivative that is used in this work. Indeed, if
the function f introduced in Definition 2.3 is such that ϕ /∈ H1 [c, d] then, the new fractional derivative
called Caputo-Fabrizio fractional derivative is obtained as follows:(

CFDq
0ϕ

)
(τ ) = M (γ )

(1 − γ )

∫ τ

0

ϕ ′ (r) exp
[
− γ

1 − γ
(τ − r)

]
dr.

The Caputo-Fabrizio fractional integral exists and is also useful in solving FDE. The said integral
is defined as follows:

Definition 2.5 [35]. Given γ > 0, a positive and real number denoting the order (fractional)
of integral. The Caputo-Fabrizio fractional integral of a continuous function f : [0, +∞) → R is
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defined by(
CFI γ

0+f
)
(x) = 2 (1 − γ )

2M (γ ) − γ M (γ )
f (x) + 2γ

2M (γ ) − γ M (γ )

∫ x

0

f (u) du, x ≥ 0,

where M is a function with the property M (0) = M (1) = 1. It is called the normalization function.

We end the shortlist of fractional derivatives and integrals of this section with Riemann-Liouville
definitions.

Definition 2.6 [35]. Reimann-Liouville (RL) fractional integral is given by the following formula:(
RLI δ

0+ϑ
)
(�) := 1

� (δ)

∫ �

0

(� − t)δ−1
ϑ (t) dt, � > 0, Re (δ) > 0.

So far in this section, three fractional derivatives and two fractional integrals have been introduced.
To end this section, we will state without proving some important Lemmas. These lemmas are used in
sequel in the process of proving the existence of a solution to the problem and the uniqueness of the
existing solution to the core problem which is also defined in the coming sections.

Lemma 2.3 [38] (Krasnoselskii’s Theorem).

Let us consider a Banach space B, and a convex set Q such that Q ⊂ B. Moreover, let q ∈ Q, and

let us assume that H can be written as H = H1 + H2. If in addition, H
(

Q
)

is a bounded set in B

satisfying the following two conditions:

i) H1 : Q → B is continuous and completely continuous;

ii) H2 : Q → B is a contraction, a continuous non-decreasing function ω : [0, ∞] → [0, ∞], with
ω (q1) > q1, q1 > 0, such that |H2 (q1) − H2 (q2)| ≤ ω (||q1 − q2||), for any q1, q2 ∈ Q.

Then it follows that:

1) H (q0) = q0, q0 ∈ Q, or

2) ∃ q ∈ ∂Q and λ ∈ (0, 1) with q = λH (q) + (1 − λ) q.

Lemma 2.4 [38]. (Banach’s Contraction mapping principle).

Let X is a Banach space and let the operator Q: X → X be a contraction. Then, Q admits a unique
fixed point x ∈ X with Qx = x.

3 A Review of Literature on Modeling of Drug Concentration in Blood

This section provides an overview of pharmacokinetics theories and the classical approach to
building the dynamic model. A common approach to overcoming disease is to provide the sick person
appropriate drug that will target harmful germs. It is therefore very substantial to inoculate the
appropriate dose of the drug at suitable time intervals. Phase I of the clinical study of any drug focus
on determining these parameters. Pharmacokinetics is defined as the branch of medicine that studies
the dynamic (kinetics) of the drug when it is inoculated in a living body. In phase I of a clinical study,
blood samples are taken at a regular time interval to evaluate the drug concentration. This is a purely
experimental approach. There also exists a theoretical approach that consists of using a mathematical
model and some historical data to develop a predictive model. A model that would predict drug
concentration levels in the blood over time. In general, interest among researchers in computational
biology has increased significantly over the past decades. Juinn et al. have dedicated research [39]
to the study of Pharmacokinetics and Metabolism during a drug development process. Absorption,
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distribution, metabolism, and elimination (ADME), Reference [40] was the set of processes through
which a drug is utilized by an individual leading to a concentration decrease over time.

It was mentioned in an earlier section that drug concentration decreases over time. Hence, a
suitable mathematical model to describe such a process can be an exponential decay model. The
following differential equation describes the decrease observed over time.

dC (t)
dt

= −μC (t) , (1)

where μ is a constant coefficient that is experimentally estimated. It is called the exponential decay
constant. This constant varies from one drug to another. Let us consider that at the initial state, at
t = 0 a patient has inoculated a dose C0, of a drug, then one can estimate the drug concentration level,
C in the patient’s blood at any time t by solving the differential equation, Eq. (1) (see [41]), and its
solution is written as

C(t) = C0e−μt (2)

This study aims to investigate the performance of fractional differential equations in modeling
while comparing them with classical differential equations used for solving the same problem. In
the next sections, Caputo’s derivative and Caputo-Fabrizio’s derivative are used to build a fractional
counterpart of the differential equation Eq. (1). The said models are applied to real-life data sets and
the error rates they produce are used for a comparative study. The corresponding counterpart of Eq. (1)
based on Caputo’s derivative and Caputo-Fabrizio’s derivative are respectively defined as follows:

CDαC (t) = −μCC (t) , α ∈ (0, 1) ∪ (1, 2) , CC (0) = CC0, (3)

CFDαC (t) = −μCF C (t) , α ∈ (0, 1) ∪ (1, 2) , CFC (0) = CFC0, (4)

In order the simplify notation and for conformity purpose, let a kernel function f : [a, T ]×R → R

be chosen as a continuous function and satisfying f (0, CF C (0)) = 0, then Eqs. (3) and (4) become
respectively Eqs. (5) and (6) shown below:

CDα
CC (t) = f (t, CC (t)) , α ∈ (0, 1) ∪ (1, 2) , CC (0) = CC0, (5)

CFDα
CFC (t) = f (t, CFC (t)) , α ∈ (0, 1) ∪ (1, 2) , CFC (0) = CF C0, (6)

The following Lemmas introduce more generalized formulae of the solutions to the fractional
drug concentration models with the initial condition, as defined by Eqs. (5) and (6).

Lemma 3.1: (see [35]). Given γ > 0, and let n be the integer part of the real number γ . Let us
consider the following initial value problem:

CDγ ψ (t) = βψ (t) + φ (t) , (7)

where ψ(i) (0) = ψ
(i)
0 , i = 0, 1, . . . , n − 1, and the function φ ∈ C [0, T ] is defined to be continuous.

There exists a solution to Eq. (7) and, the said solution can be written as follows:

ψ (t) =
n−1∑
i=0

ψ(i)
0 wi (t) + ψ̃ (t) , (8)
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with ψ̃ (t) =
⎧⎨⎩Jγ

0 ϕ (t) if β = 0
1
β

∫ t

0
φ (t − s) w′

0 (s) ds if β �= 0
, (9)

where wi (t) = Ji
0eγ (t), i = 0, 1, . . . , n − 1, eγ (t) = Eγ (βtγ ).

Remark: If the real number γ , used in Lemma 3.1 is defined in a way that 0 < γ < 1, then it
follows that solution to Eq. (7) can fully be defined by the mean of Eqs. (8)–(9). In which case the said
solution is denoted by

ψ (t) = ψ(0)

0 Eγ (βtγ ) + γ

∫ t

0

φ (t − s) sγ−1E ′
γ
(βtγ ) ds, (10)

Using Lemma 3.1 the solution to Eq. (3), when the derivative is defined in Caputo sense is
expressed as follow

CC (t) −C C (0) = 1
� (α)

∫ t

0

(t − s)α−1
ψ (s, CC (s)) ds. (11)

Lemma 3.2 (see [35]). Let 0 < γ < 1, CF0C0 ∈ R and σ ∈ C1 [a, b] with σ(0) = 0, then the following
initial value problem{

CFD0+ γ

CFC (t) = σ (t) , t ≥ 0,
CFC (0) = CF C0

(12)

has a unique solution which is moreover expressed by the following expression:

CFC (t) = CF C0 + aγ σ (t) + bγ I 1σ (t) , t ≥ 0 (13)

with I 1σ (t) representing the primitive function of σ . Moreover, explicit form of the coefficients found
in Eq. (13) are provided here and defined as

aγ = 2 (1 − γ )

(2 − γ ) M (γ )
, bγ = 2γ

(2 − γ ) M (γ )
, i.e.,

CFC (t) = CF C0 + 2 (1 − γ )

2M (γ ) − γ M (γ )
σ (t) + 2γ

2M (γ ) − γ M (γ )

∫ t

0

σ (s) ds. (14)

4 Existence Result for the Drug Concentration

Considering the initial value problem given by Eq. (6), and denoting by H = C ([0, T ] ,R) the
Banach space of all functions f , which are also selected or built such that f is continuous from the
closed interval [0, T ] to R, moreover let the space be endowed with the norm defined as∣∣∣∣

C,CFC
∣∣∣∣ = sup

0≤t≤T

∣∣
C,CFC (t)

∣∣ .

Let an operator E: H → H be defined as follows:

(ECFC) (t) = CF C (0) + 2 (1 − γ )

2M (γ ) − γ M (γ )
f (t,CF C (t)) + 2γ

2M (γ ) − γ M (γ )
(15)

×
∫ t

0

f (u, CFC (u)) du. (16)
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Eq. (15) is used to prove the existence and uniqueness of the solution. Besides, Lemmas 2.3 and
2.4 are needed in the process of proving the existence of a solution to the model proposed in Eq. (6).
It is also used to prove the uniqueness of the solution found.

Theorem 4.1: Let us consider the function f : [0, T ] × R → R. Moreover, if f is a continuous
function defined in a way that the following two assumptions hold:

i) ∃k1 > 0 such that

|f (t,CF C1) − f (t,CF C2)| ≤ k1 |CF C1 − CF C2| , ∀t ∈ [0, T ] ,

for all CFC1, CFC2 ∈ R.

ii)|f (t, CFC)| ≤ y1 (t) , ∀ (t, CF C) ∈ [0, T ] × R,

where, y1 ∈ C ([0, T ] ,R+) with sup
0≤t≤T

|y1 (t)| = ||y1||.
Moreover, assume that the following inequality holds for the defined constant:

k1

2γ

2M (γ ) − γ M (γ )
T < 1.

Based on above setting, one is sure of the existence of at least one solution to the problem Eq. (6),
subject to its initial conditions.

Proof. Let us consider the close set Br = {CF C ∈ H, ||CFC|| ≤ r} where the radius, r is such that

r ≥CF C0 +
(∣∣∣∣ 2 (1 − γ )

2M (γ ) − γ M (γ )

∣∣∣∣ +
∣∣∣∣ 2γ

2M (γ ) − γ M (γ )

∣∣∣∣ T
)

||y1||
Let us introduce two operators, E1 and E2 which are built within the domain of Br and explicitly

defined as

(E1CF C) (t) = CFC (0) + 2 (1 − γ )

2M (γ ) − γ M (γ )
f (t, CFC (t)) , (17)

(E2CF C) (t) = 2γ

2M (γ ) − γ M (γ )

∫ t

0

f (s, CFC (s)) ds. (18)

Given two elements CFC1, CFC2 ∈ Br, then it follows:

||E1CF C1 + E2CFC2|| ≤
(∣∣∣∣ 2 (1 − γ )

2M (γ ) − γ M (γ )

∣∣∣∣ +
∣∣∣∣ 2γ

2M (γ ) − γ M (γ )

∣∣∣∣ T
)

||y1|| ≤ r,

hence E1CF C1 + E2CF C2 ∈ Br.

In the forthcoming step of the proof, we will show that the operator E2 is a contraction. Let us
start by observing that ∀t ∈ [0, T ] , ∀CFC1,CF C2 ∈ Br, the following relation holds:

|E2CF C1 (t) − E2CF C2 (t)| =
∣∣∣∣ 2γ

2M (γ ) − γ M (γ )

∫ t

0

(f (s, CFC1 (s)) − f (s, CF C2 (s))) ds

∣∣∣∣
≤ 2γ

2M (γ ) − γ M (γ )
t |f (s, CF C1 (s)) − f (s, CF C2 (s))| ,

then

||E2CF C1 − E2CFC2|| ≤ 2γ

2M (γ ) − γ M (γ )
Tk1 ||CFC1 − CFC2||

< ||CFC1 − CFC2|| .
(19)
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Eq. (19) is an evidence that E2 is a contraction.

Moreover, E1 is a continuous operator due to the continuity of CF C. On the other hand, E1 is
bounded uniformly, since

||E1CF C|| ≤ CFC0 + 2 (1 − γ )

2M (γ ) − γ M (γ )
||y1|| .

Beside all the above properties, one can prove compactness of E1 in the following approach:

For t1, t2 ∈ [0, T ] , such that (t1 < t2), it follows that:

||(E1CF C) (t2) − (E1CF C) (t1)|| ≤ 2 (1 − γ )

2M (γ ) − γ M (γ )
|f (t2, CFC (t2)) − f (t1, CFC (t1))| . (20)

The quantity defined on the right-hand side of the inequality Eq. (20) goes to zero as t1 → t2.
Moreover, it is observed that the quantity ||(E1CF C) (t2) − (E1CF C) (t1)|| does not depend on CFC, this
implies that E1 is relatively compact. A Recall of Lemma 2.2 is enough to derive the conclusion that
E1 is a compact operator on the closed set Br. Moreover, recalling Lemma 2.3, is enough to conclude
on the existence of a solution to Eq. (6). Q.E.D.

Theorem 4.2: Let f : [0, T ] × R → R be a continuous and assume moreover that

k1

(
2 (1 − γ )

2M (γ ) − γ M (γ )
+ γ

2M (γ ) − γ M (γ )
T

)
< 1,

then the solution to the initial value problem Eq. (6) is unique.

Proof . Consider the close set Br = {CFC ∈ H, ||CFC|| ≤ r} with

r ≥
CF C0 + N

(
2 (1 − γ )

2M (γ ) − γ M (γ )
+ 2γ

2M (γ ) − γ M (γ )
T

)
1 − k1

(
2 (1 − γ )

2M (γ ) − γ M (γ )
+ 2γ

2M (γ ) − γ M (γ )
T

) , where N = sup
0≤t≤T

|f (t, 0)| . The first

step of the proof is to show that EBr ⊂ Br. To do so, observe that ∀CFC ∈ Br, ∀t ∈ [0, T ], it follows that

|(ECF C) (t)| ≤ CFC0 + 2 (1 − γ )

2M (γ ) − γ M (γ )
|f (t, CFC (t))|

+ 2γ

2M (γ ) − γ M (γ )

∫ t

0

|f (s,CF C (s))| ds. (21)

On the other hand, the following inequality is derived from the quantity or norm of |f (t, C (t))|:
|f (t,CF C (t))| = |f (t,CF C (t)) − f (t, 0) + f (t, 0)| ≤ |f (t,CF C (t)) − f (t, 0)| + |f (f , 0)|

≤ k1 ||CFC|| + N

≤ k1r + N, (22)

Using Eqs. (21)–(22) leads to the following relation:

||ECFC|| ≤ CFC0 +
(

2 (1 − γ )

2M (γ ) − γ M (γ )
+ 2γ

2M (γ ) − γ M (γ )
T

)
(k1r + N)

≤ r,
, (23)

Eq. (23) implies that ECF C ∈ Br, ∀CFC ∈ Br which means that in general EBr ⊂ Br.
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The second step of this proof is to show that the operator E is a contraction. To do so, observe
that ∀CFC1, CF C2 ∈ H, the following relation holds:

|ECFC1 (t) − ECF C2 (t) | ≤ 2 (1 − γ )

2M (γ ) − γ M (γ )
|f (t,CF C1 (t)) − f (t,CF C2 (t))|

+ 2γ

2M (γ ) − γ M (γ )

∫ t

0

|(f (s,CF C1 (s)) − f (s,CF C2 (s)))| ds. (24)

The relation given by Eq. (24) leads to

||ECFC1 − ECF C2|| ≤
(

2 (1 − γ )

2M (γ ) − γ M (γ )
+ 2γ

2M (γ ) − γ M (γ )
T

)
k ||CFC1 −CF C2||

< ||CFC1 −CF C2|| .
, (25)

On can see from Eq. (25) that E is a contraction. Therefore, recalling Lemma 2.4 is enough to
conclude that Eq. (6) has a unique in the closed interval [0, T ] . The said solution is built subject to
initial values problem conditions. Q.E.D.

Having proven the existence and the uniqueness of a solution to the problem defined by Eq. (6),
we finally summarize the analytical solutions (see [34]) for these fractional models as follows: Based
on Lemma 3.1, the analytical solution for the drug concentration model via Caputo sense Eq. (5) is
given by

CC (t) = CC0Eα (−μtα) . (26)

Based on Lemma 3.2, the analytical solution for the drug concentration model via Caputo-
Fabrizio sense Eq. (6) is given by

CFC (t) = CFC0e
− 2α

2 1
μ +2(1−α)

t

. (27)

All the necessary theoretical work on the proposed approach was done in previous sections. In the
next section stability of the model is studied.

5 Ulam-Hyers Stability Results

In this section, we discuss the UH and generalized UH (GUH) stability of the considered problem.

Definition 5.1. Let f : [0, T ] × R → R be continuous. Then Eq. (6) is UH stable if there exists
κf > 0 and ε > 0 such that each solution CFN ∈ H of∣∣

CF Dα

0+CFN(t) − f (t,CF N(t))
∣∣ ≤ ε, ∀t ∈ [0, T ], (28)

there exists a solution C ∈ H of Eq. (6) with

|CFN(t) −CF C(t)| ≤ κf ε, ∀t ∈ [0, T ]. (29)

Definition 5.2. Let f : [0, T ] × R → R be continuous. Then Eq. (6) is GUH stable with respect to
�f ∈ C(R+,R+) with �f (0) = 0, for ε > 0 such that each solution CF N ∈ H of Eq. (28), there exists a
solution CFC ∈ H of Eq. (6) with

|CFN(t) −CF C(t)| ≤ �f (ε), ∀t ∈ [0, T ]. (30)
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Remark 5.3. CFN ∈ H satisfies Eq. (28) if and only if there exists a function η ∈ H with

|η(t)| ≤ ε, ∀t ∈ [0, T ];

CFDα

0+CF N(t) = f (t,CF N(t)) + η(t), CF N(0) = N0. (31)

Lemma 5.4 (Gronwall’s Lemma, [42]). Let T > 0, and d > 0. Assume that ω, � : [0, T ] → R
+ are

continuous. If

ω(t) ≤ d +
∫ t

0

�(s)ω(s)ds, ∀t ∈ [0, T ],

then

ω(t) ≤ d exp
(∫ t

0

�(s)ds
)

, ∀t ∈ [0, T ].

By Remark 5.3, the solution of Eq. (31) can be formulated by

CFN(t) = N0 + aα [f (t,CF N(t)) + η(t)] + bα

∫ t

0

[f (s,CF N(s)) + η(s)] ds, (32)

where aα := 2(1 − α)

2M(α) − αM(α)
, bα := 2α

2M(α) − αM(α)
.

Hence, we will make the following remark.

Remark 5.5. Let CFN ∈ H satisfies Eq. (28). Then CF N is a solution to the next integral inequality:∣∣∣∣CFN(t) − N0 − aαf (t,CF N(t)) − bα

∫ t

0

f (s,CF N(s))ds

∣∣∣∣
=

∣∣∣∣N0 + aα [f (t,CF N(t)) + η(t)] + bα

∫ t

0

[f (s,CF N(s)) + η(s)] ds

−N0 − aαf (t,CF N(t)) − bα

∫ t

0

f (s,CF N(s))ds

∣∣∣∣
=

∣∣∣∣aαη(t) + bα

∫ t

0

η(s)ds

∣∣∣∣
≤ aα |η(t)| + bα

∫ t

0

|η(s)| ds

≤ (aα + bαT) ε.

Now we are ready to announce the results of the stabilization results for UH and GUH.

Theorem 5.6. Under the hypotheses of Theorem 4.1. If aαk1 < 1, then the solution of Eq. (6) is
HU stable on [0, T ] and consequently GUH stable.

Proof. Let CFN ∈ H be a solution of Eq. (28). From Lemma (3.2),{
CFDα

0+ CF C(t)) = f (t,CF C(t)), 0 < α < 1, t ∈ [0, T ],

CFC(0) =CF N(0)
(33)
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has the unique solution

CFC(t) = C0 + aαf (t,CF C(t)) + bα

∫ t

0

f (s,CF C(s))ds, (34)

Since CF C(0) =CF N(0), then C0 = N0. Hence Eq. (34) becomes

CFC(t) = N0 + aαf (t,CF C(t)) + bα

∫ t

0

f (s,CF C(s))ds. (35)

Thus, by our assumptions, Remark 5.5, along with Eqs. (32) and (35), we obtain

|CFN(t) −CF C(t)| =
∣∣∣∣CFN(t) − N0 − aαf (t,CF C(t)) − bα

∫ t

0

f (s,CF C(s))ds

∣∣∣∣
≤

∣∣∣∣CF N(t) − N0 − aαf (t,CF N(t)) − bα

∫ t

0

f (s,CF N(s))ds

∣∣∣∣
+ aα |f (t,CF N(t)) − f (t,CF C(t))|

+ bα

∫ t

0

|f (s,CF N(s)) − f (s,CF C(s))| ds

≤ (aα + bαT) ε + aαk1 |CF N(t) −CF C(t)|

+ bαk1

∫ t

0

|CFN(s) −CF C(s)| ds.

As aαk1 < 1, then

|CFN (t) −CF C (t)| ≤ (aα + bαT)

1 − aαk1

ε + bαk1

1 − aαk1

∫ t

0

|CF N (s) −CF C (s)| ds.

From Lemma 5.4, we have

|CFN (t) −CF C (t)| ≤ (aα + bαT)

1 − aαk1

ε exp
(∫ t

0

bαk1

1 − aαk1

ds
)

, ∀t ∈ [0, T ] ,

which implies

|CFN (t) −CF C (t)| ≤ (aα + bαT)

1 − aαk1

ε exp
(

bαk1t
1 − aαk1

)
, ∀t ∈ [0, T ] .

Set κf := (aα + bαT)

1 − aαk1

exp
(

bαk1T
1 − aαk1

)
, one has

|CFN(t) −CF C(t)| ≤ κf ε, ∀t ∈ [0, T ].

Hence, Eq. (36) is UH stable in H. Moreover, if we set �f (ε) = κf ε, which satisfies �f (0) = 0, it
is also concluded that Eq. (6) is GUH stable.

Let us consider the following CF-problem:

CFD
1
4
0+ CF

C(t) = e−3t |CF C(t)|
(3 + et) (1 + |CFC(t)|) , t ∈ [0, 3],

CFC(0) = 0, (36)
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and the CF-inequality∣∣∣∣CFD
1
4
0+ CF C (t)) − e−3t

(3 + et)

|CFC(t)|
1 + |CFC(t)|

∣∣∣∣ ≤ ε, t ∈ [0, 3] , (37)

where α = 1
4
, T = 3, C0 = 0 and f (t,CF C (t)) = e−3t |CFC(t)|

(3 + et) (1 + |CFC(t)|) , for (t,CF C) ∈ [0, 3] × R.

Distinctly, f is continuous with f (0,CF C(0)) = 0. Then, M
(

1
4

) = 8
7
, aα = 3

4
, bα = 1

4
, and for any t ∈

[0, 3], CF C,CF C∗ ∈ R,

|f (t,CF C) − f (t,CF C∗)|

= e−3t

3 + et

∣∣∣∣ |CF C|
(1 + |CFC|) − |CFC∗|

(1 + |CFC∗|)
∣∣∣∣

≤ e−3t

3 + et

∣∣∣∣ |CFC(t) −CF C∗(t)|
(1 + |CF C|)(1 + |CFC∗|)

∣∣∣∣
≤ e−3t

3 + et
|CFC −CF C∗|

≤ e−3t

4
|CF C −CF C∗|

≤ 1
4

|CFC −CF C∗| = k1 |CFC −CF C∗| .

For any t ∈ [0, 3], CFC ∈ R,

|f (t,CF C)| = e−3t

3 + et

∣∣∣∣ |CFC|
(1 + |CFC|)

∣∣∣∣ ≤ e−3t

3 + et
= y1 (t) ∈ C

(
[0, 3] ,R+)

.

Therefore, i) and ii) hold. Also, k1aαT = 9
16

< 1. From Theorem 4.1, Eq. (36) has a unique solution
on [0, 3].

Let CFN ∈ C([0, 3],R) be a solution of Eq. (37). Then∣∣∣CFD
1
4
0+ CF N (t)) − f (t,CF N (t))

∣∣∣ =
∣∣∣∣CF D

1
4
0+ CFN (t)) − e−3t |CF N(t)|

(3 + et) (1 + |CF N(t)|)
∣∣∣∣ ≤ ε, t ∈ [0, 3] . (38)

From Theorem 4.1, we known (s1) with CFC(0) = C0 has the unique solution

CFC (t) = C0 − a 1
4
f (0,CF ) C (0) + a 1

4
f (t,CF C (t)) + b 1

4

∫ t

0

f (s,CF C (s)) ds

= C0 − 1
4

+ 3
4

(
e−3t |CFC(t)|

(3 + et) (1 + |CF C(t)|)
)

+ 1
4

∫ t

0

e−3s |CF C(s)|
(3 + es) (1 + |CF C(s)|)ds.

Applying CF I
1
4

0+ on both sides of (38), we get∣∣∣∣CF N (t) − N0 − a 1
4
f (t,CF N (t)) − b 1

4

∫ t

0

f (s,CF N (s)) ds

∣∣∣∣ ≤
(

a 1
4
+ b 1

4
T

)
ε = 3

2
ε, t ∈ [0, 3] .
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Moreover, we have a 1
4
k1 = 3

16
< 1, and

|CFN (t) − CFC(t)| ≤ a 1
4
+ b 1

4
T

1 − a 1
4
k1

ε exp

(
b 1

4
k1T

1 − a 1
4
k1

)
, t ∈ [0, 3] .

For κf =
a 1

4
+b 1

4
T

1−a 1
4

k1
ε exp

(
b 1

4
k1T

1−a 1
4

k1

)
= 24

13
e

3
13 ε > 0, we obtain

|CFN (t) − CFC(t)| ≤ 24
13

e
3
13 ε, t ∈ [0, 3] .

Hence, problem Eq. (36) is UH stable. If we set �f (ε) = 24
13

e
3
13 ε, we get �f (0) = 0, which implies

that problem Eq. (36) is GUH stable.

6 Applications on Real-Life Data

In this section, Caputo and Caputo-Fabrizio fractional derivatives are used to solve FDE for drug
concentration modeling in blood. The next figure represents the so-called ADME process. It shows
that drugs can be administrated through an oral or intravenous route. In this section, our experiments
are carried out on the intravenous administration. Bold and red arrows are meant to highlight the
paths considered in the study. The figure also shows where blood can be sampled to measure drug
concentration at any time. It is important to mention that the oral route administration is not studied
here because it falls apart in a completely different category of differential equations.

The following two experiments were designed with respect to Fig. 1. In the experiments solutions
based on the classical approach, caputo and Caputo-Fabrizio approaches are used to fit the data sets.
Comparisons are made to select the best-performing method.

Figure 1: ADME process, with a highlight on intravenous route

Experiment N◦1:

David Bourne (see [43]) recorded experimental data on drug concentration behavior over time. In
the said experiment a drug (antibiotic) was inoculated to a 50 kg woman through intravenous injection.
For 10 h, blood samples were taken, and their drug concentrations were measured. The recorded data
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set was used to fit models defined by Eqs. (3) and (4). Their best parameters as well as their error level
are given in the table below.

Table 1 contains values of the parameters for each model. Recalling classical model; Caputo
derivative-based model; Caputo-Fabrizio based model described by Eqs. (1), (3) and (4), respectively.
Looking at the MSE (see [36]) of each model, Caputo derivative-based model has the best performance,
with MSE = 0.03095, and α = 1.00360. The latest value is evidence that the error is minimized when the
fractional order of the derivative doesn’t coincide with the first-order classical derivative. The Classical
method and the Caputo-Fabrizio both occur as a second-best model with the same MSE = 0.04324.

Table 1: Best parameters and MSE of Experiment N°1

Parameters μ α MSE

Caputo derivative 0.34590 1.00360 0.03095
Classical method 0.34785 - 0.04324
Caputo-Fabrizio derivative 0.68678 0.43532 0.04324

Note: Best parameters were obtained through optimization routine, in particular error minimiza-
tion. The non-linear optimization routine, nlm from R-programming was used for the purpose. μ and
α values from the tables are the combinations that lead to the lowest MSE.

Fig. 2 shows the original data points and the fitted curves obtained from the classical method and
the Caputo method. Curves overlap each other, this is also illustrated by the MSE range, which is very
small. It is however possible to observe a little split of both curves from the 6th hour on the x-axis but
zoom out the page containing the figure.

Figure 2: Caputo and classical methods

Fig. 3 represents original data points alongside the fitted lines obtained through the classical
method and Caputo-Fabrizio method. Both curves overlap each other all over the way. It is not
surprising as both approaches have the same MSE.



CMES, 2023, vol.135, no.3 2781

Figure 3: Caputo-Fabrizio and classical methods

Experiment N◦2:

In this study, a newly developed drug was injected (Intravenous route) into a 50 kg female patient
at a proportion of 20 mg/kg. Blood samples were taken on a regular basis and, the plasma was analyzed
to determine the current drug concentration in the blood. The entire process generated a data set that
was fitted by the mean of FDE based on Caputo and Caputo-Fabrizio derivative, defined by Eqs. (3)
and (4), respectively. The data set was retrieved from [44]. Performances of the models involved in the
study are consigned below.

Table 2 contains values of the parameters for each model. Recalling classical model; Caputo
derivative-based model; Caputo-Fabrizio based model described by Eqs. (1), (3) and (4), respectively.
Looking at the MSE (see [36]) of each model, Caputo derivative-based model has the best performance,
with MSE = 0.20992, and α = 1.22335. The Classical method and the Caputo-Fabrizio both occur as
a second-best model with the same MSE = 0.63265.

Table 2: Best parameters and MSE

Parameters μ α MSE

Caputo derivative 0.49620 1.11080 0.04066
Classical method 0.53355 - 0.07299
Caputo-Fabrizio derivative 0.49974 0.52179 0.07299

Fig. 4 shows the original data points and the fitted curves obtained from the classical method and
the Caputo method. Although there are only a few data points, it is observed that the Caputo fitting
line is closer to the original data points than the classical fitting line.

Figure 4: Caputo and classical methods from second experiment
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Fig. 5 represents original data points alongside the fitted lines obtained through the classical
method and Caputo-Fabrizio method.

Figure 5: Caputo-Fabrizio and classical methods from second experiment

7 Conclusion and Discussion

The goal of this work is achieved. We have proven that fractional differential equations could be
efficiently used for drug concentration modeling. In this regard, we have proven the existence and
uniqueness of the solution based on some fixed point techniques. We have also provided a stability
analysis in the Ulam-Hyers sense of the CF-type FDE model. Moreover, based on the results from the
two experiments, it is observed that the Caputo derivative performs the best. On the other hand, the
Caputo-Fabrizio and classical methods have the same MSE. Based on the results of the experiments,
one can observe that they are modeling problems for which the fractional calculus approach does
not perform better than the classical method. Indeed, results from both experiments show that the
Caputo derivative-based model has the best performance whereas Caputo-Fabrizio derivative-based
model and the classical approach have the same performance (MSE). Moreover, they are the second
best models.

In this study, every fractional order of derivative that leads to the lowest MSE fulfills the condition
α ∈ (0, 1)U(1, 2). The said condition is required when solving an FDE whose classical counterpart is
solved by a first-order differential equation.

In future work, we aim to build a comprehensive framework for choosing the right fractional
derivative for a given problem.

In practice, the outcome of this study can increase the accuracy of a new model’s parameters
calibration. Indeed, if a new drug is developed, and if its concentration level in the blood (during
phase IV) decreases over time following an exponential decay trend; then an FDE based on the Caputo
derivative would be recommended for estimating the best parameters. The statement best parameters
refer to the exponential decay constant, μ and the fractional order of derivative, α, which would lead to
the minimum MSE.
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