
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2021.014407

ARTICLE

A NewModified Inverse Lomax Distribution: Properties,
Estimation and Applications to Engineering and Medical Data

Abdullah M. Almarashi*

Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
*Corresponding Author: Abdullah M. Almarashi. Email: aalmarashi@kau.edu.sa

Received: 24 September 2020 Accepted: 09 February 2021

ABSTRACT

In this paper, a modified form of the traditional inverse Lomax distribution is proposed and its characteristics
are studied. The new distribution which called modified logarithmic transformed inverse Lomax distribution is
generated by adding a new shape parameter based on logarithmic transformed method. It contains two shape
and one scale parameters and has different shapes of probability density and hazard rate functions. The new
shape parameter increases the flexibility of the statistical properties of the traditional inverse Lomax distribution
including mean, variance, skewness and kurtosis. The moments, entropies, order statistics and other properties
are discussed. Six methods of estimation are considered to estimate the distribution parameters. To compare the
performance of the different estimators, a simulation study is performed. To show the flexibility and applicability of
the proposed distribution two real data sets to engineering and medical fields are analyzed. The simulation results
and real data analysis showed that the Anderson-Darling estimates have the smallest mean square errors among
all other estimates. Also, the analysis of the real data sets showed that the traditional inverse Lomax distribution
and some of its generalizations have shortcomings in modeling engineering and medical data. Our proposed
distribution overcomes this shortage and provides a good fit which makes it a suitable choice to model such
data sets.
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1 Introduction

Inverse Lomax (IL) distribution is a very important lifetime distribution which can be used as
a good alternative to the well known distributions such as gamma, inverse Weibull, Weibull and
Lomax distributions. It can be considered as a member of generalized beta family of distributions.
It has different applications in modelling various types of data including economics and actuarial
sciences data because its hazard rate can be decreasing and upside down bathtub shaped. The
random variable X is said to have an IL distribution if its probability density function (PDF) is

h(x; α, θ)= αθx−2
(
1+ θ

x

)−(α+1)

, x> 0, α, θ > 0. (1)
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The cumulative distribution function (CDF) of (1) is

H(x; α, θ)=
(
1+ θ

x

)−α
, (2)

where α is the shape parameter and θ is the scale parameter. For more details about the inverse
distributions one can refers to [1–4]. The traditional IL distribution does not give a good fit
for modeling many real life data such as in reliability and biological studies. Recently, many
generalizations of IL distribution have been developed. Hassan et al. [5] introduced Weibull IL
distribution and studied some of its statistical properties. Maxwell et al. [6] proposed the Marshall-
Olkin IL distribution by adding a new shape parameter for more flexibility. ZeinEldin et al.
[7] used the alpha power method to add a new shape parameter to the IL distribution and
proposed a new distribution which called alpha power IL (APIL) distribution. In spite of these
generalizations, still a new generalization of IL is needed because these distributions are not able
to model various types of data.

The main objective of this paper is to propose a new form of the IL distribution by adding
a new shape parameter to the CDF in (2) using the same approach of [8]. They introduced a new
method to add an extra shape parameter to an existing distributions which called the logarithmic
transformed (LT) method. The LT method has the following CDF and PDF

F(x; λ)= 1− log[1− (1−λ)H̄(x)]
log(λ)

(3)

and

f (x; λ)= (λ− 1)h(x)

log(λ)[1− (1−λ)H̄(x)] . (4)

respectively, with λ > 0, λ �= 1. By taking H̄(x) = 1 − H(x) in (3) of the IL distribution CDF
in (2) we obtain a modified logarithmic transformed IL (MLTIL) distribution. Many researchers
used the LT method to propose a new continuous distributions by taking the baseline H(x) of
any known distribution. [9,10] introduced a generalizations for modified Weibull extension and
generalized exponential distributions, respectively. [11] introduced a logarithmic inverse Lindley
distribution by taking the H(x) in (3) of the inverse Lindley distribution. Also, the loga-
rithm transformed Fréchet distribution by [12]. The overall motivations to propose the MLTIL
distribution are

1. To develop different shapes for the PDF and hazard rate function.
2. To increase the flexibility of the traditional IL distribution in modelling different

phenomenons.
3. To model skewed data which can not be modeled by other traditional models.
4. To increase the flexibility of the traditional IL distribution properties like mean, variance,

skewness and kurtosis.
5. Two applications showed that the MLTIL distribution provides a better fit than the

traditional IL distribution and some of its generalizations.
6. Another motivation to this article is to use six classical estimation methods to estimate

the parameters in order to recommend which method provide the best estimates based on
mean square error criteria and via a simulation study.
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The hazard rate function of the MLTIL distribution can has decreasing or upside-down
shapes depending on its shape parameters which makes the distribution is quite effectively in
modelling lifetime data. It can be used as an alternative to IL and inverse Weibull distributions.
Simulation results reveal that the Anderson-Darling (AD) estimators perform better than other
estimators in terms of minimum mean-squared errors. Finally, the analysis of engineering and
medical data sets show the ability of the MLTIL distribution to provide a better fit than some
other competitive models. The rest of the paper is organized as follows: In the next Section we
describe the MLTIL distribution and a mixture representation of its density. Some of its statistical
properties are discussed in Section 3. Six classical estimation methods are considered in Section 4.
A simulation study is conducted in Section 5. Two applications are considered in Section 6. In
Section 7, the paper is concluded.

2 Model Description

In this section we introduce the MLTIL distribution. Let the random variable X follows the
IL distribution with PDF and CDF, respectively, given by (1), (2), then from (1)–(3) the PDF of
the MLTIL distribution is given by

f (x; λ, α, θ)= (λ− 1)αθx−2
(
1+ θ

x

)−(α+1)

log(λ)
[
λ− (λ− 1)

(
1+ θ

x

)−α] , x> 0, λ, α, θ > 0, λ �= 1, (5)

and its CDF is

F(x; λ, α, θ)= 1−
log

[
λ− (λ− 1)

(
1+ θ

x

)−α]
log(λ)

. (6)

The survival function (SF) is given by

S(x; λ, α, θ)=
log

[
λ− (λ− 1)

(
1+ θ

x

)−α]
log(λ)

(7)

and the hazard rate functions is

h(x; λ, α, θ)= (λ− 1)αθx−2
(
1+ θ

x

)−(α+1)[
λ− (λ− 1)

(
1+ θ

x

)−α]
log

[
λ− (λ− 1)

(
1+ θ

x

)−α] . (8)

For some selected values of the parameters λ, α and θ , Fig. 1 indicates the various shapes of
the PDF of the MLTIL distribution, while Fig. 2 shows the different shapes of the hazard rate
function. These Figure indicate the flexibility of the MLTIL distribution to model right skewed
data as well as the data with decreasing and upside down bathtub shaped.

Now, we can obtain an useful representation for the PDF and CDF of the MLTIL distribu-
tion. Using the series representation in the form

(1− q)n−1 =
∞∑
j=0

(−1)j
(
n− 1

j

)
qj, if |q|< 1, n> 0 positive real non-integer. (9)
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Figure 1: Plots of the MLTIL density for different values of λ, α and θ
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Figure 2: Plots of the MLTIL hazard rate function for different values of λ, α and θ

Applying (9) for the PDF in (1), we can obtain

f (x)=
∞∑
k=0

ϑkh(x; α(k+ 1), θ), (10)
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where h(x; α(k+ 1), θ) denotes the PDF of the IL distribution with scale parameter θ and shape
parameter α(k+ 1) and

ϑk =
λ

(k+ 1) log(λ)

(
λ− 1
λ

)k+1

.

Different structural properties of the MLTIL distribution can be determined using this
representation. By integrating (10), the CDF of X is given by

F(x)=
∞∑
k=0

ϑkH(x; α(k+ 1), θ), (11)

where H(.) is the CDF of the IL distribution with scale and shape parameters θ and shape
parameter α(k+ 1), respectively.

3 Properties of the MLTIL Distribution

In this section some statistical properties of the MLTIL distribution are obtained including
quintile function, moments, incomplete moments, conditional moments and entropies.

3.1 Quantile Function
For the MLTIL distribution the quantile function, say x = QMLTIL(q), can be obtained by

inverting (6) as

F−1(q)=QMLTIL(q)= θ(
λ−1

λ(1−λ−q)
) 1
α − 1

. (12)

We can easily generate X by taking q as a uniform random variable in (0, 1). Based on (12),
one can compute the measures of skewness (Sk) and kurtosis (Ku) as follows:

Sk= Q(34 )+Q(14 )− 2Q(12 )

Q(34 )−Q(14 )

and

Ku= Q(78 )−Q(58 )+Q(38 )−Q(18 )

Q(68 )−Q(28 )
,

respectively, where Q(·) refers to the quantile function.

3.2 Moments
The nth moment of MLTIL distribution can be derives as

μ′
n=E(Xn)=

∫ ∞

−∞
xnf (x)dx

=
∞∑
k=0

ϑk

∫ ∞

0
xnh(x; α(k+ 1), θ)dx
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=
∞∑
k=0

ϑkα(k+ 1)θnB (1− n, α(k+ 1)+ n) , n= 1, 2, 3, . . .

where B(a, b) is the beta function, �(0)=−γ and �(−n)= (−1)n
n! φ(n)− (−1)n

n! γ for n= 1, 2, 3, . . . , γ

denotes Euler’s constant and φ(n)=∑n
j=1

1
j . For more details see [13]. Similarly, for the MLTIL

distribution we can obtain the nth inverse moment as follows:

E
(

1
Xn

)
=

∞∑
k=0

ϑk
B (1+ n, α(k+ 1)− n)

θn
.

In particular,

μ′
1 =E(X)=

∞∑
k=0

ϑkα(k+ 1)θ�(0),

where γ denotes Euler’s constant.

μ′
2 =E(X2)=

∞∑
k=0

ϑkα(k+ 1) (α(k+ 1)+ 1) θ2�(−1)

and

var(X)=μ′
2− (μ′

1)
2.

The rth central moment μr of X is derived as

μn=E(X −μ′
1)
n=

n∑
k=0

(−1)r−k
(
n

k

)
μ′
n−k(μ

′
1)
k.

The Sk and Ku measures can be computed using the following expressions:

Sk= μ′
3− 3μ′

2μ+ 2μ3

(
μ′
2−μ2

) 3
2

,

Ku= μ′
4− 4μ′

3μ+ 6μ′
2μ

2− 3μ4(
μ′
2−μ2

)2 .

The following propositions are a description of three different types of moments such as
incomplete moments, moment generating function (mgf) and conditional moment.

prop 3.1. If X ∼MLTIL, then the incomplete moments of X is given as follows:

IX (t)=
∞∑
k=0

ϑk

∫ t

−∞
xnh(x; α(k+ 1), θ)dx

=
∞∑
k=0

ϑk

∫ t

0
xn

(
αθ(k+ 1)x−2

(
1+ θ

x

)−α(k+1)−1
)
dx
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= αθ
∞∑
k=0

ϑk(k+ 1)
∫ t

0
xα(k+1)+n−1 (θ +x)−α(k+1)−1 dx

=
∞∑
k=0

ϑk
α(k+ 1)tn

( t
θ

)α(k+1)

α(k+ 1)+ n
F2:1

(
α(k+ 1)+ 1; α(k+ 1)+ n; α(k+ 1)+ n+ 1; − t

θ

)
, (13)

where, F2:1 (u; v; c; y) = 1
B(u, c−v)

∫ 1
0
zv−1(1−z)c−v−1

(1−zy)u dz is the hypergeometric function see [14]. See

also [15–17].

The first incomplete moment, I1(t), follows from Eq. (13) with n= 1.

prop 3.2. If X ∼MLTIL, then the mgf of X is

MX (t)=
∞∑
j=0

tj

j!
E(Xj)=

∞∑
j=0

∞∑
k=0

ϑk
(θt)j

j!
α(k+ 1)B (1− j, α(k+ 1)+ j) .

prop 3.3. If X ∼MLTIL, then the characteristic generating function (cgf) of X is

MX (t)=
∞∑
j=0

(it)j

j!
E(Xj)=

∞∑
j=0

∞∑
k=0

ϑk
(θ it)j

j!
α(k+ 1)B (1− j, α(k+ 1)+ j) .

prop 3.4. If X ∼MLTIL, then the conditional moment of X is

CX (t)=E
(
E(Xn |X > x

)= ψn(x)
1−F(x)

,

where

ψn(x)=
∞∑
k=0


k

∫ ∞

x
ynh(x; α(k+ 1), θ)dy

=
∞∑
k=0

ϑkα(k+ 1)θ(−θ)n−1B−θ
x
(1− n, −α(k+ 1)) ,

where, Bz(a, b)=
∫ z
0 y

a−1(1− y)b−1dy is the incomplete beta function.

3.3 Entropies
Entropy has been used in areas like in physics (sparse kernel density estimation), medicin

(molecular imaging of tumors) and engineering (measure the randomness of systems). The entropy
is a measure of variation of the uncertainty. The Rényi entropy (RE) of order ρ is defined as

IR(ρ)= 1
1−ρ log

(∫
f ρ(x)dx

)
. (14)
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For the MLTIL distribution in (1), we can write

IR(ρ)= 1
1−ρ log

⎧⎨
⎩
(
(λ− 1)αθ
log(λ)

)ρ ∫ ∞

0

⎛
⎝ x−2 (1+ θ

x

)−(α+1)

λ− (λ− 1)
(
1+ θ

x

)−α
⎞
⎠
ρ

dx

⎫⎬
⎭ , ρ ≥ 0, ρ �= 1

= 1
1−ρ log

{(
(λ− 1)α
λθ log(λ)

)ρ ∞∑
k=0

(
(λ− 1)
λ

)k
�(ρ+ k)

k!
B (2ρ− 1, α(k+ρ)−ρ + 1) .

}
.

The ρ-entropy, Hρ−R(x), can be written as

Hρ−R(ρ)= 1
1−ρ log

(
1−

∫ ∞

0
f ρ(x)dx

)
. (15)

Shannon’s entropy (SE) is defined as E[− log f (X)] and it is a special case of (15) for ρ ↑ 1.
Limiting ρ ↑ 1 in (15) and using ĹHospitaĺs rule, one obtains

E[− log f (X)]=E

⎡
⎣− log

⎛
⎝ (λ− 1)αθx−2 (1+ θ

x

)−(α+1)

log(λ)
[
λ− (λ− 1)

(
1+ θ

x

)−α]
⎞
⎠
⎤
⎦

=− log
[
(λ− 1)αθ
log(λ)

]
−E

⎡
⎣log

⎛
⎝ x−2 (1+ θ

x

)−(α+1)

λ− (λ− 1)
(
1+ θ

x

)−α
⎞
⎠
⎤
⎦

= log
[

log(λ)
αθ(λ− 1)

]
+ 2E (log(x))+ (α+ 1)E

(
log(1+ θ

x
)

)

+E

(
log

[
λ− (λ− 1)

(
1+ θ

x

)−α])
.

3.4 Distribution of Order Statistics
Let X(1) < X(2), . . . , < X(n) be the order statistics of a random sample of size n taken from

the MLTIL distribution. In this case, we can write the PDF of the sth order statistic as follows

fX(s) (x)=
f (x)

B(s, n− s+ 1)

n−s∑
k=0

(−1)k
(
n− s

k

)
Fk+s−1(x), (16)

where B(., .) is the beta function. Using (1), (6) and a power series expansion, we obtain

f (x)Fk+s−1(x)= αθ(λ− 1)

(log(λ))k+s
x−2(1+ θ

x )
−(α+1)

λ− (λ− 1)(1+ θ
x )

−α

[
log

(
λ

λ− (λ− 1)(1+ θ
x)

−α

)]k+s−1

. (17)
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From (17) and (16), we can write

fX(s) (x)=
αθ(λ− 1)

(B(s, n− s+ 1)

n−s∑
k=0

(−1)k

(log(λ))k+s

(
n− s

k

)
x−2(1+ θ

x)
−(α+1)(

λ− (λ− 1)(1+ θ
x )

−α)

×
[
log

(
λ

λ− (λ− 1)(1+ θ
x )

−α

)]k+s−1

. (18)

Particularly, we can obtain the PDF of the first and last order statistics from (18),
respectively, as

fX(1) (x)=
αθ(λ− 1)

n

n−1∑
k=0

(−1)k

(log(λ))k+1

(
n− 1

k

)
x−2(1+ θ

x)
−(α+1)(

λ− (λ− 1)(1+ θ
x)

−α)

×
[
log

(
λ

λ− (λ− 1)(1+ θ
x)

−α

)]k
, (19)

and

fX(n) (x)=
αθ(λ− 1)
n (log(λ))n

x−2(1+ θ
x )

−(α+1)(
λ− (λ− 1)(1+ θ

x)
−α)

[
log

(
λ

λ− (λ− 1)(1+ θ
x)

−α

)]n−1

. (20)

3.5 Probability Weighted Moments
The (u, v)th probability weighted moments of the random variable X is defined by

ρu, v=E
{
XuF(X)v

}= ∫ ∞

−∞
xuf (x)Fv(X)dx. (21)

Based on Eq. (21), we can obtain the probability weighted moments of the MLTIL
distribution as

ρu, v= αθ(λ− 1)ρ

(log(λ))v+1 , (22)

where

ρ =
∫ ∞

0

xu−2(1+ θ
x )

−(α+1)

λ− (λ− 1)(1+ θ
x)

−α

[
log

(
λ

λ− (λ− 1)(1+ θ
x)

−α

)]v
dx. (23)
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3.6 Residual Life and Reversed Failure Rate Function
The nth moment of the residual life (RL) of the random variable X is defined as follows

Rn(t)=E((X − t)n |X > t)= 1
1−F(t)

∫ ∞

t
(x− t)nf (x)dx, n≥ 1

Based on Eq. (1) and applying the binomial expansion of (x− t)n, we have

Rn(t)= 1
1−F(t)

n∑
m=0

(−t)n−m
(
n

m

)∫ ∞

t
xnf (x)dx

= αθ(λ− 1)
λ

n∑
m=0

∞∑
k=0

(−t)n−m(−θ)n−1
(
n

m

)(
λ− 1
λ

)k B−θ
t
(1− n, −(k+ 1)α)

log
(
λ− (λ− 1)(1+ θ

x )
−α) .

The nth moment of the reversed RL can be derived using the general formula

mn(t)=E((t−X)n |X ≤ t)= 1
F(t)

∫ t

0
(t−x)nf (x)dx, n≥ 1.

Based on Eq. (1) and applying the binomial expansion of (t−x)n, we can write

mn(t)= αθ(λ− 1)
λ log(θ)F(t)

n∑
m=0

(−t)n−m
(
n

m

)∫ t

0
xnf (x)dx

= α(λ− 1)
λ log(θ)F(t)

n∑
m=0

∞∑
k=0

(−1)n−m
(
n

m

)(
λ− 1
λ

)k t2n−m+α(k+1)

θα(k+1) (n+α(k+ 1))

×F2:1

(
a(k+ 1)+ 1; n+ a(k+ 1); n+ a(k+ 1)+ 1; − t

θ

)
.

3.7 Stress-Strength Model
Let Y1 ∼ MLTIL(λ1, α1, θ1) and Y2 ∼ MLTIL(λ2, α2, θ2). If Y1 represents stress and Y2

represents strength, then the stress-strength parameter, denoted by R, for the MLTIL distribution
is given by

R=P(Y2 >Y1)=
∫ ∞

0
F1(y)dF2(y)= 1−

∫ ∞

0
F̄1(y)dF2(y)

= 1− (λ2 − 1)α2θ2
log(λ1) log(λ2)

∫ ∞

0

y−2
(
1+ θ2

y

)−(α2+1)
log

[
λ1− (λ1 − 1)

(
1+ θ1

x

)−α1]

λ2− (λ2 − 1)
(
1+ θ2

x

)−α2 dy

= 1− (λ2 − 1)α2θ2
log(λ1) log(λ2)

∫ ∞

0

y−2
(
1+ θ2

y

)−(α2+1)
[
log(λ1)+ log

(
1− (1−λ1)

(
1+ θ1

x

)−α1)]

λ2− (λ2 − 1)
(
1+ θ2

x

)−α2 dy
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= 1− (λ2− 1)α2θ2
log(λ2)

∫ ∞

0

y−2
(
1+ θ2

y

)−(α2+1)

λ2− (λ2 − 1)
(
1+ θ2

x

)−α2 dy

− (λ2− 1)α2θ2
log(λ1) log(λ2)

∫ ∞

0

y−2
(
1+ θ2

y

)−(α2+1)
log

(
1− (1−λ1)

(
1+ θ1

x

)−α1)

λ2− (λ2− 1)
(
1+ θ2

x

)−α2 dy.

Using series expansion in the last equation, we obtain

R= 1− (λ2− 1)α2θ2
log(λ2)

∞∑
m=0

(
λ2− 1
λ2

)m ∫ ∞

0
y−2

(
1+ θ2

y

)−α2(m+1)−1

dy− (λ2− 1)α2θ2
log(λ1) log(λ2)

×
∞∑
m=0

∞∑
k=0

(−1)k−1

k

(
λ2− 1
λ2

)m(1−λ1
λ1

)k ∫ ∞

0
y−2

(
1+ θ1

y

)−α1k(
1+ θ2

y

)−α2(m+1)−1

dy

= 1− (λ2− 1)α2θ2
log(λ2)

∞∑
m=0

(
λ2− 1
λ2

)m 1
λ2θ2(m+ 1)

− (λ2− 1)α2θ2
log(λ1) log(λ2)

∞∑
m=0

∞∑
k=0

∞∑
j=0

(−1)k−1(−θ1)j
k

×
(
λ2− 1
λ2

)m(1−λ1
λ1

)k(
α1k+ j− 1
j

)∫ ∞

0
y−2−j

(
1+ θ2

y

)−α2(m+1)−1

dy

= 1− (λ2− 1)α2θ2
log(λ2)

∞∑
m=0

(
λ2− 1
λ2

)m 1
λ2θ2(m+ 1)

− (λ2− 1)α2
log(λ1) log(λ2)

∞∑
m=0

∞∑
k=0

∞∑
j=0

(−1)k−1(− θ1
θ2
)j

k

×
(
λ2− 1
λ2

)m(1−λ1
λ1

)k(α1k+ j− 1

j

)
B (j+ 1, α2(m+ 1)− j) .

4 Estimation

In this section, six estimation methods are considered to estimate the MLIIL distribution
parameters.

4.1 Maximum Likelihood Estimation
Using a random sample of size m taken from the MLTIL distribution, then based on (5) the

log-likelihood function can be written as

E1(� )=m log
(
(λ− 1)αθ
log(λ)

)
− 2

m∑
j=1

log(xj)− (α+ 1)
m∑
j=1

log
(
1+ θ

xj

)

−
m∑
j=1

log

[
λ− (λ− 1)

(
1+ θ

xj

)−α]
, (24)
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where � = (λ, α, θ)T . The maximum likelihood estimates (MLEs) of λ, α, and θ , denoted by
λ̂ML, α̂ML, and θ̂ML, are the solution of the following three equations

∂E1(� )

∂λ
= m
λ− 1

− m
λ log(λ)

−
m∑
j=1

1−
(
1+ θ

xj

)−α
λ− (λ− 1)

(
1+ θ

xj

)−α = 0,

∂E1(� )

∂α
= m
α
−

m∑
j=1

log
(
1+ θ

xj

)
−

m∑
j=1

(λ− 1)
(
1+ θ

xj

)−α
log

(
1+ θ

xj

)
λ− (λ− 1)

(
1+ θ

xj

)−α = 0

and

∂E1(� )

∂θ
= m
θ
− (α+ 1)

m∑
j=1

1

xj
(
1+ θ

xj

) +α
m∑
j=1

(λ− 1)x−1
j

(
1+ θ

xj

)−α−1

λ− (λ− 1)
(
1+ θ

xj

)−α = 0.

It is observed that these equations cannot be solved analytically for λ, α, and θ , therefore to
obtain λ̂ML, αML, and θML one can use any numerical technique for this purpose.

4.2 Percentile Estimation
Kao et al. [18,19] originally proposed the percentile method of estimation and recently used

by many authors to obtain the parameters of some proposed distributions, see for example [20,21].
It is very useful when the distribution has a closed form quantile function. Since the MLTIL
distribution has an explicit quantile function as in (12), then we can obtain the percentile estimates
(PEs) of λ, α, and θ , denoted by λ̂P, α̂P, and θ̂P, by minimizing

E2(� )=
m∑
j=1

⎡
⎢⎢⎣x(j)− θ(

λ−1
λ(1−λ−qj )

) 1
α − 1

⎤
⎥⎥⎦
2

, (25)

where x(j) is the ordered observation of xj, j= 1, . . . , n and qj = j/(m+ 1). Instead of minimizing

(25) with respect to λ, α, and θ , we can obtain λ̂P, α̂P, and θ̂P by solving

∂E2(� )

∂λ
=

m∑
j=1

⎡
⎢⎢⎣x(j)− θ(

λ−1
λ(1−λ−qj )

) 1
α − 1

⎤
⎥⎥⎦1j(� )= 0,

∂E2(� )

∂α
=

m∑
j=1

⎡
⎢⎢⎣x(j)− θ(

λ−1
λ(1−λ−qj )

) 1
α − 1

⎤
⎥⎥⎦2j(� )= 0
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and

∂E2(� )

∂θ
=

m∑
j=1

⎡
⎢⎢⎣x(j)− θ(

λ−1
λ(1−λ−qj )

) 1
α − 1

⎤
⎥⎥⎦3j(� )= 0,

where

1j(� )=
θ
(
1−λ
λvj

)1/α−1
[
1− λ−1

λ
+ qj(λ−1)

λ
qj+1vj

]

αλvj

[(
1−λ
λvj

)1/α− 1
]2 ,

2j(� )=
θ
(
1−λ
λvj

)1/α
log

(
1−λ
λvj

)

α2

[(
1−λ
λvj

)1/α − 1
]2

and

3j(� )=
[(

1−λ
λvj

)1/α

− 1

]−1

,

where vj = 1
λ
qj − 1.

4.3 Maximum Product of Spacing Estimation
Cheng et al. [22,23] introduced the method of maximum product of spacing (MPS) to obtain

the estimates of the continuous univariate distributions parameters as an alternative to the method
of maximum likelihood. Let �i(� ) is the uniform spacing defined as follows:

�j(� )= F(x(j) |� )−F(x(j−1) |� )

=
log

[
λ− (λ− 1)

(
1+ θ

x(j−1)

)−α]− log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

.

To obtain the MPS estimates (MPSEs) of λ, α, and θ , denoted by λ̂MPS, α̂MPS, and θ̂MPS,
we can maximize the following function

E3(� )= 1
m+ 1

m+1∑
j=1

log[�i(� )], (26)
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with respect to λ, α, and θ . Instead of maximizing (26) to obtain λ̂MPS, α̂MPS, and θ̂MPS, we can
solve the following three equations to obtain these estimates

∂E3(� )

∂λ
= 1
m+ 1

m+1∑
j=1

δ1j(x(j) |� )− δ1j(x(j−1) |� )

�j(� )
= 0,

∂E3(� )

∂α
= 1
m+ 1

m+1∑
j=1

δ2j(x(j) |� )− δ2j(x(j−1) |� )

�j(� )
= 0

and

∂E3(� )

∂θ
= 1
m+ 1

m+1∑
j=1

δ3j(x(j) |� )− δ3j(x(j−1) |� )

�j(� )
= 0,

where

δ1j(x(j) |� )= ξj log(λ)+λ log(λ)cj
λ log2(λ)ξj

, (27)

δ2j(x(j) |� )= (1−λ) log(1+ θ/x(j))(1+ θ/x(j))−α
log(λ)ξj

(28)

and

δ3j(x(j) |� )= α(1−λ)(1+ θ/x(j))−α−1

x(j) log(λ)ξj
, (29)

where ξj = λ− (λ− 1)
(
1+ θ

x(j)

)−α
and cj =

(
1+ θ

x(j)

)−α
.

4.4 Least and Weighted Least Squares Estimation
Swain et al. [24] considered the least squares (LS) and weighted least squares (WLS) methods

to estimate the beta distribution parameters. The LS estimates (LSEs) of λ, α, and θ , denoted by
λ̂LS, α̂LS, and θ̂LS can be obtained by minimizing

E4(� )=
m∑
j=1

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭

2

,

with respect to λ, α, and θ , where ηj = 1− j/(m+1). The estimates λ̂LS, α̂LS, and θ̂LS can be also
obtained by solving

∂E4(� )

∂λ
=

m∑
j=1

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭ δ1j(x(j) |� )= 0,
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∂E4(� )

∂α
=

m∑
j=1

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭ δ2j(x(j) |� )= 0

and

∂E4(� )

∂θ
=

m∑
j=1

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭ δ3j(x(j) |� )= 0,

where δ1j(x(j) | � ), δ2j(x(j) | � ) and δ3j(x(j) | � ) are given by (27), (28). Similarly, the WLS

estimates (WLSEs) of λ, α, and θ , denoted by λ̂WLS, α̂WLS, and θ̂WLS can be computed by
minimizing

E5(� )=
m∑
j=1

ςj

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭

2

, (30)

with respect to λ, α, and θ , where ςj = (m+1)2(m+2)
j(m−j+1) . Another way to obtain these estimates is to

solve the following equations:

∂E5(� )

∂λ
=

m∑
j=1

ςj

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭ δ1j(x(j) |� )= 0,

∂E5(� )

∂α
=

m∑
j=1

ςj

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭ δ2j(x(j) |� )= 0

and

∂E5(� )

∂θ
=

m∑
j=1

ςj

⎧⎪⎪⎨
⎪⎪⎩ηj −

log
[
λ− (λ− 1)

(
1+ θ

x(j)

)−α]
log(λ)

⎫⎪⎪⎬
⎪⎪⎭ δ3j(x(j) |� )= 0,

where δ1j(x(j) |� ), δ2j(x(j) |� ) and δ3j(x(j) |� ) are given by (27), (28).
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4.5 Anderson-Darling Estimation
The AD method of estimation is a type of minimum distance estimator which obtained by

minimizing an AD statistic. The AD estimates (ADEs) of λ, α, and θ , denoted by λ̂AD, α̂AD, and
θ̂AD can be obtained by minimizing

E6(� )=−m− 1
m

m∑
j=1

(2j− 1)[log(F(x(j) |� ))+ log(F̄(x(m−j+1) |� ))],

with respect to λ, α, and θ . Another way to obtain these estimates is to solve the
following equations:

∂E6(� )

∂λ
=

m∑
j=1

(2j− 1)

[
δ1j(x(j) |� )

F(x(j) |� )
− δ1j(x(m−j+1) |� )

F̄(x(m−j+1) |� )

]
= 0,

∂E6(� )

∂α
=

m∑
j=1

(2j− 1)

[
δ2j(x(j) |� )

F(x(j) |� )
− δ2j(x(m−j+1) |� )

F̄(x(m−j+1) |� )

]
= 0

and

∂E6(� )

∂θ
=

m∑
j=1

(2j− 1)

[
δ3j(x(j) |� )

F(x(j) |� )
− δ3j(x(m−j+1) |� )

F̄(x(m−j+1) |� )

]
= 0,

where δ1j(x(j) |� ), δ2j(x(j) |� ) and δ3j(x(j) |� ) are given by (27), (28).

5 Simulation Study

We cannot compare the performance of the different proposed estimators theoretically, there-
fore a simulation study is done in order to show the behavior of the various estimators in terms
of mean square error (MSE) criteria. To conduct the simulation study, we choose two sets of the
parameters values; Set I: (λ, α, θ)= (1.5, 0.5, 0.5) and Set II: (λ, α, θ)= (0.5, 2, 2). Also, different
sample sizes are chosen, where m = 20, 50, 100, 150, 200 and 250. These values are selected to
indicate the affect of the small, moderate and large sample sizes in the accuracy of the estimates.
Each setting is replicated 1000 times and the average estimates and average MSEs are obtained.
These values are tabulated for Sets I and II in Tabs. 1 and 2, respectively. The results in these
Tables show that the MSEs decrease as the sample size increases in all the cases, which means
hat these estimators are consistent. It is also observed that the MSEs tend to zero except the PEs
especially in the small and moderate sample sizes. Comparing the performance of the different
estimates in terms of minimum MSEe, we can conclude that the ADEs perform better than other
estimates in most of the cases. Based on these results, we recommend to use the Anderson-Darling
method to estimate the MLTIL distribution parameters.
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Table 1: Estimates and MSEs for different estimates of λ= 1.5 and α = θ = 0.5

m Par MLEs PEs MPSEs LSEs WLSEs ADEs

20 λ 1.1604 1.4832 2.2886 1.6726 1.7763 1.6367
2.0005 1.7900 3.0197 2.0821 2.1711 1.7594

α 0.8496 1.5604 0.6775 0.6466 0.6219 0.6995
0.5289 3.4964 0.4734 0.2771 0.2380 0.2503

θ 1.1459 1.9455 0.6493 1.0761 1.0240 0.9762
1.5818 6.4506 0.5248 1.4903 1.3346 0.5239

50 λ 1.3942 1.7430 2.1332 1.5095 1.5987 1.4844
1.5724 1.7501 2.2973 1.4051 1.3911 1.3195

α 0.6236 1.5054 0.5288 0.5814 0.5782 0.5922
0.0631 3.3498 0.0350 0.0780 0.2102 0.0315

θ 0.9662 2.0991 0.7091 0.8991 0.8654 0.8724
1.0591 5.7922 0.4954 0.7303 0.7310 0.4146

100 λ 1.4189 1.5875 1.8143 1.4026 1.4560 1.3970
1.5217 1.1934 1.6017 1.0632 1.1859 1.0429

α 0.5878 1.2454 0.5277 0.5654 0.5675 0.5694
0.0368 2.3354 0.0217 0.0256 0.0287 0.0259

θ 0.8933 2.0128 0.7322 0.8138 0.8228 0.8032
0.6525 4.4985 0.3852 0.5253 0.4945 0.3550

150 λ 1.4509 1.4629 1.7503 1.4787 1.4674 1.4642
0.9781 0.7618 0.8992 0.6851 0.7495 0.6072

α 0.5434 1.2519 0.5050 0.5466 0.5383 0.5454
0.0143 1.8435 0.0101 0.0155 0.0116 0.0100

θ 0.7426 1.6745 0.6484 0.7334 0.7068 0.7283
0.3446 3.1477 0.2432 0.3190 0.2813 0.2344

200 λ 1.4645 1.4999 1.5109 1.4550 1.4883 1.4380
0.5327 0.3899 0.4489 0.3856 0.4176 0.4334

α 0.5324 1.1448 0.5076 0.5249 0.5270 0.5256
0.0057 1.3608 0.0047 0.0056 0.0050 0.0045

θ 0.5978 1.4511 0.5545 0.5793 0.5919 0.5840
0.0489 2.1426 0.0366 0.0498 0.0499 0.0356

250 λ 1.4734 1.4186 1.5640 1.4916 1.4830 1.4618
0.3037 0.1825 0.2893 0.2405 0.2665 0.2273

α 0.5137 1.0331 0.4957 0.5208 0.5183 0.5168
0.0031 0.7968 0.0027 0.0065 0.0042 0.0016

θ 0.5482 1.0652 0.5314 0.5476 0.5514 0.5470
0.0304 1.0735 0.0260 0.0367 0.0347 0.0325
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Table 2: Estimates and MSEs for different estimates of λ= 0.5 and α = θ = 2

m Par MLEs PEs MPSEs LSEs WLSEs ADEs

20 λ 1.2809 1.3543 0.9743 1.3234 1.2492 1.1243
2.0139 2.4882 1.2214 1.9640 1.8293 1.1965

α 3.3311 3.2602 2.5432 2.3978 2.5560 2.6517
3.8339 4.3882 2.4643 2.0164 2.2287 2.0110

θ 1.4935 2.6633 2.3092 2.3737 2.2743 2.2358
1.4649 3.9371 1.5313 1.9404 1.5747 1.4051

50 λ 1.1317 1.3206 0.8494 0.9740 0.9650 0.9242
1.0138 1.3307 0.6400 0.7398 0.7357 0.6187

α 2.7140 2.6147 2.1473 2.2559 2.3143 2.2754
1.5975 2.8690 0.8521 1.1503 1.1863 0.8238

θ 1.6998 2.5816 2.2930 2.1570 2.0636 2.0997
1.3562 3.6776 1.2410 1.2698 1.1682 1.0776

100 λ 0.8234 1.1222 0.6592 0.8100 0.7650 0.7797
0.4265 0.8565 0.2745 0.4146 0.3906 0.2487

α 2.2291 2.6479 1.9685 2.0719 2.0772 2.1111
0.3826 1.9660 0.2800 0.3953 0.3289 0.2660

θ 1.9395 3.0038 2.3626 2.0385 2.0961 2.0336
0.9087 2.3214 1.0649 0.5601 0.6380 0.5142

150 λ 0.7437 0.8321 0.6380 0.7068 0.7616 0.7487
0.2403 0.3895 0.1988 0.2219 0.2553 0.1844

α 2.1763 2.5740 1.9825 1.9978 2.0643 2.0714
0.2268 1.1945 0.1585 0.2610 0.2258 0.1472

θ 1.9431 2.6172 2.2111 2.0253 1.9159 1.9129
0.5857 1.2741 0.6777 0.3739 0.3871 0.2687

200 λ 0.5175 0.7575 0.4761 0.5723 0.5499 0.5341
0.1186 0.3659 0.0951 0.1494 0.1359 0.0943

α 2.1460 2.3308 2.0230 2.0886 2.0479 2.0688
0.1172 0.4712 0.0895 0.1548 0.1142 0.1085

θ 2.0274 2.1949 2.2052 2.0030 2.0005 2.0426
0.3106 0.4493 0.3647 0.1699 0.1822 0.1401

250 λ 0.5489 0.8514 0.5335 0.6153 0.5820 0.5787
0.0747 0.3122 0.0729 0.1174 0.0926 0.0642

α 2.0506 2.1351 1.9710 2.0067 2.0270 2.0271
0.0645 0.1379 0.0575 0.0745 0.0693 0.0570

θ 1.9786 2.1614 2.0857 1.9838 1.9876 1.9758
0.0970 0.1514 0.1222 0.0749 0.0816 0.0649

6 Applications

To show the applicability of the proposed distribution and the different estimators derived
in the previous sections two real data sets are analyzed. The first data set considered by [25]
which represent life times (in days) of 39 liver cancers patients taken from Elminia cancer center
Ministry of Health in Egypt. The second data set consists of 29 time between failures of a piece
of construction equipment in chronological studied by [26]. These data are displayed in Tab. 3.
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Table 3: Real data sets

Data I Data II

10 17 23 40 71 107 0.33 1.02 6.52 27.4 92.9
14 18 23 49 74 107 0.33 1.17 7.25 27.43
14 20 24 51 75 116 0.5 1.72 8.58 31.93
14 20 26 52 87 150 0.5 1.83 10.25 38.37
14 20 30 60 96 0.5 3.2 11.58 40.02
14 20 30 61 105 0.95 4.35 13.83 62.77
15 20 31 67 107 1 5.25 15.93 88.27

We compare the results of the MLTIL distribution with IL distribution, inverse Weibull (IW)
distribution, APIL distribution by [7] and alpha power inverse Weibull (APIW) distribution by
[27]. The density functions of these distributions (for x> 0) are as follow

fIW (x; α, θ)= αθαx−α−1e−(θ/x)
α

,

fAPIL(x; λ, α, θ)= log(λ)
λ− 1

αθx−2(1+ θ/x)−α−1λ(1+θ/x)
−α
,

and

fAPIW (x; λ, α, θ)= log(λ)
λ− 1

αθx−α−1e−θx
−α
λe

−θx−α
.

We first obtain the MLEs of the competitive distributions. These estimates are presented in
Tabs. 4 and 5 for datas 1 and 2, respectively. To compare the performance of the difference
distributions to fit the data set, we use Kolmogorov-Smirnov (K-S) distance and the corresponding
p-value. These statistics are also presented in Tabs. 4 and 5 for datas 1 and 2, respectively. From
the results in these Tables it is observed that the MLTIL distribution has the smallest K-S distance
with the highest p-value among other competitive distributions, therefore we conclude that the
MLTIL distribution is the suitable model to fit these data. The fitted PDF, CDF, SF and P-P plot
of the MLTIL distribution are presented in Figs. 3 and 4 for datas 1 and 2, respectively. These
Figures support the results discussed before that the MLTIL distribution provides a close fit to
these data sets.

Table 4: MLEs, K-S and p-value of real data 1

Model Estimates K-S p-value

IL(α, θ ) 35.616 1.594 0.3708 0.0000
IW(α, θ ) 1.531 24.961 0.6187 0.0000
MLTIL(λ, α, θ ) 0.00022 20.3948 6.8869 0.1172 0.6574
APIL(λ, α, θ ) 1.552 148.947 1.594 0.1321 0.5044
APIW(λ, α, θ ) 0.063 103.324 0.467 0.1250 0.5762

Table 5: MLEs, K-S and p-value of real data 2

Model Estimates K-S p-value

IL(α, θ ) 3.308 0.352 0.3595 0.0011
IW(α, θ ) 0.634 2.195 0.1733 0.3486
MLTIL(λ, α, θ ) 52.57694 41.521 0.01526 0.0958 0.9531
APIL(λ, α, θ ) 3.408 1.218 0.703 0.1083 0.8855
APIW(λ, α, θ ) 0.745 0.887 7.600 0.1217 0.7839
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Figure 3: Fitted density, estimated CDF and SF, and P-P plots for real data 1
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Figure 4: Fitted density, estimated CDF and SF, and P-P plots for real data 2
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To see which estimation method provide a good fit to these data we compare the other
estimation methods with the maximum likelihood methods based on K-S distance and its p-value.
For the two data sets, the various estimates, K-S distance and its p-value are obtained in Tabs. 6
and 7, respectively. Comparing the fitting of the different methods we can observe that the ADEs
provides a good fit based on minimum K-S distance with highest p-value. Therefore, we can
recommend to use the AD method to estimate the MLTIL distribution parameters from these real
data sets. Also, the histogram and the fitted MLTIL distribution based on the different methods
are presented in Fig. 5 for the two data sets.

Table 6: Various estimates, K-S and p-value of real data 1

Model λ̂ α̂ θ̂ K-S p-value

MLEs 0.00022 20.3948 6.8869 0.1172 0.6574
PEs 0.0009 128.205 0.3341 0.5432 0.0000
MPSEs 0.1975 137.030 0.3359 0.1621 0.2571
LSEs 0.0774 191.701 0.2528 0.1221 0.6062
WLSEs 0.0361 108.2163 0.5261 0.1150 0.6810
ADEs 0.0009 20.8313 5.6234 0.1148 0.6827

Table 7: Various estimates, K-S and p-value of real data 2

Model λ̂ α̂ θ̂ K-S p-value

MLEs 52.57694 41.521 0.01526 0.0958 0.9531
PEs 0.1265 51.1731 0.1911 0.3590 0.0011
MPSEs 23.8235 2.175 0.5229 0.1337 0.6781
LSEs 0.0097 1.035 49.1779 0.0974 0.9460
WLSEs 0.0017 1.4282 42.379 0.0837 0.9872
ADEs 0.0010 1.5226 42.4419 0.0833 0.9878
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Figure 5: Histogram and the fitted MLTIL density using different estimation methods for
(a) data 1 and (b) data 2
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7 Conclusion

In this paper, we have considered and studied a new generalization of the traditional inverse
Lomax distribution by adding a new shape parameter. We have used the logarithmic transformed
method for this purpose and a new three parameters inverse Lomax distribution which called
modified logarithmic transformed inverse Lomax distribution is introduced. The new distribution
has different failure rate shapes, so it can be used in analyzing lifetime data. Some statistical
properties of the new distribution are derived including quantiles, moments, probability weighted
moments, entropies, residual life, stress-strength parameter and order statistics. To estimate the
parameters of the proposed distribution, six classical methods are considered. To compare the
efficiency of these methods a simulation study is performed and the performance of the different
estimators is compared. To show the applicability of the new distribution, two real data sets are
analyzed which indicate that our new distribution perform better than some other competitive dis-
tributions. Also, the numerical illustration revealed that the Anderson Darling estimation method
is the best method to estimate the proposed distribution parameters. In this study, the proposed
distribution shows its ability in modelling engineering and medical data sets where traditional and
some recently proposed models cannot be used for this purpose. We hope that this model attract
wider sets of applications in the other different fields.
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