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ABSTRACT

Effective strategies to control COVID-19 pandemic need high attention to mitigate negatively impacted communal
health and global economy, with the brim-full horizon yet to unfold. In the absence of effective antiviral and
limited medical resources, many measures are recommended by WHO to control the infection rate and avoid
exhausting the limited medical resources. Wearing mask is among the non-pharmaceutical intervention measures
that can be used as barrier to primary route of SARS-CoV2 droplets expelled by presymptomatic or asymptomatic
individuals. Regardless of discourse on medical resources and diversities in masks, all countries are mandating
coverings over nose and mouth in public areas. Towards contribution of public health, the aim of the paper is to
devise a real-time technique that can efficiently detect non mask faces in public and thus enforce to wear mask.
The proposed technique is ensemble of one stage and two stage detectors to achieve low inference time and high
accuracy. We took ResNet50 as a baseline model and applied the concept of transfer learning to fuse high level
semantic information in multiple feature maps. In addition, we also propose a bounding box transformation to
improve localization performance during mask detection. The experiments are conducted with three popular
baseline models namely ResNet50, AlexNet andMobileNet. We explored the possibility of these models to plug-in
with the proposedmodel, so that highly accurate results can be achieved in less inference time. It is observed that the
proposed technique can achieve high accuracy (98.2%) when implemented with ResNet50. Besides, the proposed
model can generate 11.07% and 6.44% higher precision and recall respectively in mask detection when compared
to RetinaFaceMask detector.
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1 Introduction

The 209th report of world health organization (WHO) published on August 16, 2020 reported
that coronavirus disease (COVID-19) caused by acute respiratory syndrome (SARS-CoV2) has
globally infected more than 6 million people and caused over 379,941 deaths worldwide [1].
According to Carissa F. Etienne, Director, Pan American Health Organization (PAHO), the key
to control COVID-19 pandemic is to maintain social distancing, improving surveillance and
strengthening health systems [2]. Recently, a study on understanding measures to tackle COVID-19
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pandemic carried by researchers at University of Edinburgh reveals that wearing face mask
or other covering over nose and mouth cuts risk of Coronavirus spread by avoiding forward
distance travelled by person’s exhaled breath by more than 90% [3]. Steffen et al. also carried an
exhaustive study to compute the community-wide impact of mask use in general public, a portion
of which may be asymptomatically infectious in New York and Washington. Their works show
that near universal adoption (80%) of even weak mask (20% effective) could prevent 17%–45%
of projected deaths over two months in New Work and reduces the peak daily death rate by
34%–58% [4,5]. Their results strongly recommend use of face mask in general public to curtail
spread of Coronavirus. Further, with reopen of countries from COVID-19 lockdown, Government
and Public health agencies are recommending face mask as essential measures to help keep us safe
when venture into public. To mandate the use of facemask, it becomes essential to devise some
techniques that enforce individual to apply mask before exposure to public places.

The face mask detection principally refers to detect whether a person is wearing a mask
or not. The preliminary stage for analyzing the mask wearing includes face detection. Many
Machine Learning algorithms have been proposed in past to analyze face for the purpose of
security, authentication and surveillance; the mask wearing at large scale can make ineffective
such systems. In fact, the early efforts in face detection have dated back in 1973 [6]. Using the
design of handcraft features and machine learning algorithms to train effective classifiers for
detection and recognition was proposed by Nanni et al. [7]. The problems encountered with this
approach include high complexity in feature design and low detection accuracy. A systematic
review on face detection system is presented in [8]. In recent years, face detection methods based
on deep convolutional neural network (CNN) have been widely developed [9–12] to improve
detection performance.

Although numerous researchers have committed efforts in designing efficient algorithms for
face detection and recognition but there exists essential difference between ‘detection of face under
mask’ and ‘detection of mask over face.’ As per available literature, a very little body of research is
attempted to detect mask over face. Thus, our work aims to develop technique that can accurately
detect mask over face in public areas (such as airports. railways stations, crowded markets, bus
stops) to curtail spread of Coronavirus and thereby contributing to public healthcare.

Further, it is not easy to detect faces with/without mask in public as dataset available for
detecting mask on human faces is relatively small leading to hard training of model. So, concept
of transfer learning is used here to transfer the learned kernels from networks trained for a similar
face detection task on an extensive dataset. The dataset covers various faces images including
faces with masks, faces without masks, faces with and without masks in one image and confusing
images without masks. With extensive dataset containing 45,000 images, our technique achieves
outstanding accuracy of 98.2%. The major contribution of proposed work is given below:

1. A novel object detection module that combines one stage and two stage detectors based
on image complexity is capable of accurately detecting the object in real-time from
video streams.

2. Improved affine image wrapping technique is developed to crop the facial areas from
uncontrolled real-time images having differences in face size, orientation and background.

3. Creation of unbiased facemask dataset with imbalance ratio equals to nearly one.
4. The proposed model requires less memory, making it easily deployable for embedded

devices used for surveillance purpose.



CMES, 2021, vol.127, no.2 391

The rest of this paper is organized in Sections as follows. Section 2 covers prevalent liter-
ature in the field of object recognition. The proposed methodology is presented in Section 3.
Section 4 evaluates performance of proposed technique with various pre-trained models over
different parameters of speed and accuracy. Finally, Section 5 concludes the work with possible
future directions.

2 Related Work

Recently, embedded systems equipped with CCTV camera and computer vision have gained
popularity in wide range of applications involving facial recognition, traffic control and moni-
toring, intrusion detection, additional analytics applications such as smoke detection, unattended
baggage, queue management, etc. These applications require open deployment environment that
are capable of parsing different scenes, locating objects and taking real-time actions. These
surveillance applications correspond to two popular research areas of computer vision namely
object recognition and image classification. Further, automatic scene parsing through variety of
surveillance platforms brings many new challenges in the area of object recognition [13]. Three
main challenges are: i) how to handle various object appearances caused by different orientation,
illumination, shadow and size ii) how to efficiently deploy object detection models on surveillance
platform with limited computational power and memory iii) how to perform surveillance action
in real-time without loss of accuracy.

One viable approach to deal with these challenges is object recognition using deep learning
methods. The object recognition using deep learning requires generation of region proposals in a
scene followed by classification of each proposal into related class as shown in Fig. 1. Over the
years, there has been much advancement proposed by researchers in region proposals techniques
to suit variety of applications. We review the recent developments in region proposal techniques
using single stage and two stage detectors and application of these techniques for face and mask
detection task.

Figure 1: General pipeline for object recognition using deep learning

Single stage detectors: The single-stage detectors treat detection of region proposals as a
simple regression problem by taking the input image and learning the class probabilities and
bounding box coordinates. OverFeat [14] and DeepMultiBox [15] were early examples. YOLO
(You Only Look Once) popularized single stage approach by demonstrating real-time predictions
and achieving remarkable detection speed but suffered from low localization accuracy; especially
when small objects are taken into consideration [16]. Chun et al. [17] analyzed the performance
of YOLOV3 for face detection in complex environment using WIDER FACE. The experimental
analysis reveals that the confidence set in YOLOV3 is relatively large due to being trained on
COCO dataset. Since WIDER FACE contains images of small and medium sized faces mainly
so high confidence setting in YOLOV3 missed detection of many small faces. However, multiple
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clustering adjustments on priori box had improved the accuracy in face detection from 57.9% to
80.5%. Alex Escola builds a face mask detector using YOLOV5 on Facemask Detection dataset
available on Kaggle [18]. Since the dataset contains only 853 images so, data set is enriched with
images from COCO dataset. But the model struggles to detect facemask under certain conditions
such as detection of small faces with masks and confusing masks, for example persons long beard
etc. Addagarla et al. [19] compared the performance YOLOV3 with NASNetMobile for facemask
detection and found that NASNetMobile achieves better accuracy of 91.7% as compared to
YOLOV3. Further, Single-Shot Detector (SSD) can predict region proposals and class probabilities
simultaneously thereby improving detection accuracy as compared to YOLO [20]. The major
difference between SSD and YOLO lies in dealing with objects of variant sizes. YOLO detects
objects of different scales in separate layers of network, while SSD runs detection on only top
layer irrespective of object size. The work in [21] involves SSD Multibox detector trained on
ImageNet and PascalVoc for high quality facemask classification. Andrian Rosebrock proposed a
face mask detection system using SSD over a synthetic dataset [22]. Here, SSD is used to create list
of bounding boxes around each detected face and MobileNetV2 is used to classify the face into
two classes, namely with or without mask. Although, the lighter version of YOLO and SSD series
such as YOLO-Lite, YOLO-tiny and tiny SSD are available, detection accuracy of these networks
is low. Therefore, how to deploy small detection model without notably decreasing the accuracy
on embedded devices for surveillance application such as facemask detection for controlling spread
of Coronavirus needs an urgent attention.

Two stage detectors: In contrast to single stage detectors, two stage detectors follow a long
line of reasoning in computer vision for prediction and classification of region proposals. They
first predict proposals in an image and then apply a classifier to these regions to classify potential
detection. Various two stage region proposal models have been proposed in past by researchers.
The region-based convolutional neural network also abbreviated as R-CNN described in 2014 by
Ross Girshick et al. [23]. Basically, R-CNN applies a selective search algorithm to extract a set
of object proposals at the initial stage and applies SVM (Support Vector Machine) classifier for
predicting objects and related classes on later stage. Wu et al. [24] proposed a face detection
method based on R-CNN and resolved small scale face detection using multi-scale training,
feature concatenation and hard negative mining. Roy et al. [13] compared the performance of
YOLOV3, YOLOV3-tiny and R-CNN using Moxa3K benchmark dataset for monitoring of people
wearing masks. In his work, Inception V2 is taken as the backbone with R-CNN using Tensor
flow. The mAP@50 (Mean Average Precision) score obtained by R-CNN with inception V2 was
63.99%, YOLOV3 configured in Darknet was 60.5% and YOLOV3-tiny with Darknet was only
56.57%. Although R-CNN yields high performance for facemask detection but limited by low
detection speed. Spatial pyramid pooling SPPNet [25] (modifies R-CNN with an SPP layer)
collects features from various region proposals and fed into fully connected layer for classifica-
tion. The capability of SPNN to compute feature map of entire image in single shot resulted
in significant improvement in object detection speed by magnitude of nearly 20 folds greater
than R-CNN.

Next, Fast R-CNN [26] is an extension over R-CNN and SPPNet. It introduces a new layer
named Region of Interest (RoI) pooling layer between shared convolutional layers to fine-tune the
model. Moreover, it allows to simultaneously train a detector and regressor without altering the
network configurations. Although Fast-R-CNN effectively integrates the benefits of R-CNN and
SPPNet but still lacks in detection speed compared to single stage detectors [27]. Further, Faster
R-CNN is amalgam of fast R-CNN and Region Proposal Network (RPN). It enables nearly
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cost-free region proposals by gradually integrating individual blocks (e.g., proposal detection,
feature extraction and bounding box regression) of object detection system in single step [28,29].

Although this integration leads to accomplishment of break-through for the speed bottleneck
of Fast R-CNN but there exists a computation redundancy at subsequent detection stage. Jiang
et al. [28] trained Faster R-CNN using WIDERFACE dataset for face detection and verified the
performance over FDDB dataset and IJB-A benchmarks. The Region-based Fully Convolutional
Network (R-FCN) is the only model that allows complete back-propagation for training and
inference [30,31]. Feature Pyramid Networks (FPN) can detect non-uniform objects but least used
by researchers due to high computation cost and more memory usage [32]. Furthermore, Mask
R-CNN strengthens Faster R-CNN by including the prediction of segmented masks on each
RoI [33]. Face detection and segmentation based on improved Mask R-CNN was proposed in [34].
The method integrates segmentation stages with bounding box localization to crop the face from
its background in single go. Qin et al. [35] proposed SRCNet a two-stage detector for identifying
correctly wear facemask. The first stage involves upscaling low resolution or blurred images using
SR network to produce high quality feature maps whereas second stage involves facemask wearing
condition using MobileNetV2. Being the lightweight CNN, MobileNetV2 has residual blocks and
depth-wise separable convolutions. The residual blocks contribute to the training of deep neural
network using CelebA database and depth of network help in distinction of incorrectly wear
facemask (IWF) from correctly wear facemask (CWF).

Techniques for improving detectors: Several techniques for improving performance of single
stage and two stage detectors have been proposed in past [36]. Easiest among all is cleaning the
training data for faster convergence and moderate accuracy. Hard negative sampling technique
is often used to provide negative samples for achieving high final accuracy [37]. Modification
in context information is another approach used to improve detection accuracy or speed. MS-
CNN [38], DSSD [39] and TDN [40] strengthen the feature representation by enriching context of
coarser features by including an addition layer in top-down for better object detection. BlitzNet
improved SSD by adding semantic segmentation layer to achieve high detection accuracy [41].
A hybrid deep learning-based approach using R-CNN for feature extraction and decision tree,
SVM and ensemble are proposed in [42] over LFW dataset. The model achieves reasonably good
accuracy on small dataset but requires more memory.

The object detection architectures discussed so far have several open-source models which
are pre-trained on large datasets like ImageNet [43], COCO [44] and ILSVRC [45]. These open-
source models have largely benefitted in the area of computer vision and can be adopted with
minor extensions to solve specific object recognition problem thereby avoiding everything from
scratch. Fig. 2 summarizes various pre-trained models based on CNN architectures released from
2012 to 2019.

These models vary in terms of baseline architecture, number of layers, inference speed, mem-
ory consumption and detection accuracy. The achievement of each model is mentioned in Fig. 2.
In order to enforce mask over faces in public areas to curtail community spread of Coronavirus, a
deep learning approach based on available pre-trained model is highly recommended for welfare of
the society. The concept of transfer learning for facemask detection using InceptionV3 is presented
in [46]. The reason for adopting transfer learning was limited availability of facemask wearing
dataset which might cause overfitting problem. The model is trained and tested on a simulated
Masked Face Dataset (SMFD). The work in [47] applied transfer learning and content attention
using pre-trained MobileNetV2 model over MAFA dataset and achieve a precision of 82.3%.
These pre-trained models are required to be finely tuned with benchmark datasets. The number
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of datasets with diverse feature pertaining to human faces with and without mask are given in
Tab. 1.
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Figure 2: Various pre-trained models based on CNN architecture

An extensive study conducted on available face related datasets reveals that there exist princi-
pally two kinds of datasets. These are: i) face recognition dataset and ii) face mask datasets. The
face recognition datasets can be used for face identification and authentication tasks whereas face
mask datasets are purposely designed for identification of mask over face.

Face mask datasets are mainly populated with images in which the face is obscured by
some objects or mask, e.g., the MAsked FAces dataset (MAFA), the Real-World Masked
Face Dataset (RMFD), Masked Face Detection Dataset (MFDD), Real-world Masked Face
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Recognition Dataset (RMFRD), Simulated Masked Face Recognition Dataset (SMFRD) and
MaskedFace-Net.

Tab. 1 summarizes these two kinds of prevalent datasets.

Table 1: Different categories of datasets

Type of datasets Dataset Scale #Faces #Masked face images

Face recognition FDDB [48] 2845 5171 –
MALF [49] 5250 11931 –
CelebA [50] 200000 202599 –
WIDERFACE [9] 32203 194000 –

Face masked MAFA [51] 30811 37824 35806
RMFRD [52] 95000 9200 5000
SMFRD [52] 85000 5000 5000
MFDD [52] 500000 500000 24771
MaskedFace-Net [53] 139646 – 137016

The following shortcomings are identified after critically observing the available literature,

1. Although there exist several open-source models that are pre-trained on benchmark
datasets but only a few models [47] are currently capable of handling COVID related face
masked datasets.

2. The available face masked datasets are scarce and need to strengthen with varying degree
of occlusions and semantics around different kinds of masks.

3. Although there exist two major types of state of art object detectors: single stage detectors
and two stage detectors. Both methods have certain benefits and limitations over each other.
Single stage detectors are fast but limited by low accuracy whereas two stage detectors
produce accurate results even for complex inputs but at the cost of computational time. So,
an optimal technique needs to be devised that can be easily deployed for object detection
on a surveillance platform with less memory consumption and perform surveillance in real-
time without a notable reduction in accuracy.

To solve these problems, a deep learning model based on transfer learning trained on a highly
tuned customized face mask dataset is being proposed and discussed in detail in the next Section.

3 Proposed Architecture

The proposed model is based on object recognition benchmark in [53]. According to this
benchmark, all the tasks related to an object recognition problem can be ensemble under three
main components: Backbone, Neck and Head as depicted in Fig. 3. Here, the backbone corre-
sponds to baseline convolutional neural network capable of extracting features from images. Since
training a convolutional neural network is expensive in terms of computational power and time;
transfer learning is applied here. Transfer learning allows to transfer the trained knowledge of the
pre-trained neural network in terms of parametric weights to the new model. In order to obtain
best results for facemask detection, the experiment is setup with three popular pre-trained models
namely ResNet50, MobileNet and AlexNet separately. Although emerging in 2012, AlexNet was
considered in our experiments to show the progress in term of performances by comparison with
more recent architectures It is experimentally observed that ResNet50 is optimal choice in terms
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of accuracy, inference time and memory as compared to AlexNet and MobileNet for our targeted
problem (refer Section 4.2).

Input Dataset

MAFA

Train Dataset

Images

Test Dataset

Video/ Image

Frame Extraction

OpenCV

Image Complexity Predictor

VGG-f

Face Detection

OpenCV

Mask Detection

Dlib

Face Detection

MobileNet-SSD
Face Detection

ResNet

NECK

Image Classification

PyTorch

HEAD

From 1st Layer to 49st layer 
of ResNet50 are transferred

Mask Detection

Dlib

Figure 3: Proposed architecture

The novelty of our work is being proposed in the Neck Component. The intermediate compo-
nent, Neck contains all those pre-processing tasks that are needed prior to the actual classification
of images. Since the number and kind of occlusions can impact the performance of face and
mask detection so, an image complexity predictor is being proposed here. The complex images
are accurately processed using two stage ResNet50 detector whereas simple images are quickly
processed through one stage, MobileNet-SSD detector (refer to Section 3.3). Further, the affine
image wrapping technique is applied to crop the detected region into a fixed size anchor bounding
box (refer to Section 3.4). Following the above steps, the proposed model is able to achieve
a gain of nearly 11% in precision and nearly 6% in recall as compared to existing facemask
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detection model under similar experimental setup (refer to Section 4.4). The final precision of
proposed model for face detection is 99.2% and for mask detection is 98.92% over MAFA Dataset
containing 30,811 images. The final recall of proposed model for face detection is 99% and for
mask detection is 98.24%.

Furthermore, OpenCV with Dlib is used to detect a variety of face masks in cropped images.
Finally, high level semantically extracted information obtained after mask detection is used to
fine-tune the backbone. The last component, Head stands for image classifier, detector or pre-
dictor that can achieve the desired objective of deep learning neural network. In the proposed
architecture, PyTorch is applied to categorize multiple faces with different types of masks with
non-uniform sizes contained in each input image in just a single shot thereby leading to a fast
detection system. Further, the output of the head is through a fully convolutional network rather
than a fully connected network resulting in reduced parameter cost.

3.1 Construction of Face Masked Dataset
A facemask centric dataset, MAFA [51] with total 25,876 images categorized over two classes

with 23,858 masked and 2018 non-masked images is considered for training the proposed mask
recognition model. It is observed that MAFA is put up with an extrinsic class imbalanced problem
that may introduce a bias towards the majority class. So, an ablation study is conducted to
analyses the performance of image classifier once with original MAFA set (imbalanced) and then
with proposed dataset (balanced).

3.1.1 Supervised Pre Training
We discriminatively pre-trained the CNN on the original MAFA dataset. Pre-training was

performed using the open-source Caffe Python library [54]. In short, our CNN model nearly
matches the performance of Jia et al. [55], obtaining a Top_1 error rate 1.8 percentage higher on
MAFA validation set. This discrepancy may cause due to a simplified training approach.

3.1.2 Supervised Pre Training with Domain-Specific Fine-Tuning
The other approach is to first remove the inherent bias present in the available dataset and

then execute supervised learning over a domain-specific balanced dataset. The bias is alleviated
by applying random over-sampling (ROS) with data augmentation. The technique reduces the
imbalance ratio ρ = 11.82 (original) to ρ = 1.07. The formula used for computing the imbalance
ratio is given by Eq. (1).

ρ= Count (majority (Di))

Count (minority (Di))
(1)

Here, D refers to image Dataset, majority (Di) and minority (Di) return the majority and
minority class of D. Count(X) returns number of images in any arbitrary class x. After data
balancing, stochastic gradient descent (SGD) training of CNN parameters with learning rate
of 0.003 is set over wrapped region proposals. The low learning rate allows fine tuning of
model without clobbering the initialization. We added 2025 negative windows with 50 background
windows to increase non mask dataset≈ 22 KB. The balancing leads to reduction in Top_1 error
rate of 3.7%.

3.2 Transfer Learning
Due to scarcity of large facemask-centric datasets and to employ the strengths of influential

deep convolutional neural networks, the proposed model is built over ResNet50 and able to
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transfer functionality, features and weights learnt from first 49 layers to newly added fully con-
nected convolutional layer with dimension 1× 64. Transfer learning leads to achieve good results
even with optimal dataset, since basic face features have already been learnt by ResNet50 from a
much larger dataset like ImageNet. In proposed model, only the parameters of backbone and head
are initialized using ResNet50 and neck is customized to perform face and mask detection tasks.

For this work, the last layer of ResNet50 is replaced by adding four more layers. These are:
a pooling layer of pool size= 5× 5, a flattering layer, a dense layer of 128 neurons and finally a
decisive layer with softmax activation function are added to classify a face into mask/non-mask.

3.3 Image Complexity Predictor for Face Detection
To address problem 3 identified in Section 2, regarding the low accuracy of single stage object

detector and high computational time involved in two stage object detectors, an optimal technique
needs to be devised. For this purpose, various face images are analyzed in terms of processing
complexity and it is observed that the dataset we consider primarily contains two major classes,
i.e., mask and non-mask class but the mask class further contains inherent variety of occlusions
other than surgical/cloth facemask e.g., occlusion of ROI by other objects like a person, hand,
hair or some food items as depicted in Fig. 4.

These occlusions are found to impact the performance of face and mask detection. Thus,
obtaining an optimal trade-off between accuracy and computational time for mask detection is
not a trivial task. So, a non-negative complexity predictor (P) linked to each image is being
proposed here. Its purpose is to split data into soft verses hard images at initial level followed by
mask and non-mask classification at later level as shown in Fig. 4 above. The question that arises
here is how to determine whether an image is hard or soft. The answer to this question is provided
by a recent work proposed by Ionescu et al. [56] in which an image hardness is estimated based
on the difficulty of visual search inherent in an image. The features affecting the performance of
visual search include image resolution, image density and object proportion. Here, image density
refers to number of objects present in the image and object proportion refers to relative dimension
of reference object as a part or whole. Based on these features, a non-negative integer is assigned
to each image. If the integer is less than the threshold, the image is put in soft category else it
is a hard image. After separation, a soft image is processed through a fast single stage detector
whereas a hard image is accurately processed by two stage detector. We employ MobileNet-SSD
model for predicting the class of soft images and faster R-CNN based on ResNet50 for making
predictions for hard images.

The algorithm for optimal face detection is given in Fig. 5. Further, image complexity
predictor is built using pre-trained VGG-f with ν-support vector regression. The last layer of
VCG-f is replaced by a fully connected layer. The 4096 features extracted from this layer are
then normalized using L2-norm. The obtained normalized feature vectors are further used to
regress the ground truth complexity score as proposed in [57]. Tab. 2 summarizes mAP score and
Computation time for various combinations of MobileNet and ResNet50 over MAFA test dataset.

The various combinations are made by splitting the test dataset into different proportion of
images processed by each detector starting from pure MobileNet (100%–0%) to three intermediate
splits (75%–25%, 50%–50%, 25%–75%) to pure ResNet50 (0%–00%).

Here, the test data is partitioned based on random split or soft versus hard split given by
Image Complexity Predictor. In order to reduce bias, the average mAp over 5 runs is recorded for
the random split. The elapsed time is measured on Inter I7, 2.5 GHZ CPU with 16 GB RAM.
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Figure 4: Variety of occlusions present in proposed dataset

Figure 5: Algorithm for optimal face detection
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Table 2: Comparison between mobilenet-ssd and resnet50 and their various combination based on
random vs. hard/soft complexity of test data

Comparison parameters MobileNet-SSD to ResNet50 (left to right)

100%–0% 75%–25% 50%–50% 25%–75% 0%–100%

Random_split (mAP) 0.8868 0.9095 0.9331 0.9650 0.9899
Soft/hard_split (mAP) 0.8868 0.9224 0.9631 0.9892 0.9899
Image complexity prediction time (ms) – 0.05 0.05 0.05 –
Mask detection time (ms) 0.05 1.92 3.08 5.07 6.02
Total computation time (ms) 0.05 1.97 3.13 5.12 6.02

3.4 Bounding Box Regression
After detecting a face in the search proposal, we apply affine transformation to obtain a

bounding box of fixed size irrespective of the aspect ratio of the candidate region. The purpose
of applying bounding box is to improve localization performance during mask detection. The
technique is similar to deformable part models described in [12]. The primary difference between
the two methods is that the proposed model regress from features computed by CNN rather than
just applying geometric features taken from DPM part locations.

Let each region proposal (face) be represented by a pair (R, G), where R= (Rx, Ry, Rw, Rh)
represents the pixel coordinates of the center of proposals along with width and height. Each
ground truth bounding box is also represented in the same way, i.e., G= (Gx, Gy, Gw, Gh). So, the
goal is to learn a transformation that can map region proposal (R) to ground-truth bounding box
(G) without loss of information. We propose to apply a scale-invariant transformation on pixels
coordinates of R and log space transformation on width and height of R. The corresponding four
transformation functions are represented as Tx(R), Ty(R), Tw(R) and Th(R). So, coordinates of
the ground truth box can be obtained by Eqs. (2)–(5).

Gx =Tx (Rx)+Rx (2)

Gy=Ty
(
Ry

)+Ry (3)

Gw =Tw (Rw)+Rw (4)

Gh=Th (Rh)+Rh (5)

Here, each Ti (where i denotes one of x, y, w, h) is applied as a linear function of the Pool 6
feature of R denoted by f6 (R). Here, the dependence of f6 (R) on R is implicitly assumed. Thus,
Ti(R) can be obtained by Eq. (6).

Ti (R)=wif6 (R) (6)

where Wi denotes the weight learned by optimizing the regularized least square objective of ridge
regression and is computed by Eq. (7). Ridge regression is used here, to penalize the variables
with minor contribution to the outcome; have their coefficient close to zero. One popular penalty
is to panelize the model based on sum of squared coefficient values; this is called L2 penalty (ŵi).
The ŵi minimize the size of all coefficients and preventing the coefficient from being removed
from the model. Further, a hyperparameter called tuning parameter or penalty parameter (λ) is
used to control the weighing of penalty to the loss function. A default value of λ= 1.0 will fully



CMES, 2021, vol.127, no.2 401

weight the penalty whereas λ = 0 excludes the penalty. The scikit-learn library in Python is used
to automatically finds good value for λ via RidgeCV class. For our model. λ is set to 0.51.

wi =
∑
n∈R

(tni − ŵf6(Rn))2+λ |ŵi|2 (7)

The regression target (ti) related to coordinates, width and height of region proposal pair
(R, G) are defined by Eqs. (8)–(11), respectively.

tx = (Gx−Rx)/Rw (8)

ty =
(
Gy−Ry

)
/Rh (9)

tw = log(Gw/Rw) (10)

th = log(Gh/Rh) (11)

3.5 Loss Function and Optimization
Defining the loss function for the classification problem is among the most important part

of the convolutional neural network design. In classification theory, a loss function or objective
function is defined as a function that maps estimated distribution onto true distribution. It is
desirable for an optimization algorithm to minimize the output of this function. The stochastic
gradient descent optimization algorithm is applied to update the model parameters with a learning
rate of 0.03. Further, there exist numerous loss functions in PyTorch but one which is most
suitable with balance data is a cross-entropy loss. Furthermore, an activation function is required
at the output layer to transform the output in such a way that would be easier to interpret for
the loss function.

Since the formula for cross-entropy loss given in Eq. (12) takes two distributions, t(x), the
true distribution and e(x), the estimated distribution defined over discrete variables x [58], thus
activation functions that are not interpretable as probabilities (i.e., negative or greater than 1 or
sum of output not equals to 1) should not be selected. Since Softmax guarantees to generate well
behaved probabilities distribution over categorial variable so it is chosen in our proposed model.

Loss=
∑
∀x

t (x) log (e (x)) (12)

Further, the loss function over N images (also known as cost function over the complete
system) in binary classification can be formulated as given in Eq. (13).

Loss= 1
N

∑
x

N∑
n=1

tn (x) log(en (x) (13)

4 Performance Evaluation

To evaluate the performance of the proposed model, the experiment is conducted to answer
the following research questions:

RQ1: Which model will best fit as a backbone for detecting facemask using transfer learning?
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RQ2: How does our model perform compared to existing face mask detection model in terms
of accuracy and computational speed?

RQ3: What measures should be considered to avoid overfitting?

4.1 Experimental Setup
The experiment is setup by loading different pre-trained models using Torch Vision package

(https://github.com/PyTorch/vision). These models are trained on a fine-tuned MAFA dataset using
the open-source Caffe Python library. We choose MAFA dataset with 25,876 images and label
37,826 faces with a high degree of variability in occlusion as depicted in Fig. 4. Int-Scenario
training/testing strategy is adopted as employed in [9]. The fine-tuned MAFA dataset is split into
training, testing and validation sets with 64:20:16, respectively. The algorithms are implemented
using Python 3.7 and face detection is achieved through open source library (OpenCV) during the
training phase. .dib is used for detecting masks with learning rate= 0.003, momentum = 0.9 and
batch size= 64. PyTorch is used for image classification.

4.2 Effectiveness of Different Pre-Trained Models
As discussed in Section 3.2, that we can apply transfer learning on pre-trained models for

feature engineering but one question that yet to answer is how we can decide which model is
effective for our task. In this Section, we will compare three efficient models namely ResNet50,
AlexNet and MobileNet on based on the following criteria:

1. Top_1 Error: This type of error occurs when the class predicted with the highest confidence
is not the same as the true class.

2. Inference Time on CPU: Inference time is the time taken by the model to predict the
class of input image, i.e., starting from reading the image, performing all intermediate
transformations and finally generating the high confidence class to which the image belongs.

3. Model size: It refers to physical space occupied by the .pth file of pre-trained models
supplied by PyTorch.

A model with minimum Top_1 error, less inference time on CPU and less model size will be
considered as a good model for our work. The confusion matrix results for different models
are summarized in Tab. 3. The accuracy comparison of various models based on Top_1 error is
presented graphically in Fig. 6a. It may be noted from the graph that the error rate is high in
AlexNet and almost equal in MobileNet and ResNet50. Next, we compared the models based on
inference time. All test images are supplied to each model and inference time for all iterations is
averaged out.

Table 3: Confusion matrix obtained using different models

Results (Predicted)

AlexNet MobileNet ResNet50

Mask Non mask Mask Non mask Mask Non mask

Mask (actual) TP: 4351 FP: 103 TP: 4669 FP: 48 TP: 4657 FP: 51
Non mask (actual) FN: 227 TN: 4518 FN: 104 TN: 4378 FN: 83 TN: 4403

https://github.com/PyTorch/vision
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The process was repeated once for CPU and then for GPU on Google Colab. It may be
observed from Fig. 6b that MobileNet takes more time to inference images whereas ResNet and
AlexNet take almost equal time for inferring the images.
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Figure 6: Comparison of various models on different criteria. (a) Top_1 error (b) inference time
(c) model size (d) overall comparison

Further, it may be noted in Fig. 6c that AlexNet has a minimum size of .pth file (14 MB)
followed by MobileNet (26 MB) and ResNet (121 MB). After analyzing the performance of each
model on various criteria, we then squeeze all these details into single bubble chart by taking
model size as X-coordinate and inference time as Y-coordinate. The bubble size represents Top_1
error (less is better). The overall comparison of all models is represented by a bubble graph
in Fig. 6d.

It may be observed from Fig. 6, smaller bubbles are better in terms of accuracy and bubbles
near the origin are better in terms of memory requirement and speed. Now, the answer to RQ1
can be given as follows:

AlexNet has a high error rate.

MobileNet is slow in inferring results.

ResNet50 is an optimized choice in terms of accuracy and speed for detecting face mask using
transfer learning.
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4.3 Performance Analysis of Proposed Model
The performance of the proposed model using ResNet50 is further evaluated using various

metrics such as Accuracy, Intersection over Union (IoU) and AU-ROC using Eqs. (14)–(17),
respectively.

Accuracy= (TP+TN)

(TP+TN +FP+FN)
(14)

IoU = TP
(TP+FP+FN)

(15)

Sensitivity= TP
(TP+FN)

(16)

Specificity= TN
(TN+FP)

(17)

where TP, FP, TN and FN represent True Positive, False Positive, True Negative and False
Negative, respectively. TP, FP, TN and FN are obtained through a confusion matrix.
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AU-ROC represents a degree of measure of separability, i.e., it tells us how much proposed
model is capable if differentiating between classes. The higher the area under the ROC curve, the
better the model is in differentiating between masked faces and non-masked faces. The curve is
plotted with Sensitivity against Specificity.

Furthermore, to address RQ3 and avoid the problem of overfitting, two major steps are taken.
First, we performed data augmentation as discussed in Section 3.1.2. Second, the model accuracy
is critically observed over 60 epoch cycles. It is observed that model accuracy keeps on increasing
in different epochs and get stable after epoch = 3 as depicted graphically in Fig. 7a above for
fine-tuned unbiased dataset.

4.4 Comparison with Existing Models
In this Section, we aim to compare the performance of the proposed model with public base-

line results published in RetinaFaceMask [47] which aims to answer RQ2. Since RetinaFaceMask
is trained on MAFA dataset and performance is evaluated using precision and recall for face and
mask detection so, for comparison purpose, the performance of the proposed technique is also
evaluated in the same environment. The experimental results are reported in Tab. 4. It may be
noted from Tab. 4 that the proposed model with ResNet50 as backbone achieves higher accuracy
as compared to RetinaFaceMask.

Table 4: Comparison of proposed model with recent face mask detection model on MAFA dataset

Model Face detection Mask detection

Precision (%) Recall (%) Precision (%) Recall (%)

RetinaFaceMask based on MobileNet [13] 83.0 95.6 82.3 89.1
RetinaFaceMask based on ResNet [13] 91.9 96.3 93.4 94.5
Proposed model based on ResNet50 99.2 99.0 98.92 98.24

Particularly, the proposed model generates 11.75% and 11.07% higher precision in face and
mask detection respectively when compared with RetinaFaceMask. The recall is improved by
3.05% and 6.44% in the face and mask detection respectively. We had observed that improved
results are possible due to the optimized face detector discussed in Section 3.3 for dealing with
complex images.

Besides, the performance of the proposed technique is also compared with a conventional
technique such as SVM [42] under a similar experimental setup. It is also observed that the
training dataset is difficult to handle by SVM in terms of computational power and memory
consumption. So, the experiment is setup with a small subset of training data to analyze the
performance of SVM over 9199 images. Even with this small subset, the memory requirement to
build a classification model using SVM is 650 MB. Whereas, the proposed model requires only
24.73 MB over the same subset and thus a gain of 96% is achieved in terms of memory which is
perfectly suitable for an embedded device used for surveillance purposes. The experimental results
are summarized in Tab. 5.

It may be noted from Tab. 5 that a gain of 9.33% is achieved in precision using proposed
technique. A gain of 3.85% is achieved in the recall. The reason for lesser accuracy through
SVM is also reported. It is found that SVM under performs in the scenario where the number
of features per data point exceeds the number of training data samples. The results obtained in
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Tabs. 4 and 5 reveal that the proposed technique achieves higher accuracy for facemask detection
in real time with less memory consumption and less effort by the amalgam of transfer learning
with an ensemble of one stage and two stage image complexity predictor when compared to recent
and conventional methods.

Table 5: Comparison of proposed model with conventional face mask classification model on
MAFA dataset

Model Mask detection

Precision (%) Recall (%) Accuracy (%)

SVM [52] 89.59 94.39 89.93
Proposed technique 98.92 98.24 98.2

4.5 Discussion
The proposed model achieves high accuracy in the face and mask detection with less inference

time and less memory consumption as compared to Support Vector Machine [42] and Reti-
naFaceMask [47]. Significant efforts had been put to resolve the data imbalance problem in the
existing MAFA dataset, resulting in new dataset which is highly suitable for COVID related mask
detection tasks. The newly created dataset, feature engineering through transfer learning of robust
ResNet50 pre-trained model, optimal face detection approach with improved localization using
affine transformation and avoidance of overfitting resulted in an overall system that can be easily
installed in thermal cameras at public places to curtail spread of Coronavirus.

5 Conclusion and Future Scope

In this work, a deep learning-based approach for detecting masks over faces in a public
place to curtail community spread of Coronavirus is presented. The proposed technique efficiently
handles varying kinds of occlusions in the dense situation by making use of an ensemble of
single and two stage detectors at the pre-processing level. The ensemble approach not only
helps in achieving high accuracy but also improves detection speed considerably. Furthermore,
the application of transfer learning on pre-trained models with extensive experimentation over
unbiased dataset resulted in a highly robust and low-cost system.

Finally, the work opens interesting future directions for researchers. Firstly, the proposed
technique can be integrated into any high-resolution video surveillance devices and not limited
to mask detection only. Secondly, the model can be trained and upgraded to mask datasets that
include different images related to correctly/incorrectly wear mask [53] and achieve the ultimate
purpose of detecting facemask for cutting down the risk of contagious diseases.
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