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ABSTRACT

In this paper, analytical, computational, and experimental studies are integrated to examine unsteady acous-
tic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall
injection. Acoustic-fluid dynamic interactions across the chamber may generate intense unsteady vorticity with
associated shear stresses. These stresses may cause scouring and, in turn, enhance the heat rate and erosional
burning of solid propellant in a real rocket chamber. In this modelling, the unsteady propellant gasification is
mimicked by steady-state flow disturbed by end-wall oscillations. The analytical approach is formulated using an
asymptotic technique to reduce the full governing equations. The equations that arise from the analysis possess
wave properties are solved in an initial-boundary value sense. The numerical study is performed by solving the
parabolized Navier–Stokes equations for the DNS simulation and unsteady Reynolds-averaged Navier–Stokes
equations along with the energy equation using the control volume approach based on a staggered grid systemwith
the turbulencemodelling. The v2-f turbulencemodel has been implemented. The results show that an unexpectedly
large amplitude of unsteady vorticity is generated at the injection side-wall of the chamber and is then penetrated
downstream by the bulk motion of the internal flow. These stresses may cause a scouring effect and large transient
heat transfer on the combustion surface. A comparison between the analytical, computational, and experimental
results is performed.
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Nomenclature

X Dimensionless axial length x′/L′
y Dimensionless vertical length y′/H′
A Aspect ratio L′/H′
T Dimensionless Temperature T′/T′o
u Dimensionless velocity in x-Dir. u′/U′zo
ui Mean velocity
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u′I , u
′
j Turbulence fluctuations

um Local mean streamwise velocity
Cf Friction coefficient
v Dimensionless velocity in y-Dir. v′/( U′zo/δ)
p Dimensionless pressure p′/po
t Dimensionless time t′/t′a, t′a=L′/C′o
Et Total Energy= ρ[T + γ (γ − 1)M2

(
u2+ (v/delta)2 ]

SRM Solid Rocket Motor
NSCBC Navier Stokes Characteristic Boundary Condition

Greek Symbols
� Dimensionless vorticity, �=�′/(U ′

zo/H
′)

ε Amplitude of end wall disturbances
ε′ Dissipation rate
λ Chamber natural frequency
ρ Dimensionless mass density ρ′/ρ′o)
� Dimensionless forcing frequency
μ Dynamic viscosity, Pa.s
χ Viscous and conduction terms
wp Wave amplitude
δ Aspect ratio

Subscripts
os Steady State
w Wall conditions
n Eigenvalues
0 First fundamentals
o Reference values
a Acoustic
v Rotational component
p Planar component
s Converged steady state

Exponents
* Resonance conditions
∼ Perturbed values
, Dimensional values

Nondimensional Numbers

Re Reynolds number, Re = rho′oU ′
zoL

′
μ′
o

, Acoustic Reynolds number Rea = Re
M

M Characteristics Mach number M ≤ O(10−1)M = U ′
zo
C′
o

Pr Prandtl number
mu′oC′

po
k′o

,

P′
r Production rate

1 Introduction

The designers of the Solid Rocket Motor (SRM) are facing several technological problems
requiring expertise in diverse-sub-disciplines in order to understand the nature of the fluid flow
dynamics along with the associated complex wave patterns inside the chamber/nozzle geometry
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of the SRM. These problems include the burning of the solid propellant and its solid mechan-
ical properties, the chamber case, and the fluid dynamics inside the cavity, shock physics and
mechanical properties of the Ammonium Perchlorate oxidizer (AP)/Hydroxyl Terminated Poly
Butadiene fuel (HTPB). Moreover, these complexities are characterized by very high energy den-
sities, extremely diverse length and time scales, complex interface, and reactive, turbulent, and
multiphase flows.

In order to have a stable rocket engine with desirable performance, there are two different
essential models for the reacting and non-reacting systems must be examined first. The first model
is directed to study the combustion of real microscale propellant that accounts the Ammonium
Perchlorate oxidizer (AP)/Hydroxyl Terminated Poly Butadiene fuel (HTPB), as in [1–3] while the
second model is devoted to studying the cold model (non-reactive) that consider the unsteady
fluid dynamics inside the chamber/nozzle geometry, as in [4–6]. The recent studies that account
the combustion process for the propellant concluded that the proposed conditions at or near the
side-wall injection of the cold models are found to be different from that that considered with the
reactive ones.

As a result, the current study is conducted to develop more accurate numerical techniques
combined with the Navier–Stokes Characteristic Boundary Condition (NSCBC), that used to solve
the parabolized, unsteady, compressible Navier–Stokes equations at the boundaries, to examine the
unsteadiness of the fluid flow dynamics in the cavity of the SRM chamber and the associated
complex wave patterns and their impact on the burning of real solid propellant surfaces. NSCBC
is used to specify the numerically reflected boundary conditions, in order to eliminate numerically
generated reflected waves and to minimize numerical dissipation near the aft end. We try in this
study to assign constant velocity injection to mimic the real variation of composite propellants
with end wall disturbance that generate longitudinal acoustic waves similar to the pattern that may
exist in the rocket chamber. To describe the nature of a low Mach number and weakly viscous
flow field generated in a long, narrow chamber with steady side-wall mass injection and end-wall
disturbances, analytical, computational, and experimental studies were conducted. The inviscid
rotational steady injected flow interacts with the irrotational acoustic field to generate unsteady
vorticity at the side-wall and penetrates toward the centerline by the steady transverse velocity
component. The axial distribution of the vertical velocity on the side-wall is prescribed.

The experimental and theoretical approaches in [7–16] studied intensively the propagation
of acoustic waves (irrotational field only) in closed or open-end tubes without consideration for
the mass injection from the side-wall. These studies described the behaviour of finite amplitude
waves at resonance frequencies and the effect of nonlinearity on the waveform. Erickson et al. [7]
studied theoretically the behaviour of forced finite amplitude oscillations in cylindrical constant
and variable area ducts whose ends are closed. Shock waves were observed in the form of saw-
tooth-like waveforms in the case of constant area duct when the duct oscillated at a resonance
frequency. Zapirov et al. [8] performed similar theoretical and experimental works. Merkli et al. [9]
studied the thermo-acoustic effects experimentally in resonant closed tubes. Their results showed
the steepness of the wave and the shock wave formation near or at the resonance frequencies.

Wang et al. [10] also studied the nonlinear oscillations in a resonance gas column. They
studied both closed and open tubes. In the case of closed tubes, a shock wave appears with small
limiting amplitude because of nonlinearity; in the case of an open-end, the shock wave appears
intermittently. Jimeniz [11] also drew this conclusion. The effect of a convergent–divergent nozzle
appended to a constant area duct on the behaviour of travelling acoustic waves was described
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theoretically by Sileem [12] and experimentally by Sileem et al. [13]. The wave steepness increased,
and an N-type waveform was noticed for the duct that ended with a convergent-area portion.

Furthermore, for the duct that ended with a convergent–divergent area, the wave amplitude
near the end of the constant portion of the duct was greater than that of the convergent part only.
Seymour et al. [14] studied the acoustic wave damping from fully opened, partially opened, and
fully closed gas columns. They described the wave pattern at resonance conditions. They found
that for a fully opened tube, the wave damping comes from the energy radiation into the adjacent
medium. In the case of closed-end tubes, no energy radiates outside of the tube and, in turn, a
shock wave is formed. In the case of a partially opened end tube, part of the acoustic energy is
radiated, which prevents shock wave formation. Disselhorst et al. [15] and Garcia et al. [16] have
conducted similar experimental and theoretical studies.

The interaction between the propagation of acoustic waves in closed or open-end tubes with
mass injection from the side-wall has been studied by Staab et al. [17], Rempe et al. [18] and
Zhao et al. [19]. These studies oadopt the perturbation theory in order to include the unsteadiness
of the mass addition from the injection surfaces of the simulated combustion chamber as a
source of the complex wave pattern inside the chamber. These generated waves are travelled in
low axial Mach number (M), high Reynolds number (Re) mean flow. They concluded that the
interaction between the propagated acoustic waves and the mass injection adjacent to the wall
causes transverse rotational flow field and transverse temperature gradients to be clearly seen at or
adjacent to the side-wall. These vorticities and the heat transfer generations may penetrate toward
the centerline of the chamber and finally fill the whole domain. Moreover, their results proved that
the nondimensional acoustic axial velocity component is found to be O(1) and the temperature
disturbance is proportional to the Mach number with an amplitude of O(M) for M � 1, while,
the gradient of the transverse velocity component is inversely proportional to the Mach number
with magnitude O(1/M) and the transverse temperature gradient is O(1).

Moreover, several investigators developed a competitive linear model, as in Flandro [20] and
Xuan et al. [21]. The velocity and vorticity dynamics were emphasized. They considered irrota-
tional (acoustic) velocity and pressure disturbances, to the exclusion of rotational flow (vorticity)
transients. Moreover, these studies developed a competitive linear theory to demonstrate that accu-
rate descriptions of internal flow dynamics frequently require the presence of coexisting rotational
and irrotational velocity fields systematic nonlinear asymptotic modelling were developed by Staab
et al. [17] and Zhao et al. [19].

Vuillot et al. [22] and Smith et al. [23] examined the presence of similar rotational flow fields
using a computational solution to the Navier Stokes equation. The acoustic disturbances are gen-
erated by imposed pressure variations along an axial location. Tseng et al. [24] and Chu et al. [25]
extended related computational studies with the reaction model to account for the generated real
diffusion and premixed flames adjacent to the combustion surface. The temperature variations
observed in these studies arise from flame zone effects, rather than the acoustic disturbance-
injected fluid interaction mentioned previously. Experimental observation by Vetel et al. [26,27]
supported the concepts of vorticity generation featured by Hegab et al. [28,29].

Many investigations to chamber flow turbulence modelling, based on κ–ε, κ–ω and full
Reynolds stress methods, have been studied. Liou et al. [30] revealed that the turbulence models,
like κ–ε and κ–ω, that used to predict the turbulence level, are not very successful in predicting
the transverse location of the turbulence intensity peak as well as show over predicting turbu-
lence level than the measured values. For example, Beddini [31] employed a full Reynolds stress
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turbulence model to analyze the flow in a porous channel. At a higher Reynolds numbers, the
transition to a turbulent velocity profile is predicted. The comparison to the experimental data in
cold-flow simulation by Yamada et al. [32] indicates agreement with the laminar description for
the mean velocity profile. The results by Sabnis et al. [33] using the low Reynolds number κ–ε
turbulence model show remarkably over predicting turbulence levels but indicates agreement with
the experimental data for the axial mean velocity profiles. In general, despite the over predicting
turbulence level and the unsuccessful in predicting the transverse location of the turbulence peak,
the turbulence models proved satisfactory in the pre-transition region of the mean-flow.

Studies by Rempe et al. [18], Zhao et al. [19], and Flandro [20] have shown that inadequate
treatment of boundary conditions may cause excessive numerical diffusion and, in turn, may result
in an inaccurate solution or the complete elimination of small-scale phenomena.

Therefore, in this study, careful attention has been paid to the employment of modern algo-
rithms based on higher-order accuracy techniques to solve the parabolized, unsteady, compressible
Navier–Stokes equations at the boundaries. A boundary condition treatment method, namely,
Navier Stokes Characteristics Boundary Condition (NSCBC), is used to specify the numerically
reflected boundary conditions, in order to eliminate numerically generated reflected waves and to
minimize numerical dissipation near the aft end. This technique shows that low dispersion errors
and in turn, significant improvement over the old methods, e.g., extrapolation and partial use of
Riemann invariant. The current study is conducted to develop more accurate numerical techniques
combined with NSCBC to examine the unsteady flow field dynamics inside the solid rocket motor
chamber and the associated complex generated wave and vorticity patterns and their impact on
the burning of real solid propellant surfaces. Here, the analytical solutions for the steady and
unsteady flow regimes are derived using the asymptotic techniques.

Moreover, in the present study, the turbulence characteristics of the induced flow inside the
chamber are studied numerically. The numerical model was specially developed for this study
in FORTRAN environment using our programmed code. The developed model was validated
using a wide range of computational fluid dynamics (CFD) problems in different aerodynamics
applications with reacting and non-reacting flows [34]. The study also presents RANS equa-
tions for time-dependent, compressible turbulent flows along with the implemented turbulence
model. In addition, the numerical procedure and associated boundary conditions are explored.
Moreover, an experimental solution in our recent studies [35] is adapted to validate the current
computational approach.

2 Mathematical Formulation for Laminar Flow

The nondimensional conservation form of the unsteady, two dimensional, complete Navier–
Stokes equations describing both fluid dynamics and acoustics in a perfect gas within a rectangular
chamber can be written as follows:

∂Q
∂t

+ ∂E
∂x

+ ∂F
∂y

= 0, (1)

where Q, E, and F are column vectors given by
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Q=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

ET

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mρu

Mρu2 + 1
γM

p− 4
3
M
Re
ux− 1

3
M
Re

vy

Mρuv− M
Re
vx

M [ET + (γ − 1)p]u− γM
RePr

Tx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mρv

Mρuv− A2M
Re

uy

Mρv2 + A2

γM
p− 1

3
A2M
Re

ux− A2

3
M
Re
vy

M [ET + (γ − 1)p] v− γA2M
RePr

Ty

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

With the aid of the equation of state for a perfect gas

P= ρT . (2)

The nondimensional properties can be written as

p= p′/p′o, ρ = ρ′/ρ′
o, T =T ′/T ′

o, u= u′/U ′
zo , v= v′/

(
U ′
zo/δ

)
(3)

x= x′/L′, y= y′/H ′, t= t′/t′a. (4)

2.1 Initial and Boundary Conditions
For t≤ 0, the axial variation of the vertical velocity at the side-wall when y= 1 is specified as

V

∣∣∣∣wall =−Vrws(x), as shown in the physical model in Fig. 1. For t> 0, an end-wall disturbance

is initiated at the head end when x= 0 by a moving piston u (t)= ε ∗ sin(ω ∗ t) for resonance and
non-resonance solution, where ε is the amplitude of the generated acoustic waves. The pressure
node is specified at the exit end of the chamber, while the symmetry conditions are imposed at
the centerline of the chamber when y= 0.

The boundary and initial conditions are written as follows:

x= 0; u (t)= ε ∗ sin(ω ∗ t) and v= 0. (5)

x= 1; p= 1, “pressure node.” (6)
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Figure 1: The physical model for the non-reactive solid rocket motor nozzle-less chamber

y= 0; v= 0,
∂u
∂y

= ∂T
∂y

= ∂p
∂y

= ∂ρ

∂y
= 0. (7)

y= 1; u= 0, T = 1, and v=−vrws(x). (8)

t= 0; u= v= 0, p=T = 1. (9)

2.2 Analytical Approach
2.2.1 Steady-State Flow

The steady-state flow is generated by constant side-wall injection speed and is used as an
initial condition for the unsteady flow computations. The analytical velocity profiles for incom-
pressible, inviscid, rotational flow in a long narrow duct are used as starting profiles for the steady,
compressible, viscous flow computations. The steady-state variables for the incompressible, inviscid,
rotational flow can be described using the asymptotic expansions as

(u, v)≈
∑
i=0

Mi(vis,uis). (10)

(p,ρ,T)≈ 1+
∑
i=0

Mi+2 (pis,ρis, ’ Tis) . (11)

The asymptotic theory by Zhao et al. [19] proves that the primary viscous stresses are in
the transverse direction and, as a result, the axial transportation terms can be neglected in the
full Navier–Stokes equations. Eqs. (10) and (11) can be used in Eq. (1) to obtain the following
equations describing an incompressible, inviscid, rotational flow:

∂uos
∂x

+ ∂vos
∂y

= 0. (12)

uos
∂uos
∂x

+ vos
∂uos
∂y

=− 1
γ

∂pos
∂x

. (13)

∂pos
∂y

= 0, (14)

which are valid for the limit M→ 0 and A	 one.
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The boundary conditions are

x= 0 uos= 0 “closed− end.” (15)

x= 1, pos= 0 “pressure node.” (16)

y= 0, vos= 0, (17)

∂ϕ

∂y
= 0, ϕ = (pos,ρos,uos), “symmetric conditions.” (18)

y= 1, vos=−Vw(x), uos= 0, Tos= 0. (19)

Isothermal wall with no-slip boundary conditions and side-wall injection are specified at
the side-wall.

The solution to the first-order calculations in Eqs. (12)–(14) that satisfies the boundary
conditions in Eqs. (15)–(19) can be written as

vos=−Vw(x)sin(π/2y), (20)

uos=
(

π

2

∫ x

0
Vw(τ )dτ

)
cos(π/2y), (21)

pos= γ π2

4

∫ 1

x

[
Vw(x)

∫ x

0
Vw(τ )dτ

]
dx, (22)

where Vw(x) is an arbitrary time-independent sidewall injection distribution. The solution with
constant sidewall injection velocity is

vos=−sin(π/2y). (23)

uos= π

2
xcos(π/2y). (24)

pos= γ π2

4

(
1−x2

)
. (25)

To ensure that the solution converges with the steady state, the mass conservation is
examined through∣∣∣φt+1
i,j −φti,j

∣∣∣≈ 10−k, (26)

where φ = (u, v,p,T) and k is an arbitrary coefficient based on the solution precision.

2.2.2 Unsteady Flow for Irrotational Planar Component

In this study, let the initial conditions for the unsteady flow variables
(
û, v̂, P̂, ρ̂, T̂

)
be the

converged steady-state solution; using the perturbation theory in the limit M→ zero yields

u (x,y, t)≈ uos(x,y)+
∑
n=0

Mnûn(x,y, t).

v (x,y, t)≈ vos(x,y)+
∑
n=0

Mnv̂n(x,y, t). (27)
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p (x,y, t)≈ pos (x,y)+M
∑
n=0

Mnp̂n (x,y, t) .

T (x,y, t)≈ p=Tos(x,y)+M
∑
n=0

MnT̂n (x,y, t) . (28)

Inserting Eqs. (27) and (28) in Eq. (1), the resultant planar acoustic equation for the order
of Mach number O(M) terms can be written as follows:

∂2u∼0
∂t2

= ∂2u∼0
∂x2

, (29)

with the following initial and boundary conditions:

t= 0, u∼0 = 0,
∂u∼0
∂t

= 0. (30)

x= 0, u∼0 = εsinωt (31)

x= 1,
∂u∼o
∂x

= 0. (32)

Since the left boundary condition in Eq. (31) is nonhomogeneous, the following transfor-
mation equation u = u∼0 − εsinωt is used to generate homogeneous boundary conditions with a
solvable nonhomogeneous wave equation as

∂2u
∂t2

= ∂2u
∂x2

− εω2sinωt, (33)

With the new initial and boundary conditions

t= 0, u= 0,
∂u
∂t

=−εω. (34)

x= 0, u= 0 (35)

x= 1,
∂u
∂x

= 0. (36)

Assume the homogeneous solution for Eq. (33) is represented by u′(x, t) and keep the bound-
ary conditions from Eqs. (34)–(36) for u′(x, t). Using the separation of variable technique, the
derived general homogeneous solution can be written as

u′ (x, t)=
n=∞∑
n=0

{
Cnsinλnt+Dncosλnt

}
sinλnx, (37)

where λn refer to the eigenfunctions of the chamber and are represented by λn = (n+ 1
2 )π , n =

0, 1, 2, 3, . . .∞, Cn = 2
λn

∫ x=1
x=0 −εωsinλnxdx and Dn = 0. Once again assume the non-homogeneous

solution for Eq. (35) is represented by û(x, t) and retain the boundary conditions in Eqs. (34)–(36)
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except ∂ û
∂t = 0 in Eq. (33). The general solution for the nonhomogeneous part of Eq. (33) for the

non-resonance case is derived and written as

û(x, t)=
∞∑
n=0

{
−2

εω3

λ2n
(
λ2n−ω2

)sinλnt+ 2
εω2

λn
(
λ2n−ω2

)sinωt
}
sinλnx. (38)

Then, the final non-resonance solution for the homogeneous and non-homogeneous wave
equation that describes the acoustic velocity fields is derived from the summation of Eqs. (37)
and (38):

u∼0 (x, t)
∣∣n �= n∗ = εsinωt+

∞∑
n=0,n �=n∗

−2
εω

λ2n
sinλntsinλnx

+
∞∑

n=0,n �=n∗

{
−2

εω3

λ2n
(
λ2n−ω2

)sinλnt+ 2
εω2

λn
(
λ2n−ω2

)sinωt
}
sinλnx. (39)

The resonance solution when ω = λ∗n is derived from the non-homogeneous part by assuming
that the particular solution is proportional to the product of t cosωt. The final form is obtained
and written as

u∼0 (x, t)
∣∣n= n∗ = εsinωt−

({
1
λ∗n

}
sinλ∗nt+ tcosλ∗nt

)
sinλ∗nx. (40)

Hegab [26] and Zhao et al. [19] described the irrotational acoustic system that was
employed by Flandro [20] and showed that the rest of the planer irrotational functions
ρ∼
0 (x, t),T∼

0 (x, t), and P∼
0 (x, t) have mathematical relations to the velocity acoustic field u∼0 (x, t)

as follows:

∂ρ∼
0

∂t
=−∂u∼0

∂x
,

∂u∼0
∂t

=− 1
γ

∂P∼
0

∂x
,

∂T∼
0

∂t
= γ − 1

γ

∂P∼
0

∂t
. (41)

In this study, the experimental measurement is constructed to record only the pressure acoustic
fields at several locations along the chamber. For comparison considerations, the pressure equation
can be derived from Eqs. (39) and (41), considering the pressure node (P= 1) boundary conditions
at the exit of the chamber. The final pressure equation for the non-resonance case is derived and
written as

P∼
0 (x, t)

∣∣n �= n∗ = γ εωcos(ωt)(x− 1)+
∞∑

n=0,n �=n∗

2γ εω

λ2n−ω2

(
ω2cosωt−λ2ncosλnt

)
cosλnx. (42)

Consequently, the final pressure equation for the resonance acoustic equation is derived as

P∼
0 (x, t)

∣∣n= n∗ = γ εωcos(ωt)(x− 1)− γ (2cosλn∗t−λn∗ tsinλn∗t) cosλn∗x. (43)
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Also, the thermal, acoustic field for the non-resonance and resonance solution is derived and
written as follows:

• For non-resonance solution (n �= n∗),

T∼
0 (x, t)

∣∣n �= n∗ = γ − 1
γ

⎧⎨
⎩γ εωcos(ωt)(x− 1)+

∞∑
n=0,n �=n∗

2γ εω

λ2n−ω2

(
ω2cosωt−λ2ncosλnt

)
cosλnx

⎫⎬
⎭ . (44)

• For resonance solution (n= n∗),

T∼
0 (x, t)

∣∣n= n∗ = (γ − 1) {εωcos(ωt)(x− 1)− (2cosλn∗t−λn∗tsinλn∗t) cosλn∗x} . (45)

Moreover, the perturbed density field is determined from

ρ∼
0 (x, t)=P∼

0 (x, t)−T∼
0 (x, t). (46)

2.3 Computational Approach
Multidimensional, rotational, transient flow-dynamics in a simulated SRM chamber model

are obtained from the solutions to the mass, momentum, and energy conservation equations.
Numerical simulations are used to identify the acoustic fluid dynamics interactions as well as to
evaluate the vorticity distribution as a function of time and space. The Two-Four explicit scheme,
combined with the Navier–Stokes Characteristic Boundary Condition (NSCBC) and higher-order
accuracy technique at the symmetry line, is developed to obtain a solution to the unsteady,
compressible Navier–Stokes equations in the SRM chamber model as in [36–38]. This method
applied recently in [39] and found to be phase accurate and therefore, suitable for describing many
wave cycles and wave interaction problems.

Using the NSCBC techniques, the fluid-dynamics equations can be written in nondimensional
wave modes form as follows:

∂ρ

∂t
+ 1

C2

[
℘2+ 1

2
(℘4+℘1)

]
+M

∂ρv
∂y

= 0. (47)

∂u
∂t

+ 1
2ρC

[
(℘4−℘1)

]
+Mv

∂u
∂y

= χx/ρ. (48)

∂v
∂t

+℘3 +Mv
∂v
∂y

+ A2

γM
1
ρ

∂p
∂y

= χy/ρ. (49)

∂p
∂t

+ 1
2

[
(℘4 +℘1)

]
+Mv

∂p
∂y

+ γMp
∂v
∂y

= χE . (50)

where Xx and Xy refer to the viscous terms and XE refers to the combination with the conduction
terms and C = C′/C′

0. The amplitudes of the left and the right-running waves (℘1, ℘4) and the
entropy waves (℘2, ℘3) can be written as

℘1 = λ1

(
1
γ

∂p
∂x

−MρC
∂u
∂x

)
; λ1 = u

M
−C. (51)

℘2 = λ2

(
C2 ∂ρ

∂x
− 1

γ

∂p
∂x

)
; λ2 =Mu. (52)
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℘3 = λ3
∂v
∂x

; λ3 =Mu. (53)

℘4 = λ4

(
1
γ

∂p
∂x

+MρC
∂u
∂x

)
; λ4 = u

M
+C. (54)

2.3.1 Exit Boundary Conditions
In this case, the amplitude of the reflected wave based on the prescribed pressure node at the

exit boundary should be

℘1 = 2χE −℘4, (55)

and the remaining conditions are

℘2 =Mu
(
C2 ∂ρ

∂x
− 1

γ

∂p
∂x

)
, ℘3 =Mu

∂v
∂x

, and ℘4 =
(
u
M

+ c
)(

1
γ

∂p
∂x

+MρC
∂u
∂x

)
. (56)

The nondimensional equations can be written as follows:

∂ρ

∂t
+Mu

∂ρ

∂x
− Mu

γC2

∂p
∂x

+Mv
∂ρ

∂y
+ δ2M

(γ − 1)RePr

1
C2

∂2T
∂y2

. (57)

∂u
∂t

+ 1
ρC

[(
u+ C

M

)(
1
γ

∂p
∂x

+MρC
∂u
∂x

)]
+Mv

∂u
∂y

− δ2

(γ − 1)RePr

1
ρC

∂2T
∂y2

−Mδ2

Re

1
ρ

∂2u
∂y2

= 0. (58)

∂v
∂t

+M
(
u

∂v
∂x

+ v
∂v
∂y

)
= 0. (59)

dp
dt

= 0. (60)

2.3.2 Head End Boundary Condition
The velocity component normal to the boundary (u (0, y, t)) is non-zero since the head end

is the moving boundary. Thus,

u(0,y, t)= εsin(ωt);
∂u
∂y

= 0;
∂u
∂t

= εωcos(ωt). (61)

λ1 = ε

M
sin(ωt)−C; λ2 =Mεsin(ωt); λ3 =Mεsin(ωt); λ4 = ε

M
sin(ωt)+C. (62)

The left-running wave {℘1} propagates out of the computational domain and can be com-
puted from the interior points using the definitions Eq. (62). The right-running wave {℘4} points
into the domain. However, information on the exterior points is unavailable. Thus, the derivative
of the time-dependent axial velocity variation in Eq. (61) is used to infer the unknown amplitude
of the reflected wave {℘4}. Eq. (47) suggests that the necessary condition is

℘4 = 2Cχx+℘1− 2ρCεωcos(ωt)− 2ρCMv
∂u
∂y

, (63)



CMES, 2021, vol.127, no.2 449

and the remaining amplitudes are

℘1 =
(

ε

M
sin(ωt)−C

)(
1
γ

∂p
∂x

−MρC
∂u
∂x

)
. (64)

℘2 =Mεsin(ωt)
(
C2 ∂ρ

∂x
− 1

γ

∂p
∂x

)
. (65)

℘3 =Mεsin(ωt)
∂v
∂x

. (66)

The wave-mode forms of the Navier–Stokes equations are simplified by ignoring the axial
transportation terms in (χx, χy, and χE) and the transverse pressure gradient as well. These
reductions are justified by the asymptotic of Zhao et al. [19] and have been employed successfully
by Kirkkopru et al. [36] and Hegab et al. [39].

The nondimensional equations can be written in the form:

∂ρ

∂t
+ 1
C2

[
Mεsin(ωt)

(
C2 ∂ρ

∂x
− 1

γ

∂p
∂x

)
− 1

γ

dp
dt

]
+Mv

∂ρ

∂y
+ δ2M

(γ − 1)RePr

1
C2

∂2T
∂y2

= 0. (67)

u(0,y, t)= εsin(ωt). (68)

∂v
∂t

+M
(

εsin(ωt)
∂v
∂x

+ v
∂v
∂y

)
= 0. (69)
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M
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−MρC
∂u
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)
− 2ρCεωcos(ωt)

−2ρCMv
∂u
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+
(

ε

M
sin(ωt)−C

)(
1
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∂p
∂x

−MρC
∂u
∂x

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦

+Mv
∂p
∂y

+ γMp
∂v
∂y

= χE . (70)

The nondimensional primitive variables (ρ, u, and v) can be computed using one-side finite-
difference approximation.

More details about the NSCBC techniques are found in [28].

The accuracy of the current explicit numerical schemes has been justified by Courant–
Friedrichs–Lewy (CFL) as in MacCormack [37]. They derived the following criterion to determine
the size of the time step:

(�tCFL)i,j =
1[

M
( |ui,j|

�x + |vi,j|
�y

)
+Ci,j

√
1

�x2
+ δ2

�y2
+ 3M

Re

(
1

�x2
+ δ2

�y2

)] ,
where �t=min

[
ϑ(�tCFL)i, j

]
and the Courant number ϑ is less than one. Precisely, the numerical

results from the current study show that the best results are found for 0.5 ≤ ϑ ≤ 0.65. In order
to resolve the axial and transverse structure, the number of mesh sizes in the x and y direction
is chosen to be 101× 201 to capture the small amplitude wave cycles near the centerline with
uniform grids.
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3 Mathematical Formulation for Turbulent Flow Characteristics

The features of the flow field are essentially transient, weakly viscous and contain vorticity
distribution that has a length scale small compared to the overall geometry. These flow charac-
teristics have similar behaviour of the turbulent flow. In this sense, the objective of this section
is utilized to examine the relationship between results of the traditional studies of turbulence in
injection driven channel and those found in the DNS as in Section 2.

The governing conservation equations of the flow can be written for time-dependent, com-
pressible, and turbulent flow in the dimensional form as follows:

Continuity Equation

∂ρ′

∂t′
+ ∂

∂xi
(ρ′ui)= 0, (71)

Momentum Equation

∂(ρ′ui)
∂t′

+ ∂

∂xj
(ρ′uiuj)=− ∂p′

∂xi
+ ∂

∂xj

[
μ

(
∂ui
∂xj

+ ∂uj
∂xi

− 2
3
δij

∂ul
∂xl

)]
+ ∂

∂xj
(−ρ′u′iu

′
j), (72)

Energy Equation

∂(ρ′e′)
∂t′

+ ∂[uj(ρ′e′ + p′)]
∂xj

= ∂

∂xj
[(λ+Cpμt/Prt)

∂T ′

∂xj
− ui(ρ’ u′iu

′
j)], (73)

where ui denotes the mean velocities, u′i and u
′
j are the turbulent fluctuations. The total energy

per unit volume is defined as ρ′e′ = ρ′CvT ′ + 0.5ρ’ ui2, where Cv is the specific heat at a constant
volume and T ′ is the temperature.

The momentum equations contain additional terms, known as Reynolds stresses, which rep-

resent the effects of turbulence. These Reynolds stresses, −ρ′u′iu
′
j, must be modelled to close

the governing system of equations. This can be achieved through the appropriate selection of a
turbulence model.

The Reynolds-averaged conservation Eqs. (71), (72), and (73) for unsteady compressible tur-
bulent flow along with a turbulence model are integrated with the equation of state p′ = ρ′RT ′ to
close the system of governing equations.

3.1 Turbulence Modeling
In industrial CFD applications, RANS modelling remains one of the main approaches when

dealing with turbulent flows. The Reynolds-averaged approach to turbulence modelling requires
appropriate modelling of the Reynolds stresses in Eq. (72). The conventional method to relate the
Reynolds stresses to the mean velocity gradients is based on the Boussinesq hypothesis [40]:

−ρ′u′iu
′
j =μt(

∂ui
∂xj

+ ∂uj
∂xi

)− 2
3
(ρ′k+μt

∂uk
∂xk

)δij, (74)

where δij is the Kronecker delta function (δij = 1, if i= j, and δij = 0, if i �= j), and k is the turbulent
kinetic energy. One of the most challenging problems of turbulent flow is the estimation of the
turbulent viscosity.
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For the calculation of the turbulent viscosity, the v2-f well known turbulence model is applied.
The distinguishing feature of the v2-f model is its use of the velocity scale, v2, instead of
the turbulent kinetic energy, k, for evaluating the eddy viscosity. The v2, which is the velocity
fluctuation normal to the streamlines, provides the proper scaling in representing the damping of
turbulent transport close to the wall.

This model requires the solution to three transport equations, where the transport equation
of the turbulent kinetic energy and its dissipation rate can be written as follows [41]:

∂(ρ′k)
∂t′

+ ∂

∂xj
(ρ′ujk)= ∂

∂xj

[(
μ+ μt

σk

)
∂k
∂xj

]
+ρ′(P′

r− ε) (75)

∂(ρ′ε′)
∂t′

+ ∂

∂xj
(ρ′ujε′)= ∂

∂xj

[(
μ+ μt

σε

)
∂ε′

∂xj

]
+ρ′(C1εP

′
r
ε′

k
−C2ε

ε′2

k
+C3ε

P′
r
2

k
) (76)

uj
∂v′2

∂xj
= kf − 6v′2

ε′

k
+ ∂

∂xj

[
(ν + νt)

∂v′2

∂xj

]
(77)

L2 ∂2f

∂x2j
− f = 1

T

[
(C1− 6)
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k
− 2

3
(C1− 1)

]
−C2
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(78)

T =max
[
k
ε′
, 6

√
ν

ε′

]
(79)

L=CLmax

⎡
⎣k3/2

ε′
,Cη

(
ν3

ε′

)1/4
⎤
⎦ (80)

where P′
r and ε′ represent the production rate and dissipation rate of the turbulent kinetic energy,

k, respectively. The production rate is related to the mean strain of the velocity field through the
Boussinesq assumption:

P′
r =μtS2 (81)

where S is defined as follows:

S=
√

1
ρ′

(
∂uj
∂xi

+ ∂ui
∂xj

− 2
3
δij

∂uk
∂xk

)
∂ui
∂xj

. (82)

The turbulent viscosity is given by the following:

μt = ρ′Cμv2T ′.

The constants of the model are given in as follows:

Cμ = 0.22, σk = 1, σε = 1.3,

C1ε = 1.4
(
1+ 0.05

√
k/v2

)
; C2ε = 1.9,

C1 = 1.4; C2 = 0.3; CL = 0.23; Cη = 70. (83)
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The importance of the turbulence studies with the aspect ratio of twenty, which is not large
enough to enable a fully turbulent mean flow to develop in the chamber, suggests that the DNS
may provide a better understanding for the impact of the transverse movement of the vorticity
peak on the behaviour of the erosive burning.

4 Experimental Setup

The experimental setup layout is shown in Fig. 2. It consists of the following parts:

(1) Air supply (10) Distribution board (12 V)
(2) Compressor (11) Sensor (capacitance pressure transducers)
(3) Reservoir (12) Computer
(4) Orifice meter (13) Data acquisition card
(5) Guide vanes (14) Circular to square cross-section
(6) Injected cone (15) Piston
(7) Test model (16) Belt
(8) Power supply (220 V) (17) Electric motor
(9) Transformer (220 to 12 V) (18) Voltage variance

(17) (18)

(16)

(12)

(8)

~

. . . .

(1)
(3)

(4)

(5)

(6)

(7)
(8)

(9)

(10)

(2)

(11)

(15)

T.D.C

B.D.C

(14)

((13)

Figure 2: The layout of the test rig [35]
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The piston oscillates at the head end of the tube. The acoustic pressure fields are recorded
at several locations along the tube by capacitive pressure transducers (11). These transducers are
connected to a computer through a built-in data acquisition system (13). The motor frequencies
are changed using voltage Varies. The range of the generated frequencies from the available devices
is small enough to catch the first natural frequencies (250 Hz). The pressure traces at x= 0.125,
ε = 0.045, and ω = 0.52 (f ′ = 63.44 Hz) is recorded.

5 Results and Discussion

In this study, the asymptotic methodologies are combined with numerical and experimental
approaches to give precise fundamental insights for the unsteady flow dynamics in a chamber with
end-wall disturbances and steady side-wall injection. The complete axial flow speed may be divided
into three parts, as by Staab et al. [17]:

u(x,y, t)= ur(x,y, t)+ us(x,y)+ up(x, t) (84)

where, us refers to the converged steady flow-field, which is used as an initial condition for the
unsteady computations. The planar part of the flow-field, up, which describes weakly viscous
acoustic effects, is created by the difference between the unsteady and the steady axial speed at
y = 0, where the rotational part uv (0, t) = 0 is established from the boundary conditions. The
unsteady rotational part uv is found from Eq. (84) as the difference between the total unsteady
speed and the calculated us and up.

The total dimensionless unsteady vorticity is

�=−
[
∂uv
∂y

− 1

δ2
∂vv
∂x

]
, (85)

where the vorticity is non-dimensionalized as follows:

�=�′/
(
U ′
zo/H

′) , (86)

where primed quantities are dimensional. The transverse speed component vv is found from

vv(x,y, t)= v(x,y, t)− vs(x,y),

where vs represents the vertical component of the converged steady flow-field.

The parameters used to define the internal flow field include the characteristic flow Mach
number (M), injection Mach number Mi = M/δ, Reynolds number (Re), the amplitude of oscil-
lation (ε), aspect ratio (δ), mode number (n), and forcing frequency (ω). The chamber length to
half height is taken to be δ = 20.

Once a converged steady-state solution is established at given values of M, Re, and A, the
flow is disturbed by adding transient side-wall injection with ε = 0.4. The first set of the results is
for M =O(10−2),Mi = 5∗10−3, Re= 105, and n= 1 at two forcing frequencies ω = 1 and π /2. The
latter frequency is very close to the first fundamental eigenvalue of a nonlinear, weakly viscous
acoustic flow.

The current results pertain to the pure planner irrotational acoustic waves and the rotational
fluid flow as described in the following paragraphs.

5.1 Acoustic and Viscous Flow Dynamics in an Impermeable Duct
The first category of the results deals with the acoustic fields in the chamber without

injection from the side-wall using the experimental, computational, and analytical approaches.
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The analytical results are obtained to describe acoustic and viscous flow dynamics in an imper-
meable duct when an end-wall disturbance is used to derive axial waves. The results are used to
show that resonance between forced and propagating acoustic wave modes may be a source of
large acoustic instability as well as to assert how nonlinear effects alter the energy in acoustic
eigenfunction. The experimental results are compared with computational results to validate the
numerical technique.

The first set of the results shows a comparison between experimental and computational
pressure traces at x= 0.125, ε = 0.045, and ω = 0.52 (f ′ = 63.44 Hz), as shown in Fig. 3.

Figure 3: Comparison between the experimental and computational results for the pressure-time
history at x= 0.125, ε = 0.045, and ω = 0.52 (f ′ = 63.44 Hz)

The result illustrates the wave oscillations (quasi-steady wave motion) after many wave cycles.
A stable or bounded solution is observed at this frequency. A reasonable comparison between the
experimental and computational approaches is noticed. The deviations are directed to the linearity
and complexity of the experimental test rig design. As a result, undesirable harmonics are seen
with the experimental work due to some leaks it the connection between the circular portion of
the piston and the duct shape.

In the current study, the computational and asymptotic approaches are extended to cover a
wide range of frequencies away from the first fundamental mode (f ′ = 159 Hz), very close to the
first fundamental mode (f ′ = 239 Hz), or at the first fundamental mode (f ′ = 250 Hz). Comparison
between the computational and analytical results for the pressure-time history at the mid-length
of the chamber, ε = 0.1 and ω = 1.0 (f ′ = 159 Hz) and ω = 1.5 (f ′ = 239 Hz) are presented in
Figs. 4 and 5, respectively.

Moreover, the pressure-time history at the mid-length of the chamber for ε = 0.1, at two
different frequencies, ω = 1.0 (f ′ = 159 Hz) and ω = 1.5 (f ′ = 250 Hz) is presented in Fig. 6.

It is noted that the frequencies increase as time increases for both pressure and velocity fields
when the forced frequency (ω) is very close to, or at, the resonance conditions. At resonance
conditions, beat phenomena is appeared. Moreover, the deviation between the analytical and
the computational approaches appears reasonable for the period between 0 < t < 20, while the
deviation increases as time increases. This deviation may be due to nonlinearity effects.
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Figure 4: Comparison between the computational and analytical results for the pressure-time
history at the mid-length of the chamber, ε = 0.1 and ω = 1.0 (f ′ = 159 Hz)

0 20 40 60
t

0.6

0.8

1

1.2

1.4

P

Asymptotic solution
Numerical solution

Figure 5: Comparison between the computational and analytical results for the pressure-time
history at the mid-length of the chamber, ε = 0.1 and ω = 1.5 (f ′ = 239 Hz)

Coupling effects between the burning process and the flow characteristics inside the SRM
chamber are associated with small-amplitude pressure oscillations, which can be described math-
ematically in terms of appropriate eigenfunctions. The co-existence of forced acoustic modes
and propagating modes has a significant role in the energy exchange mechanism and acoustic
instability inside the chamber of an SRM. One of the primary objectives of this research is to
illustrate how acoustic wave patterns in a duct are generated by a simple time-dependent boundary
condition at the head end in terms of an initial-boundary value formulation. The numerical
solution to the full parabolized nonlinear, unsteady, compressible Navier–Stokes equations is
integrated with the analytical solutions using the perturbation theory to the weakly nonlinear
analysis of the acoustic waves to examine the complex acoustic/fluid dynamics mechanism and
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their impact on the combustion of real solid fuel. Moreover, both approaches are used to show
that the resonance between forced and propagating acoustics wave modes may be the source of
large acoustic instability.

Figure 6: The pressure-time history at the mid-length of the chamber, ε = 0.1, at two different
frequencies, ω = 1.0 (f ′ = 159 Hz) and ω = 1.5 (f ′ = 250 Hz)

Lower and higher-order calculations are formulated to find a weakly nonlinear solution within
the core flow, which defines the eigenfunctions’ acoustic damping time. The lowest order acoustic
equations, valid for the limit M→ 0 and Re	 1.

Our previous study [26] revealed that a weakly nonlinear theory is required to describe the
acoustic evolution for a longer time. Thus, the perturbation analysis for higher-order calculations
is used to find a weakly nonlinear solution within the core-flow to provide additional verification
for the acoustic damping time of the eigenfunctions.

Moreover, the higher-order calculations revealed that the quadratic nonlinear convective terms
could not be a source of intermodal energy transfer at the O(M2) approximation level. As a result,
energy in eigenfunction modes cannot be damped by quadratic convection effects when “open
box” eigenfunctions are the basis set for the Fourier series. At the same time, the O(M3) cubic
nonlinearities are responsible for nonlinearization in the cavity of the SRM chamber. It follows
that wave-wave interactions (non-harmonic behaviour of eigenfunction amplitudes) will occur over
a time scale long compared to the acoustic time t=O(1).

Finally, we may conclude that Figs. 4 and 5 support the remarks above by comparing a finite-
difference solution for the 2-D, nonlinear, unsteady parabolized Navier–Stokes equations and the
one-dimension linear acoustic theory equations.
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5.2 Acoustic Fluid Dynamics Interaction
The second category of the results is devoted to examining the unsteadiness of the rotational

fluid flow that arises from the interaction between the longitudinal axial pressure waves and
the steady injection from the side-wall. The first case of the second set is implemented for the
rotational velocity and vorticity when t = 32 for Re = 3 ∗ 105, M = 0.02, ε = 0.4, at x = 0.5 for
ω = 1 (dotted line), ω = 1.5 (solid) in Fig. 7.

Figure 7: The transverse variations for unsteady vorticity across the chamber at x= 0.5 and t= 32
for ω = 1 (dotted line) and ω = 1.5 (solid)

The results show that the rotational fluid flow is generated at the side-wall due to the
interaction process and is then convected vertically toward the centerlines as time increases. It
is found that the amplitude of the vorticity wave oscillations near the surface is generally larger
than that away from the wall for both the non-resonance (ω = 1) and the near-resonance (ω = 1.5)
frequencies. Moreover, the amplitudes of the rotational axial velocity and the vorticity for ω = 1.5
are found to be about ten times those for ω = 1. Additionally, the vorticity fronts for ω = 1.5 and
ω = 1 are observed at similar transverse locations. These interesting results reveal that the forcing
frequency and the first fundamental modes significantly affect the generation and evolution of the
intense unsteady vorticity.

The effect of the injected Mach number on the generation and evolution of the unsteady
vorticity is presented in Fig. 8 at t= 32 for ω = 1, Re = 3 ∗ 105, ε = 0.4, at x= 0.5 for M = 0.02
(dotted line), M = 0.01 (solid).

It is noticed that the amplitudes of the axial rotational velocity and the generated unsteady
vorticity increase as the injected Mach number increases. Moreover, the vorticity front for
M = 0.01 is located at y= 0.64, while for M = 0.02 is found to be at y= 0.4 from the centerline.
This means that the vorticity field for the larger Mach numbers proceeds and fills faster than that
for the smaller Mach numbers. Zhao et al. [19] predicted this trend, for the actual radial position
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as a function of the Mach number and time, as

�e (t)= 2√
π

(
tan−1

(
e−Mπ t

))1/2
. (87)

The above derived front location in Eq. (87) is measured from the centerline. Fig. 9 shows
that the analytical time-dependent vorticity front location (�e) at different Mach numbers varies
from 0.01–0.04.

Figure 8: The transverse variations for unsteady vorticity across the chamber at x = 0.5, t = 32,
and ω = 1 for M = 0.02 (dotted line) and M = 0.01 (solid)

The comparison between the analytical result for the vorticity front in Fig. 7 at t= 32, Mach
number M = 0.01 and 0.02 with the numerical result locations in Fig. 8 show an excellent qual-
itative and quantitative agreement. Moreover, the vertical propagation of the generated vorticity
front is found to be nearly linear as M = 0.01, and this tendency disappears as Mach number
increases and the nonlinearity effect becomes predominant, as seen in Fig. 9.

The vorticity topography for Re = 3 ∗ 105, M = 0.01, ε = 0.4, and ω = 1 is presented in
Figs. 10a–10d at four different times. At x= [0, 1] are the closed and open ends of the chamber,
while at y = [0, 1] are the centerline and the injection surface, respectively. At the side-wall
y= 1,T = 1 is specified.

Here again, it is noted that the vorticity is generated at the sidewall and then penetrated
and fill the entire chamber as time increase. Tab. 1 shows the locations of the vorticity fronts
from the computational results presented in Figs. 10a–10d at t= 0, 8, 16, 32, and 40 and from the
analytical solutions of Eq. (87). It is noted that deviations between the weakly nonlinear analytical
solution and the computational solution are found to be O (10−2). This verification reveals that
the numerical techniques with the treatment of the boundary conditions using NSCBC are suitable
for solving the whole Navier–Stokes equations in similar chambers to the solid rocket.
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Figure 9: Analytical time-dependent vorticity front location (�e) at different Mach numbers per
Eq. (87)

Figure 10: (a–d) Computational vorticity topographies that show the vorticity generation and
penetration across the whole chamber at times t = 8, 16, 32 and 40 for Re = 3 ∗ 105, M = 0.01,
δ = 20, and ε = 0
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Table 1: Comparison between the analytical solution and the computational solution for the
vorticity edge at M= 0.01, Re= 3 ∗ 105, ε = 0.4, and ω = 1

Time Analytical unsteady vorticity front
�e (t)= 2√

π

(
tan−1 (e−Mπ t

))1/2 Computational
vorticity front

Deviation Percentage (%)

t= 0 1.0 1.0 0 0
t= 8 0.902 0.880 0.02 2.21
t= 16 0.835 0.805 0.03 3.59
t= 32 0.679 0.720 −0.041 −5.2
t= 40 0.60 0.621 −0.021 −3.33

To verify results for Mach number of 0.02, the transverse variations of rotational axial
velocity (uv) at several different times mid-length in the chamber for Re = 3 ∗ 105, M = 0.02,
ε = 0.4, and ω = 1 are presented in Fig. 11.

Figure 11: The transverse variations for rotational axial velocity across the chamber at x= 0.5 and
ω = 1 for M= 0.02 at five different times

The results imply that the rotational field extends to cover nearly the entire chamber by t= 42.
Moreover, the unsteady vorticity topography at two different times t= 20 and 40 for Re = 3 ∗ 105,
δ = 20, and ε = 0.4 is presented in Fig. 12.

From the results, it is noted that the absolute amplitude of the unsteady vorticity increases
with increasing axial distance downstream. Moreover, the vorticity front moves almost parallel to
the injection surface, and monotonic variation is noticed.
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Figure 12: The vorticity topography for Re = 3∗105, M= 0.02, δ = 20, and ε = 1 at (a) t= 20 and
(b) t= 42

The last case study of the second set is for the generation and evolution of the temperature
disturbance that accompanies the vorticity generation in the first case study. Fig. 13 shows the
transverse temperature variations mid-length in the chamber for Re = 3 ∗ 105, M = 0.02, δ = 20,
and ε = 0.4 at five different times.

Figure 13: The transverse variations for the computational temperature variations across the
chamber at x= 0.5 and ω = 1 for M= 0.02 at five different times
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It is clearly noted that the fluctuation of the transverse temperature gradient at the injection
surface is larger than that away from the injection surface. Here again, the variation can be
attributed to a combination of oscillations at the forcing frequency and eigenfunction oscillations
that exist for t	 1. Near the centerline, the temperature gradient represents the values for the
pure acoustic fields that were studied in detail in the first set of the study. Moreover, Tab. 2 shows
the locations of the vorticity fronts for M = 0.02 from the computational results presented in
Fig. 12 at t= 0, 5, 10, 20, 30, and 42 and from the analytical solutions of Eq. (87). Here again,
the deviations between the weakly nonlinear analytical solution and the computational solution is
O (10−2).

Table 2: Comparison between the analytical solution and the computational solution for the
vorticity edge at M = 0.02

Time Analytical unsteady vorticity front �e(t)
Eq. (88) �e (t)= 2√

π

(
tan−1

(
e−Mπ t

))1/2 Computational
vorticity front

Deviation Percentage (%)

t= 0 1.0 1.0 0 0
t= 5 0.9 0.880 0.02 2.22
t= 10 0.8 0.77 0.03 3.75
t= 20 0.59 0.565 0.025 3.85
t= 30 0.43 0.408 0.022 5.1
t= 40 0.315 0.295 0.02 6.3

5.3 Turbulent Analysis
An investigation to chamber flow turbulence modelling in a rectangular channel with a

side-wall mass injection has been studied and validated in our previous study in [42,43]. We
concluded that the RSM v2-f and SST k–ω models were in a close agreement with the measured
experimental data from [44].

In the present paper, we only explain some important features of this flow configuration. Due
to the continuous side-wall mass addition, the axial flow velocity increases towards the duct exit,
and the flow is subjected to a strong streamline curvature, as shown in Fig. 14.

This velocity gradient and streamlined curvature results in an increase in turbulent kinetic
energy production. As a result, the turbulent kinetic energy increases towards the duct exit, as
shown in Fig. 15.

Therefore, the possibility of a laminar-to-turbulent transition exists. One way to identify the
transition from laminar to turbulent is to examine the wall friction coefficient. Fig. 16 shows
the friction coefficient obtained using different turbulent models. The friction coefficient, cf, is
calculated as follows:

Cf = 2τw/ρ′U2
m, (88)

where Um = ∫ H0 udy/H is the local mean streamwise velocity.

The results shown reveal that the flow is laminar near the head end and transitions to
turbulence at a certain axial distance. Dunlap et al. [45] and Griffond et al. [46] reported similar
observations. Only the v2-f turbulence model can predict this phenomenon accurately. Therefore,
the v2-f model is the appropriate choice for flow with a side-wall mass injection. Distribution
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of the local friction coefficient along the wall of the solid rocket motor chamber with side-wall
injection is predicted. This comparison showed coupling between the generated unsteady vorticity
arising from acoustics-fluid dynamics interaction and the turbulence intensity that exists strongly
downstream of the rocket chamber.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.005

0.01

(a)

(b)
X

Figure 14: Streamlines and velocity vectors of the internal flow field in a simulated solid rocket
motor chamber with side-wall injection

Figure 15: Contours of turbulent kinetic energy (m2/s2) in a simulated solid rocket motor chamber
with side-wall injection
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Figure 16: Distribution of the local friction coefficient along the wall of the solid rocket motor
chamber with side-wall injection

6 Conclusions

Computational, analytical, and experimental approaches are integrated to study the complex
wave patterns generated in a chamber with end-wall disturbances and the interactions with steady
side-wall mass addition.

Results for the acoustic field show a bounded solution for the non-resonance frequency, while
beats phenomena are observed near resonance frequency. A reasonable comparison between the
experimental and computational approaches is seen.

The computational results for the rotational fields show that severe shear stresses may be
generated beside the injection side-wall and transferred via convection over time to fill the entire
chamber. The analytical and computational results show an excellent agreement for the propaga-
tion of the unsteady vorticity and its edges. It is seen that the amplitude of the generated shear
stresses and the wavelength are many times larger beside the injection surface than near the cen-
terline. These important phenomena reveal that the grid generation techniques must cluster near
the centerline to capture the shorter wave cycles around the chamber centerline. By comparing
the weakly nonlinear analytical solution and the computational solution for the vorticity front
locations at different times and Mach numbers, the deviations between the two results were found
to be O (10−2). This verification reveals that the numerical techniques with the treatment of the
boundary conditions using NSCBC is suitable for solving the whole Navier–Stokes equations in
chambers similar to the solid rocket chamber.

The effect of including turbulence models in predicting the internal flow characteristics is
explained by a comparison between the laminar and turbulent simulation. The comparison showed
coupling between the generated unsteady vorticity arising from acoustics-fluid dynamics interaction
and the turbulence intensity that exists strongly downstream of the rocket chamber. Moreover, the
importance of the turbulence studies with the aspect ratio of twenty suggests that the DNS may
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provide a better understanding for the impact of the transverse movement of the vorticity peak
on the behaviour of the erosive burning.

In the context of propellant combustion, the intensive unsteady vorticity generation and the
associated shear stresses can be anticipated to have a direct impact on the stability of burning
real solid rocket propellant. Moreover, more intensive computations are required to account for
the existence of the convergent–divergent nozzle along with the end-wall disturbances.
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