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ABSTRACT

This paper presents a robust topology optimization design approach for multi-material functional graded struc-
tures under periodic constraint with load uncertainties. To characterize the random-field uncertainties with a
reduced set of random variables, the Karhunen-Loève (K-L) expansion is adopted. The sparse grid numerical
integrationmethod is employed to transform the robust topology optimization into a weighted summation of series
of deterministic topology optimization. Under dividing the design domain, the volume fraction of each preset
gradient layer is extracted. Based on the ordered solid isotropic microstructure with penalization (Ordered-SIMP),
a functionally graded multi-material interpolation model is formulated by individually optimizing each preset
gradient layer. The periodic constraint setting of the gradient layer is achieved by redistributing the average element
compliance in sub-regions. Then, the method of moving asymptotes (MMA) is introduced to iteratively update the
design variables. Several numerical examples are presented to verify the validity and applicability of the proposed
method. The results demonstrate that the periodic functionally graded multi-material topology can be obtained
under different numbers of sub-regions, and robust design structures are more stable than that indicated by the
deterministic results.
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1 Introduction

Functionally graded structure, known as non-uniform structure, has extensive application
prospects in the fields of aerospace, aircraft design, communication and electronics, etc., due to
excellent performances such as vibration absorption, heat insulation and noise reduction.

In recent years, there is a trend to optimize the design of functionally graded structures using
topology optimization methods [1,2] to achieve specific performances. Paulino et al. [3] firstly dis-
cussed the effectiveness of the functionally graded structure topology optimization design using the
criterion method. Since then, great achievements have been made in the study of topology opti-
mization for functionally graded structures design. Xia et al. [4] achieved the parallel optimization
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design of material properties and material distribution of functionally graded structures. Huang
et al. [5] employed the bi-directional evolutionary structural optimization (BESO) approach to
obtain various anisotropic microstructures of porous materials and composite materials. Recently,
a systematic multi-phase infill design method [6] is proposed to generate graded multi-material
infill structures. According to the above introduction, existing topological optimization methods
of functionally gradient structures generally ignore the influence of uncertain factors such as
material uncertainty [7,8], load uncertainty [9,10], geometric size and boundary uncertainty [11,12],
resulting in structural instability and unreliability after optimization. In this context, structural
topology optimization considering uncertainties tends to make optimized topologies more stable
and reliable [13,14].

Currently, topology optimization under loading uncertainties is generally classified into two
categories, namely reliability-based topology optimization (RBTO) [15,16] and robust topology
optimization (RTO) [17,18]. RBTO focuses on safety and aims to accurately provide structural
safety measures, while RTO attaches importance to structural stability, which reduces the sensi-
tivity of structural performance. Ben-Tal et al. [19] firstly employed the semidefinite programming
to solve the RTO problem of truss structures. Compared with the discrete structure, the RTO
problem of continuum structure is more practical and has become one of the research hotspots.
Amir et al. [20] proposed a reanalysis method to solve RTO problem, aiming to improve the com-
putational efficiency of RTO algorithm. Wu et al. [21] explored the RTO method for uncertainties
of external load direction based on interval variables. Moreover, Zhang et al. [22] investigated a
robust topology optimization method for designing the microstructures of PnCs by considering
random field material properties. However, the above researches mainly focus on RTO of single
material structures. The emergence of 3D additive printing technology makes the manufacturing
and processing of multi-material structure possible. Recently, Kang et al. [23] proposed a robust
shape and topology optimization method considering the uncertainties with the interface of multi-
material structures. Chan et al. [24] presented a density-based RTO for meso- or macroscale
multi-material lattice structures under any combination of material and load uncertainties. Zheng
et al. [25] proposed an effective method for designing multi-material robust structures, aiming at
minimizing the compliance of linear elastic structures. Romero et al. [26] performed the multi-
material robust topology optimization problem by minimizing the topology derivative constructor
of the functional to achieve the nucleation and evolution of the level set.

This paper optimizes the topology of the gradient layer with the mean and standard deviation
weights of the structural compliance as the objective function and the volume fraction as the
constraint to identify the optimal multi-material layout scheme. Meanwhile, considering the appli-
cation in practical engineering, periodic constraints are applied in the macrostructure topology
optimization model for easy manufacturing and assembly. A robust topology optimization design
method for multi-material functionally graded structures with periodic constraints is proposed,
which applies the Ordered-SIMP method to characterize the multi-material interpolation model. In
terms of load random field distribution, the K-L expansion is employed to transform the random
field into a finite number of unrelated load random variables, and the sparse grid numerical
integration method is adopted to transform the RTO into a set of multi-weighted deterministic
topology optimization (DTO).

The rest of the paper is organized as follows. Section 2 introduces the periodic multi-material
functionally graded structure. Section 3 gives a brief introduction of multi-material structure
interpolation model. The uncertainties in the characterization of the loading uncertainty with
random fields are described in Section 4. Section 5 presents the establishment development and
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solution procedure of the proposed RTO formulation. Several numerical examples are given in
Section 6 to verify the proposed method. Section 7 summarizes the remarkable conclusions.

2 Multi-Material Functionally Graded Structure

The macro design domain of a periodic multi-material functionally graded structure is divided
into multiple gradient layers (�1, . . . , �z, . . . , �n), where each gradient layer consists of periodic
material microstructures. Firstly, given the initial conditions of the structural Dirichlet bound-
ary �D, Neumann boundary �N and external load, the topology optimization design of the
macrostructure obtain the optimal results of the material density at each gradient layer. Further-
more, the macroscopic structure of the gradient layer and the microstructure of the material are
optimized to obtain the optimal distribution of the microstructure of the periodic functionally
graded material. Periodic multi-material functionally graded structure is depicted in Fig. 1.

Macro design domain Periodic structure Material microstructure

Figure 1: Periodic multi-material functionally graded structure

3 Multi-Material Interpolation Model Based on Ordered-SIMP

The SIMP method introduces cell design variables that vary continuously in the interval
of 0–1 [27–29] to establish a nonlinear functional relationship between material properties and
design variables.

In terms of the design of multiple materials structure, the elastic modulus and density of each
material are firstly normalized, and the material properties are transformed into dimensionless
relative values⎧⎨
⎩
ENm =E0

m/Emax

ρNm = ρ0m/ρmax

(m= 1, 2, . . . ,M) (1)

where ENm and ρNm represent the elastic modulus and density of the material m after normalization,
Em0 and ρ0m denote the elastic modulus and density of the solid material m, Emax and ρmax are
the elastic modulus and density of all materials, respectively, M is the total number of materials.
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The multiple material interpolation model based on the ordered-SIMP method [30] can be
expressed as

Em (xe)=Pm · (xe)β +Om xe ∈
[
ρNm , ρNm+1

]
(2)

where xe denotes the relative density of element e, which is the design variable, β is the penalty
factor, Em is the elastic modulus after multi-material interpolation, ρNm+1 represents the density
of the material m+ 1 after normalization. Pm and Om respectively represent scale coefficient and
translation coefficient, which can be formulated as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Pm = ENm −ENm+1(

ρNm
)β − (ρNm+1

)β
Om =ENm −Pm

(
ρNm
) (3)

where ENm+1 represents the elastic modulus of the normalized material m + 1. Fig. 2 shows

the interpolation curve of three-angle materials based on the Ordered-SIMP method (ρN1 = 0.4,

ρN2 = 0.7, ρN3 = 1; EN1 = 0.2, EN2 = 0.8, EN3 = 1.0), where, — represents β = 0, - - - represents β = 3,
-·-· represents β = 9. It can be seen from the figure that the penalty effect increased significantly
with the increase of β. In particular, the interpolation model is linear and has no penalty effect
when β = 1.0.

Figure 2: Three materials interpolation model based on Ordered-SIMP

4 Discretization of Random Field under Load Uncertainties

The load uncertainties can be characterized by random field or random variable. For dis-
tributed loads with spatial correlation, the commonly used discrete and simulation methods
include the extended optimal linear estimation method [31] and the K-L expansion [32,33].
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This paper uses the K-L expansion to transform the random field into the cumulative sum of
a finite number of uncorrelated random variables under corresponding weights [34]. The K-L
expansion of the random field can be described as

ζ (ϑ , θ)= e (ϑ)+
∞∑
i=1

√
λiϕi (ϑ)μi (θ) (4)

where ζ(ϑ , θ) denotes the two-dimensional random load field in the continuous space domain D,
ϑ is the space coordinate, defined as ϑ = (ϑ1, ϑ2); θ is the random coordinate, e(ϑ) is the mean
value, λi and φi are the i-th eigenvalue and orthogonal eigenvector of the random field covariance
C(ϑ1, ϑ2) respectively. Random field covariance C(ϑ1, ϑ2) satisfies Fredholm integral equation∫
D
C (ϑ1, ϑ2) ϕi (ϑ1)dϑ1 = λiϕi (ϑ2) (5)

where μi(θ) denotes uncorrelated random variable, which satisfies the following conditions

E [μi (θ)]= 0; E
[
μi (θ) , μj (θ)

]= δij (6)

where δij is Kronecker-delta function, δij = 1 for i = j, and 0 for others. Independent orthogonal
random variables are defined as

μi (θ)= 1√
λi

∫
D
[ζ (ϑ , θ)− e (ϑ)]ϕi (ϑ)dϑ (7)

When the K-L expansion is applied to the discretization of random field ζ(ϑ , θ),
a d-dimensional random vector ζ(ϑ) is define, whose elements are mapped to d observations in
ζ(ϑ , θ). Then the K-L expansion of the load random field can be given by

ζ (θ)= e+
∞∑
i=1

√
λiϕiμi (θ) (8)

where e is the mean value of the random field at d observation points; λi and φi are the i-th
order eigenvalue and orthogonal eigenfunction of the correlation matrix C, which can be solved
by the following formula [35]

Cϕi = λiϕi (9)

where the correlation matrix C is defined as

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C (ϑ1, ϑ1) C (ϑ1, ϑ2) . . . C (ϑ1, ϑd)

C (ϑ2, ϑ1) C (ϑ2, ϑ2) . . . C (ϑ2, ϑd)

...
...

. . .
...

C (ϑd , ϑ1) C (ϑd , ϑ2) . . . C (ϑd , ϑd)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

In practical problems, the main probability characteristics of a stochastic process are usually
approximated by the random variables corresponding to the first few eigenvalues descending from
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the maximum eigenvalue. Taking the first M items and letting it as M� d, and the determination
of the random field using the reduced dimensional K-L expansion can be expressed as follows:

s=
∑M

i=1 λi∑d
i=1 λi

(11)

when s is close enough to 1, the random field can be effectively characterized by dimensionality
reduction K-L expansion [36,37].

5 Robust Topology Optimization Model of Multi-Material Functionally Graded Structure

5.1 Robust Topology Optimization Model
The purpose of robust topology optimization design is to reduce the sensitivity of perfor-

mance function to uncertain random variables while optimizing the objective function, so as to
minimize the variance of performance index fluctuation [38]. The difference between the deter-
ministic optimal solution and the robust optimal solution is depicted in Fig. 3. It can be seen
that the optimal performance of the robust design is worse than the former, but its performance
index is less volatile and more superior to a certain extent. Therefore, robust topology optimization
design, as a typical multi-objective optimization design problem, is usually achieved by weighting
the expectation and standard deviation of the performance function into the objective function.

According to the mathematical description of uncertain variables, robust topology optimiza-
tion design can be divided into non-probabilistic and probabilistic models [39]. Probabilistic
models can be used to describe the characteristics of most uncertain factors. Based on probability
theory and mathematical statistics, typical indicators for measuring the robustness of structural
performance are termed as mean and standard deviation. The mathematical model for robust
topology optimization of multi-material structures is established as follows:

find xe = {x1, x2, . . . , xNe}T ∈R
min J =wμc (xe, ζ )+ τσc (xe, ζ )

s.t. V (x)=
Ne∑
e=1

xeve ≤ f ·V0

K (xe, ζ )U (xe, ζ )= F (ζ )

0< xmin ≤ xe ≤ xmax ≤ 1

(12)

where J is the objective function, w and τ are the weighting coefficients, and the summation
of the weighting coefficients equals to 1, xe represents the deterministic variable, namely multi-
material structure topology optimization design variable, uncertainty variable ζ obeys a certain
probability distribution, K, U and F are the stiffness matrix, displacement vector and structural
load, respectively, ve is the volume of the element; V0 and f are the ratio of the total volume and
the volume fraction of the design area, Ne is the total number of element, xmax and xmin are the
upper and lower limits of the design variables, respectively, μc(xe, ζ ) and σc(xe, ζ ) are the mean
and standard deviation of the structural compliance, given by [40]

μc (xe, ζ )=E [c (xe, ζ )]=
∫
D
c (ζ )p (ζ )dζ (13)
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σc (xe, ζ )=
√
E
{
[c (xe, ζ )−μc (xe, ζ )]2

}
=
√∫

D
[c (ζ )−μc (xe, ζ )]2 p (ζ )dζ (14)

where p(ζ ) denotes the joint probability density function of ζ , the structural compliance c(xe, ζ )
can be expressed as

c (xe, ζ )= 1
2
U (xe, ζ )T K (xe, ζ )U (xe, ζ ) (15)

Figure 3: Deterministic optimal solution and robust optimal solution

5.2 Robust Topology Optimization Model of Functionally Graded Structure
In order to calculate the overall layout of a functionally graded structure [41,42] under

volume constraints. The volume fraction of each preset gradient layer in the optimal topological
configuration is extracted from the multi-material structure topology optimization model. The two-
dimensional rectangular design domain is divided into n gradient layers: Layer 1, . . . , Layer z, . . . ,
Layer n, where n is the total number of divided layers, and the layer-wise design is shown in
Fig. 4.

Then, each gradient layer is individually designed for optimization. The topology optimization
model of the functionally graded structure design can be defined as

find xe, z (e= 1, 2, . . . , N; z= 1, 2, . . . , n)

min J =wμc
(
xe, z, ζi

)+ τσc (xe, z, ζi)

s.t. V (x)=
N∑
e=1

xe, zve, z ≤ fz ·Vz

K
(
xe, z, ζi

)
U
(
xe, z, ζi

)= F (ζi)

0< xmin ≤ xe, z ≤ xmax ≤ 1

(16)
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where N represents the number of element in the gradient layer, xe, z is the design variable of the
z gradient layer element e, ve, z is the element volume of the z gradient layer element e, Vz and fz
are the volume and the volume fraction of the z gradient layer.

Layer 1 Layer z Layer n......

Figure 4: Layer-wise design

The optimization goal of this paper is the weighted sum of the mean and standard deviation
of structural compliance. Among them, the sensitivity of the mean and standard deviation relative
to the design variable xe, z can be given by

μc
(
xe, z, ζi

)
∂xe, z

=E

[
∂c
(
xe, z, ζi

)
∂xe, z

]
(17)

∂σc
(
xe, z, ζi

)
∂xe, z

= 1
σc
E

{[
c
(
xe, z, ζi

)−μc (xe, z, ζi)]
[
∂σc

(
xe, z, ζi

)
∂xe, z

− ∂μc
(
xe, z, ζi

)
∂xe, z

]}
(18)

5.3 Sparse Grid Numerical Integration Method
In order to solve the objective function of the robust topology optimization design, a sparse

grid method based on the Smolyak criterion [43] is employed. A basic idea is to construct a
multidimensional product formulation using a special tensor product operation of one-dimensional
configuration points as a linear combination. The advantage of this method is that the number
of configuration points is limited, and the nodes that contribute less to the calculation accuracy
are automatically deleted, so the sparse grid is applied to the robust design of statistical moment
estimation. Based on the nested hierarchy principle, the one-dimensional interlayer difference is
defined as

Δ1
k (c)=

(
ψ1
k −ψ1

k−1

)
(c) (19)

where k represents the dimension, when k = 0, ψ1
k = 0, for the performance function c with

d-dimensional loading random variables, the sparse grid numerical integration format with l-level
(l ≥ 1) precision is constructed as

ψd
l (c) =

∑
|k|≤l+d

(
�1
k1
⊗ . . .⊗�1

kd

)
(c)

=
∑

l+1≤|k|≤l+d
(−1)l+d−|k| ·

(
d− 1

l+ d− |k|

)
·
(
ψ1
k1
⊗ . . .⊗ψ1

kd

)
(c)

(20)
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where ⊗ denotes the tensor product operator, |k| is the multidimensional index accumulation,
which satisfies |k| = k1 + k2 + . . .+ kd . The corresponding set of sparse grid configuration points
is defined as

Ûd
l = ∪

l+1≤|k|≤l+d

(
U1
k1
⊗U1

k2
⊗ . . .⊗U1

kd

)
(21)

where U1
kd

is the configuration points of the d-th dimension. According to Smolyak criterion, the

corresponding d-th configuration points in Ûd
l is defined as

ζi =
(
ζ
e1
k1
, . . . , ζ edkd

)
(22)

The corresponding weights are determined as

we = (−1)l+d−|k|
(
d− 1

l+ d− |k|

)(
we1k1, . . . , w

ed
kd

)
(23)

Thus, the configuration points are given as

adl = ∪
l+1≤|k|≤l+d

(
m1
k1
⊗ . . .⊗m1

kd

)
(24)

By adjusting the level accuracy l value, the sparse grid integration accuracy is improved.
Based on the Newton-Cotes integration rule, the Causs–Chebyshev [44] sparse grid HT ∈ [−1, 1]
is constructed, and the one-dimensional configuration points are as follows:

uek =

⎧⎪⎨
⎪⎩
− cos

(
π
e− 1
mk− 1

)
for e= 1, 2, . . . , mk, if mk > 1

0 if mk = 1

(25)

The sequence of figuration points is

mk =
{
1 if k= 1

2k−1+ 1 if k> 1
(26)

Then, the corresponding weights are expressed as follows:

wek=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
mk(mk−2)

for e=1,mk, if mk>1

2
(mk−1)

⎛
⎝1− cosπ (e−1)

mk(mk−2)
−2

(mk−3)/2∑
j=1

1
4j2−1

·cos 2π j(e−1)
mk−1

⎞
⎠ for e=2, ...,mk−1, if mk>1

2 if mk=1

(27)
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The sparse grid numerical integration method is employed to solve the mean and the standard
deviation of the robust topology optimization design. The expression of mean and standard
deviation can be modified as

μc =E
[
c
(
xe, z, ζ

)]= ∫ c (ζ )p (ζ )dζ ≈
adl∑
e=1

wec (ζe) (28)

σc =
√
E
{[
c
(
xe, z, ζ

)−μc (x, ζ )]2}=
{∫

[c (ζ )−μc]2 p (ζ )d (ζ )
}1/2

≈

⎧⎪⎨
⎪⎩

adl∑
e=1

we [c (ζe)−μc]2
⎫⎪⎬
⎪⎭

1/2

(29)

According to Eqs. (17) and (18), the derivative of the optimization target J with respect to
the density xe, z is

∂J
∂xe, z

= ∂μc

∂xe, z
+ ∂σc

∂xe, z
≈

adl∑
e=1

we
∂c (ζi)
∂xe, z

+ 1
σc

adl∑
e=1

we [c (ζi)−μc]
[
∂c (ζi)
∂xe, z

− ∂μc

∂xe, z

]
(30)

The commonly used optimization solution algorithms include mathematical programming
method and optimization criterion method. In the iterative process, MMA [45] has better appli-
cability for problems with complex objectives and multi-constrained topology optimization. In
this paper, MMA method is introduced to solve the topology optimization problem of multi-
material functional graded structure. And the PDE filtering method based on Helmholts equation
is adopted.

5.4 Periodic Setting
In order to obtain the periodic functionally graded structure, the elements of the different

substructures of each gradient layer at the same position have the same material properties. The
periodic layer-wise design is shown in Fig. 5. Each gradient layer is divided into Mxj × Myj
identical sub-regions, where Mxj and Myj represent the number of sub-regions in the x and y axes
directions of the j-th gradient layer, respectively. The mathematical model of periodic structure
can be described as

xe1 = xe2 = . . .= xeMxj×Myj
, e= 1, 2, . . . , N (31)

By reallocating the average element compliance in sub-regions, the periodic constraint setting
of the gradient layer is achieved.

(
Cp
)i
1
=
(
Cp
)i
2
= . . .=

(
Cp
)i
Mxz×Myz

= 1
Mxz×Myz

Mxz×Myz∑
e=1

(
Cp
)i
e
, i= 1, 2, . . . , N (32)

At this point, the sensitivity of elements at the same position is equal to that of different
substructures to achieve periodic geometric constraints.
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Figure 5: Periodic layer-wise design

6 Numerical Examples

This paper proposes three numerical examples to illustrate the difference between the optimal
topologies under loading uncertainties and deterministic loading conditions. For comparison, the
settings in the DTO are the same as those in the RTO examples. In the calculation examples, the
design domain is discretized by square elements, and the weight coefficients of mean value and
standard deviation are set to 0.5, respectively. In order to prove the effectiveness of the proposed
method, gradient layers of 2, 3, 4 and 6 are preset for different design domains in this paper,
and for more intuitive comparison of DTO and RTO, 2× 2, 2× 1 and 1× 1 are chosen for the
sub-regions. Furthermore, the associated load amplitude and angle as well as the corresponding
weights are calculated by Clenshaw-Curtis sparse grid.

6.1 Double-Sided Fixed Beam
The double-sided fixed beam is shown in Fig. 6. The design domain is a 160 × 80 plane

quadrilateral structure, with both sides fixed, and the central position is subjected to the vertical
downward concentrated load F , which is set as 1.0. For deterministic load conditions, the ampli-
tude is set to 1, while load uncertainty, the amplitude and angle are independent random variables.
The angle θ satisfied a continuous and uniform distribution with intervals of [−3π/4, −π/4] and
the amplitude satisfied normal distribution, with the mean and standard deviation of 1 and 0.3,
respectively. The allowable volume of the material is set to 20%. The material parameter settings
are listed in Tab. 1.

F

Figure 6: Design domain of double-sided fixed beam structure
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Table 1: Implementation of three materials parameters

Number Material Density normalized
value ρN

Elastic modulus normalized
value EN

Color

1 Void 0 0 White
2 Material A 0.4 0.2 Blue
3 Material B 0.6 0.5 Red
4 Material C 1.0 1.0 Black

The design domain is discretized into 12800 (160× 80) square elements. Different materials
combination schemes are considered as follows: (1) Scheme I: Material A, Material B, Material C
and Void, (2) Scheme II: Material A, Material C and Void, (3) Scheme III: Material A, Material
B and Void, (4) Scheme IV: Material A and Void. The gradient presets are applied to the design
area along the X-axis, and Layer z= 2, 4. Each gradient layer is divided into 2×2, 2×1 and 1×1
sub-regions for discussion. The volume fraction of the preset gradient layer is obtained through
the macroscopic topology optimization of deterministic design and robust design, as shown in
Tab. 2. Then, the optimal periodic functionally graded topology material distribution of DTO and
RTO is obtained, as exhibited in Figs. 7 and 8. The mean value, standard deviation and objective
function of the Scheme II under Fig. 7 are summarized in Tab. 2.

Table 2: Volume fraction of gradient layer

Deterministic design Robust design

Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4

Layer= 2 Schemes I–IV 0.2000 0.2000 0.2000 0.2000
Layer= 4 Scheme I 0.1870 0.2130 0.2130 0.1870 0.1910 0.2090 0.2090 0.1910

Scheme II 0.1991 0.2009 0.2009 0.1991 0.2012 0.1988 0.1988 0.2012
Scheme III 0.1877 0.2123 0.2123 0.1877 0.1950 0.2050 0.2050 0.1950
Scheme IV 0.1900 0.2100 0.2100 0.1900 0.1948 0.2052 0.2052 0.1948

The optimization results show that the proposed method can effectively obtain the periodic
functionally gradient structure under different gradient layers, periodic division and material com-
bination schemes, and determine the reasonable material distribution, which shows the effective-
ness of the proposed method. Compared with the DTO, the materials of the robust optimization
structure are more concentrated on the horizontal force transmission route, thus improving the
horizontal load capacity of the structure. It can be seen from Tab. 3 that the mean, standard
deviation and objective function of the structural compliance obtained from the deterministic
design are all higher than those obtained from the robust design. Therefore, the results of RTO
have better stability under load uncertainty.

For the periodic functionally graded structure under the layered setting, the optimal periodic
structure of each gradient layer can be obtained. According to the 2×2 of scheme I under Figs. 7
and 8, substructure of gradient layer are shown in Tab. 4. With the increase of the number of
gradient layers, the optimal configurations of the structure exhibit distinct topologies.



CMES, 2021, vol.127, no.2 695

2×2                2×1                 1×1                       2×2                  2×1                 1×1

Scheme I Scheme I

2×2                2×1                 1×1                       2×2                  2×1                 1×1

Scheme II Scheme II

2×2                2×1                 1×1                       2×2                  2×1                 1×1

Scheme III Scheme III

2×2                2×1                 1×1                       2×2                  2×1                 1×1

Scheme IV Scheme IV
(a) (b) 

Figure 7: Comparison of optimized topologies of multi-material DTO and RTO under two
gradient layers. (a) Deterministic design (b) robust design
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Scheme III Scheme III

2×2                2×1                 1×1                       2×2                  2×1                 1×1

Scheme IV Scheme IV
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Figure 8: Comparison of optimized topologies of multi-material DTO and RTO under four
gradient layers. (a) Deterministic design (b) robust design
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Table 3: The topology design result of double-sided fixed beam

Case Deterministic design Robust design

Periodic Mean Standard
deviation

Objective
function

Time(/s) Mean Standard
deviation

Objective
function

Time(/s)

2× 2 193 292 242.5 4905 121 183 152 2830
2× 1 83 125 104 4914 82 124 103 2839
1× 1 56 84 70 4850 54 82 68 2770

Table 4: Substructure of gradient layer

Setting Layer 1 Layer 2 Layer 3 Layer 4

Deterministic

topologies

My = 2, Mx = 2

My = 2, Mx = 2

My = 2, Mx = 2

My = 2, Mx = 2

Layer = 2

Layer = 4

Robust

topologies

Layer  = 2

Layer = 4

6.2 Cantilever Beam
The design domain of cantilever beam is a 120× 120 quadrilateral with the left edge fixed,

as shown in Fig. 9. The upper right corner of the structure is subjected to a vertical upward
uncertain load F1, and the lower right corner acted as a vertical downward uncertain load F2 that
are assumed to be 1.0. The load condition and the parameters of material A and C are the same
as those of Section 6.1. Let the normalized value of density ρN = 0.7, and the normalized value
of elastic modulus of material B EN = 0.8. The structural volume fraction is limited within 30%.

F1

F2

Figure 9: Design domain for a cantilever beam
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The design domain is discretized into 14400 (120×120) square elements. The gradient presets
are applied to the design area along the X-axis, and Layer z= 3. Each gradient layer is divided
into 2× 2, 2× 1 and 1× 1 sub-regions for discussion. The optimal periodic functionally graded
topology material distributions of deterministic design and robust design are exhibited in Fig. 10.

2×2 2×1 1×1 2×2 2×1 1×1

Scheme I Scheme I

2×2 2×1 1×1 2×2 2×1 1×1

Scheme II Scheme II

2×2 2×1 1×1 2×2 2×1 1×1

Scheme III Scheme III

2×2 2×1 1×1 2×2 2×1 1×1

Scheme I

(a) (b)

V Scheme IV

Figure 10: Comparison of optimized topologies of multi-material DTO and RTO under three
gradient layers. (a) Deterministic design (b) robust design

The optimization results show that the optimized structures are symmetrical because the
design domain, boundary conditions, and load effects of the two working conditions are all
symmetrical. Compared with the deterministic design, the optimized results of the robust design
have thicker upper and lower edges and better horizontal load bearing capacity due to the
uncertain loads that generates horizontal partitioning. Although such a structure has a reduced
vertical load bearing capacity, the horizontal load bearing capacity is enhanced and the overall
structure becomes more stable.
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Meanwhile, considering the influence of periodic functional gradient constraints, we observed
that the material distribution of the fixed edge of the DTO was not obvious, and the load
bearing capacity was weak. On the contrary, the overall material distribution of the RTO results
is reasonable, which further proves that it exhibits better stability.

The convergence process is rapid and stable, indicating the stability of the algorithm. Accord-
ing to the 2× 1 of Scheme I under Fig. 10, the convergence curve of the topology optimization
process of structural deterministic design and robust design is shown in Fig. 11. The horizontal
axis represents the number of iterations, and the vertical axis represents the objective function. The
mean value, standard deviation and objective function of the multi-material topology optimization
design under Scheme I are summarized in Tab. 5. As can be seen from the table, the mean, stan-
dard deviation and objective function of the structural compliance obtained from the deterministic
design are all higher than those obtained from the robust design, which proves the effectiveness
of the algorithm.

(a) (b)

Figure 11: Variation curve of mean, standard deviation and objective function of compliance with
the number of iterations. (a) Deterministic design (b) robust design

Table 5: The topology design result of cantilever beam

Case Deterministic design Robust design

Periodic Mean Standard
deviation

Objective
function

Time(/s) Mean Standard
deviation

Objective
function

Time(/s)

2× 2 2594 3926 3260 7730 2229 3375 2802 3450
2× 1 1278 1930 1604 7524 1085 1642 1364 3460
1× 1 848 1281 1065 7650 606 916 762 3470
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6.3 Simply Supported Beam
The simply supported beam structure is shown in Fig. 12. The design domain is a 180× 60

planar quadrilateral. Both edges of the bottom are simply supported, and uniform loads are
applied to the top. The other settings are the same as in Section 6.1. The random field covariance
relationship is as follows:

C = exp
(
−‖X1−X2‖

d

)
(33)

where ‖X1−X2‖ is the Euclidean distance between two nodes, and d is the correlation length set
to 60.

Figure 12: Simple beam design space

The design domain is discretized into 10800 (180×60) square elements, and volume constraint
of the material is set to 0.2. The material density and elastic modulus are the same as those in
Section 6.1. Let the filtering radius Rmin = 3, and the weight coefficient of mean and standard
deviation be 0.5. The gradient presets are applied to the design area along the X-axis, and Layer
z = 3, 6. Each gradient layer is divided into 2 × 2, 2 × 1 and 1 × 1 sub-regions for discussion.
For the load condition random field, the K-L expansion is used to discretize into three random
variables, which are denoted as

F (θ)=μF +
3∑
i=1

√
λiϕiμi (θ) (34)

where μF represents the average load. According to the sparse grid numerical integration method,
the results of deterministic topology optimization design and robust topology optimization design
are exhibited in Figs. 13 and 14, respectively.

It can be seen from the Figs. 13 and 14 that the boundary of the optimization result is clear,
and that the periodic setting in the gradient layer clearly demonstrates the effectiveness of this
method. Due to the superposition of multiple loads under the influence of different amplitudes,
the configuration change of RTO was significantly different from that of DTO, which was mainly
reflected in the obvious supporting effect of filling the rod-shaped materials in the middle of
the structure, thus improving the stability of the structure. Meanwhile, the model has excellent
applicability to different material combination schemes.
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2×2 2×1 1×1 2×2 2×1 1×1

Scheme I Scheme I

2×2 2×1 1×1 2×2 2×1 1×1

Scheme II Scheme II

2×2 2×1 1×1 2×2 2×1 1×1

Scheme III Scheme III

2×2 2×1 1×1 2×2 2×1 1×1

Scheme IV Scheme IV
(a) (b)

Figure 13: Comparison of optimized topologies of multi-material DTO and RTO under three
gradient layers. (a) Deterministic design (b) robust design

2×2 2×1 1×1 2×2 2×1 1×1

Scheme I Scheme I

2×2 2×1 1×1 2×2 2×1 1×1

Scheme II Scheme II

2×2 2×1 1×1 2×2 2×1 1×1

Scheme III Scheme III

2×2 2×1 1×1 2×2 2×1 1×1

Scheme IV Scheme IV
(a) (b)

Figure 14: Comparison of optimized topologies of multi-material DTO and RTO under six
gradient layers. (a) Deterministic design (b) robust design

According to the 2 × 2 of Scheme I under Figs. 13 and 14, the deterministic optimization
results and robust optimization results are shown in Tab. 6. It can be seen from the table that
the compliance mean, standard deviation, and objective function of the RTO are all lower than
those of the DTO. Therefore, the robust design structure is more robust and stable. Fig. 15 shows
the curve of the objective function with the number of iteration steps under different gradient
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layer 2× 2 period settings. As shown in the figure, the objective function converges rapidly and
smoothly, which further proves the stability of the proposed method.

Table 6: The topology design result of simply supported beam

Case Deterministic design (×107) Robust design (×107)

Layer Periodic Mean Standard
deviation

Objective
function

Mean Standard
deviation

Objective
function

3 2× 2 1.23 3.07 2.15 1.17 2.89 2.03
2× 1 1.05 2.61 1.83 1.01 2.53 1.77
1× 1 0.65 1.59 1.12 0.63 1.53 1.08

6 2× 2 1.27 3.15 2.21 1.25 3.09 2.17
2× 1 1.05 2.59 1.82 1.05 2.59 1.82
1× 1 0.64 1.60 1.12 0.63 1.57 1.10

(a) (b)

Figure 15: Variation curve of objective function of compliance with the number of iterations.
(a) Three layer gradient, (b) six layer gradient

7 Conclusions

This paper presents a robust topology optimization design method for multi-material func-
tional gradients considering periodic constraints. In order to optimize the topology of the
multi-material functionally graded structure and minimize the structural compliance under the
volume constraint, an ordered-SIMP interpolation is proposed. Meanwhile, the structure is set
periodically considering the practical engineering applications. Then, the sparse grid numerical
integration method is introduced to calculate the objective function, the mean and standard
deviation solutions for the robust topological optimization design. The design is explored in
terms of both deterministic and robust design for different load conditions. By three arithmetic
examples, the effectiveness of the design method is demonstrated. From the results, it can be
seen that the robust design provides a more reliable and effective design solution compared with
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the corresponding deterministic topology optimization design. In addition, the proposed approach
yields better design results for different functional gradient settings and material combination
schemes, further demonstrating the practicality of the design solution.
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