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ABSTRACT

A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D
acoustics is developed in this study. The key treatment involves using adjoint variable method in shape sensitivity
analysis with respect to non-uniform rational basis splines control points, and in topology sensitivity analysis with
respect to the artificial densities of sound absorption material. OpenMP tool in Fortran code is adopted to improve
the efficiency of analysis. To consider the features and efficiencies of the two types of optimization methods, this
study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of
geometry shape and distribution of material to achieve better noise control. Numerical examples, such as sound
barrier, simple tank, and BeTSSi submarine, are performed to validate the advantage of combined optimization in
noise reduction, and to demonstrate the potential of the proposed method for engineering problems.
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1 Introduction

Isogeometric analysis (IGA) [1] has been proposed to eliminate the gap between computer-
aided design (CAD) and computer-aided engineering (CAE), where non-uniform rational basis
splines (NURBS) are widely used to represent geometry and approximate physical field variables,
due to its advantages such as accurate description of geometry, high-order continuous fields,
and flexible refinement. Compared with the finite element method (FEM) [2], boundary element
method (BEM) [3] has exhibited superior performance in problems like exterior acoustics [4]
because of its advantages including discretizing in boundary and fitting for infinite domain
problems. The fully coupled FEM–BEM algorithm [5] was also proposed for acoustic-structural
optimization design [6] to exploit the benefits of the two methods. Besides, various accelerated
techniques such as adaptive cross approximation (ACA) [7], fast multipole method (FMM) [8–11],
and wideband FMM [4,12,13], have also been adopted to improve BEM’s computational efficiency
for large-scale problems. Considering that complex structures are usually described by NURBS
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patch in CAD software, which means that the geometry model are boundary-represented, the
isogeometric boundary element method has also been successfully applied to potential prob-
lems [14–17], elastic problem [18–20], and acoustics [21–24]. FEM–BEM coupled analysis method
was also combined with IGA in elasticity [25]. As the NURBS control points play a critical role
in geometry construction, it is highly flexible to change the structural geometric shape. Refinement
operators [1] such as h-refinement, p-refinement, and k-refinement have also been proposed to
perfect IGA. Thus, conducting optimization design via IGA BEM is convenient.

The problem of sound emission of structures has attracted much attention in engineer-
ing practice. Structures such as sound barriers have also been investigated for their acoustic
performance [26,27] in noise control. Baulac et al. [28] performed an optimization design of
a sound barrier via BEM. Chen et al. [29] studied the distribution of absorbing material on
a noise barrier by optimization design. Zhao et al. [30] applied topology optimization to the
distribution of sound absorption material (SAM) that covers the structural surface with FMM
BEM. Zhao et al. [31] also investigated the topology optimization of two different materials
based on FEM–BEM coupled method. Liu et al. [32] and Chen et al. [33] conducted the sound
barrier’s shape optimization by IGA BEM in 2D acoustics. Among these approaches, shape
optimization and topology optimization are mainly used for designing structures to change their
acoustic performance.

Shape optimization plays a great role in engineering problems to obtain the optimal shape
under certain constraints with objectives. In this rational and automatic process, the geometry
shape needs to be regenerated in each step, which causes limitation in conventional numerical
analysis. In IGA, the structure surface is constructed by NURBS control points with weights
and knot vectors; thus, the surface is easy to change by defining the control points as design
parameters. Although IGA FEM has been firstly combined with shape optimization in fluid
mechanics [34] and electromagnetism [35], IGA BEM is more suitable for the surface shape change
in shape optimization, due to NURBS’ and BEM’s features. Shape optimization has also been
conducted through IGA BEM in heat conduction [36], wave resistance [37], elasticity [38–40], and
acoustics [13,32,41]. In engineering problems, sound structures may be covered with SAM or other
materials. Different from design structure surface shape, the topology optimization focuses on
finding the best topological distribution of SAM on the surface. Chen et al. [33] firstly conducted
the topology optimization of the distribution of SAM on the sound barrier surface by IGA
BEM with NURBS. Chen et al. [42] also studied the distribution of SAM via IGA BEM with
subdivision surface method for 3D acoustics. Their findings demonstrated the frequency-dependent
phenomenon in acoustic optimization design.

The previous works mainly conduct one type of optimization method to improve acoustic
performance of structures. The present study focuses on combining the shape and topology
optimization together efficiently to ensure better noise control for 3D acoustic problems. For
combined optimization, researchers have done many works with the level set method (LSM) to
conduct shape and topology update simultaneously by a uniform manner [43–45]. Matsumoto
et al. [44] adopted the LSM in the acoustic scatter problem to design the shape and topology
of the structure. In this work, the topology optimization we considered is the distribution of
SAM on structural surface. The solid isotropic material with penalization (SIMP) [46] method
is applied to the initialization of design variables by converting the discrete density values of
artificial material into continuous variables and enabling the intermediate density to approach
0 or 1, where 0 means that no material is on the design area. Thus, we select another type
of combined optimization, where the shape and topology of structure should be changed by



CMES, 2021, vol.127, no.2 647

constructing a connection between them. Researchers have applied the deformable simplicial com-
plex (DSC) method to combine shape and topology optimization in elasticity problems [47–49],
where the topology design variables were updated first, and then the shape update was imple-
mented subsequently. This process was called total iteration step of the combined optimization.
Lin et al. [50] performed shape and topology optimizations through a time-dependent adjoint
approach for sensitivity analysis in 2D acoustic metamaterials and phononic crystals, where shape
optimization followed the topology optimization subsequently to modify the structural geometries.
Jiang et al. [51] compared four iteration schemes by the second kind of combined optimization
and successfully applied them to the noise reduction on sound barriers based on IGA BEM
in 2D acoustics. In this paper, we mainly expand the best iteration scheme proposed by Jiang
et al. [51] to 3D acoustics and applied it to complicated structures, where the NURBS control
points coordinates are set as design parameters for shape design, and the artificial densities on
NURBS integral elements are selected as the design variables for topology analysis. As both the
two types of parameters are related to IGA BEM, a bridge is constructed between the structural
shape and the distribution of SAM on the surface, which helps the shape and topology change in
each iteration step. Meanwhile, using IGA BEM also avoids mesh regeneration, which improves
the efficiency in the optimization process.

To implement combined optimization, the gradient-based optimizer is generally used due to
its high efficiency, for example, the method of moving asymptotes (MMA) [52]. This condition
leads to the requirement of gradient information, which means additional step, i.e., sensitivity
analysis. The present study consists of two parts: shape sensitivity analysis with respect to the
control points, and topology sensitivity analysis with respect to the artificial densities. Finite
difference method (FDM), direct differentiation method (DDM) [4,12,53], and adjoint variable
method (AVM) [30,54,55] are the three main methods for both the two types of sensitivity analysis.
The DDM and AVM provide the analytical expression of sensitivity, and the AVM shows higher
efficiency for multiple design variables. As the shape design parameters and topology design
variables may be large in engineering, AVM is more suitable for ordinary optimization problems
to achieve high efficiency. Here, we adopt the AVM for both the two types of sensitivity analysis.
Another difficulty in IGA BEM for 3D acoustics is the non-uniqueness problem [56,57], especially
for exterior acoustics. The Burton–Miller method [56,58] is adopted to overcome this problem,
where Marburg [59] has investigated the influence of different coupling parameters on the analysis
result. However, using this method also results in the problem of hyper singular integrals [41].
Thus, the method based on subtraction of singularity technique [41,60] is also adopted to compute
the singular integrals to achieve high accuracy. Moreover, to improve the efficiency of analysis
conveniently, OpenMP tool in Fortran code is exploited in the matrix computation without
changing the formulation of IGA BEM.

The present work is devoted to extending the combined optimization algorithm to 3D acous-
tics. The rest of this paper is organized as follows. In Section 2, the IGA BEM for 3D acoustics
with the impedance boundary conditions are reviewed. Section 3 discusses the sensitivity anal-
ysis via AVM with respect to the NURBS control points and the artificial densities of SAM,
respectively. Section 4 describes the three optimization procedure: shape optimization, topology
optimization, and combined optimization. Section 5 introduces several numerical examples to
validate the proposed approach. Finally, Section 6 provides the conclusions of this work.



648 CMES, 2021, vol.127, no.2

2 Isogeometric BEM for 3D Acoustics

2.1 NURBS Surface for IGA
In IGA, we can define the knot vector �= {ξ1, ξ2, . . . , ξn+pg+1}, where ξi ∈R is the i-th knot,

n is the number of basis functions, and pg is the polynomial order. Then, B-spline basis functions
can be defined as follows:

Ni, 0(ξ)=
{
1, if ξi ≤ ξ < ξi+1,

0, otherwise.
(1)

For pg > 1, we have the following basis functions:

Ni,pg(ξ)= ξ − ξi

ξi+pg − ξi
Ni,pg−1(ξ)+ ξi+pg+1− ξ

ξi+pg+1− ξi+1
Ni+1,pg−1(ξ). (2)

Then, a B-spline curve’s formulation can be described by

x(ξ)=
n∑
i=1

Ni,pg(ξ)Pi, (3)

where x(ξ) is the point located on the curve, and Pi is the i-th control point that corresponds to
the knot.

For B-spline surface, we need two knot vectors �1 = {ξ1, ξ2, . . . , ξn+pg1+1} and �2 =
{η1, η2, . . . , ηm+pg2+1}, where n and m are the numbers of basis functions for each parametric
dimension. The formulation of B-spline surfaces can be described as follows:

x(ξ , η)=
n∑
i=1

m∑
j=1

Ni,pg1(ξ)Nj,pg2(η)Pi, j. (4)

By introducing a weight wi, j with each control point, NURBS basis functions for two
dimensions can be obtained as

Ri, j(ξ , η)= Ni,pg1(ξ)Nj,pg2(η)wi, j∑n
a=1

∑m
b=1Na,pg1(ξ)Nb,pg2(η)wa,b

. (5)

Similarly, the NURBS surface formulation can be described as follows:

x(ξ , η)=
n∑
i=1

m∑
j=1

Ri, j(ξ , η)Pi, j

=
Ng∑
l=1

Rl(ξ , η)Pl, (6)

where the number of control points is represented by Ng = n×m. The derivative of the NURBS
basis function was discussed by Simpson et al. [18].
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2.2 Isogeometric BEM for Acoustics
Considering a domain � with a boundary �, the Helmholtz equation that governs the acoustic

field can be described as

∇2p(x)+ k2p(x)= 0, ∀x ∈�, (7)

where p denotes the sound pressure, k=ω/c denotes the wave number, ω is the angular frequency,
and c is the wave velocity in the acoustic medium. Here, we select e−iωt as the harmonic time
dependence, where t denotes time.

For boundary element method, by applying Green’s second theorem and letting point x
approach the boundary, we can obtain the conventional boundary integral equation (BIE), referred
to as CBIE, and its outward normal BIE, referred to as HBIE. The formulations can be described
as follows:

c(s)p(s)+
∫

�

F(s, x)p(x)d�(x)=
∫

�

G(s, x)
∂p(x)

∂n(x)
d�(x)+ pin(s), (8)

c(s)
∂p(s)
∂n(s)

+
∫

�

H(s, x)p(x)d�(x)=
∫

�

K(s, x)
∂p(x)

∂n(x)
d�(x)+ ∂pin(s)

∂n(s)
, (9)

where s and x are the source point and field point, respectively; ∂p(x)/∂n(x) = q(x) denotes
the flux of sound pressure; pin(s) indicates the sound pressure of the incident wave at point s;
n(x) denotes the outward normal vector at point x, and jump term c(s) is equal to 1/2 if the
boundary � is smooth around the source point s.

The Green’s function for 3D acoustics is given as follows [41]:

G(s, x)= eikr

4πr
, (10)

F(s, x)=− eikr

4πr2
(ikr− 1)

∂r
∂n(x)

, (11)

K(s, x)=− eikr

4πr2
(ikr− 1)

∂r
∂n(s)

, (12)

H(s, x)= eikr

4πr3

[
(3− 3ikr− k2r2)

∂r
∂n(s)

∂r
∂n(x)

+ (1− ikr)nj(s)nj(x)

]
, (13)

where r= |s−x| denotes the Euclidean distance between points s and x.

In this study, we consider the impedance boundary condition

q(x)= ikβ(x)p(x), (14)

where β(x) denotes the normalized surface admittance at field point x.

In IGA BEM, the NURBS interpolations are applied to both the geometry and physical
fields. In this study, we adopt different NURBS interpolation formulations to suit physical analysis,
which means that the physical field is separated from the geometry. The knot vectors of the



650 CMES, 2021, vol.127, no.2

physical space can be represented as �d1 and �d2. Thus, the physical field variables can be
expressed as follows:

p(ξ , η)=
Nd∑
l=1

Rdl (ξ , η)pl, (15)

q(ξ , η)=
Nd∑
l=1

Rdl (ξ , η)ql

= ikβx

Nd∑
l=1

Rdl (ξ , η)pl, (16)

where pl and ql denote the sound pressure and flux coefficients associated with the l-th physical
control point, respectively; Nd is the total number of physical control points; and βx represents
the acoustic admittance at point x(ξ , η).

The location of collocation points in parametric space can be obtained by the Greville
abscissa as follows:

ξc, i =
ξi+1 + ξi+2+ . . .+ ξi+pd1

pd1
, i= 1, 2, . . . , nd , (17)

ηc, j =
ηj+1 + ηj+2 + . . .+ ηj+pd2

pd2
, j= 1, 2, . . . , md , (18)

where pd1 and pd2 denote the orders of basis function of each dimension, respectively; nd and md
are the number of collocation parameters in each dimension, and md × nd =Nd .

Similarly, after discretizing the boundary into Ne1 ×Ne2 =Ne integral elements, Eqs. (8) and
(9) can be rewritten as

c(s(ξc, i, ηc, j))

Nd∑
l=1

Rdl (ξc, i, ηc, j)pl

+
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

[∫ ξa+1

ξa

∫ ηb+1

ηb

F(s(ξc, i, ηc,j),x(ξ , η))Rdl (ξ , η)J(ξ , η)dξdη

]
pl

=
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

ikβx

[∫ ξa+1

ξa

∫ ηb+1

ηb

G(s(ξc, i, ηc, j), x(ξ , η))Rdl (ξ , η)J(ξ , η)dξdη

]
pl + pin(s) (19)
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c(s(ξc, i, ηc, j))

Nd∑
l=1

ikβsRdl (ξc, i, ηc, j)pl

+
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

[∫ ξa+1

ξa

∫ ηb+1

ηb

H(s(ξc, i, ηc, j), x(ξ , η))Rdl (ξ , η)J(ξ , η)dξdη

]
pl

=
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

ikβx

[∫ ξa+1

ξa

∫ ηb+1

ηb

K(s(ξc, i, ηc, j), x(ξ , η))Rdl (ξ , η)J(ξ , η)dξdη

]
pl +

∂pin(s)
∂n(s)

, (20)

where [ξa, ξa+1]× [ηb, ηb+1] denotes the parameter space of an integral element; J(ξ , η) represents
the Jacobian; (ξc, i, ηc, j) and (ξ , η) denote the two parameters of the source point s and field
point x, respectively; βs denotes the acoustic admittance at the source point s(ξc, i, ηc, j), and we
assume that the admittance keeps the same value over each element. The local support of NURBS
basis functions, where a maximum of (pd1+ 1)× (pd2+ 1) basis functions are nonzero for values,
can reduce the computation effort for the integral coefficient.

When the parameter (ξc, i, ηc, j) of the source point lies within the element parametric space
[ξa, ξa+1]× [ηb, ηb+1], weak and hyper singularities appear in the kernel functions of Eqs. (19) and
(20), respectively. Here, the detailed treatment of singular integrals is referenced in the use of
Guiggiani method [60] by Chen et al. [41].

By adopting the Burton–Miller formulation [58] with coefficient α = − i
k

[59], Eqs. (19) and

(20) can be combined and formulated as the matrix equation

(H−G)p= pin+αqin, (21)

where p is the complex vector of the physical values at the physical control points; and pin and
qin denote the incident wave vectors of sound pressure and flux, respectively.

After Eq. (21) is solved, the sound pressure of points lying in the domain can be obtained by

pf = (Gf −Hf )p+ pinf , (22)

where the computations of matrices Gf , Hf , and vector pinf are similar to those in Eq. (21).

3 Sensitivity Analysis through IGA BEM

Sensitivity analysis can obtain the derivatives of objection function with respect to different
kinds of design variables. Thus, this type of analysis plays a critical role in the optimization
process. The shape sensitivity and topology sensitivity analyses are presented in this section.

3.1 Shape Sensitivity Analysis
Control points usually control the configuration of structure surface in IGA, which means

that they can be naturally set as the design parameters in shape optimization. In this study, we
set certain control points of the NURBS surface as design parameters to change the shape, and
the AVM proposed by Zheng et al. [54] is adopted for shape sensitivity analysis.
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In DDM, Eqs. (8) and (9) can be differentiated with respect to the design parameter γe
(usually represents the x, y, or z coordinate of a certain control point) as

c(s)
∂p(s)
∂γe

+
∫

�

∂F(s, x)

∂γe
p(x)d�(x)+

∫
�

F(s, x)
∂p(x)

∂γe
d�(x)+

∫
�

F(s, x)p(x)d
∂�(x)

∂γe

=
∫

�

∂G(s, x)

∂γe
q(x)d�(x)+

∫
�

G(s, x)
∂q(x)

∂γe
d�(x)+

∫
�

G(s, x)q(x)d
∂�(x)

∂γe
+ ∂pin(s)

∂γe
, (23)

c(s)
∂q(s)
∂γe

+
∫

�

∂H(s, x)

∂γe
p(x)d�(x)+

∫
�

H(s, x)
∂p(x)

∂γe
d�(x)+

∫
�

H(s, x)p(x)d
∂�(x)

∂γe

=
∫

�

∂K(s, x)

∂γe
q(x)d�(x)+

∫
�

K(s, x)
∂q(x)

∂γe
d�(x)+

∫
�

K(s, x)q(x)d
∂�(x)

∂γe
+ ∂

∂γe

(
∂pin(s)
∂n(s)

)
, (24)

where the sensitivities of the kernel function are presented as

∂G(s, x)

∂γe
= eikr

4πr2
(ikr− 1)

∂r
∂γe

, (25)

∂F(s, x)

∂γe
= eikr

4πr3

[
(2− 2ikr− k2r2)

∂r
∂n(x)

∂r
∂γe

+ (ikr− 1)r
∂

∂γe

(
∂r

∂n(x)

)]
, (26)

∂K(s, x)

∂γe
= eikr

4πr3

[
(2− 2ikr− k2r2)

∂r
∂n(s)

∂r
∂γe

+ (ikr− 1)r
∂

∂γe

(
∂r

∂n(s)

)]
, (27)

∂H(s, x)

∂γe
= eikr

4πr4
(−9+ 9ikr+ 4k2r2− ik3r3)

∂r
∂n(s)

∂r
∂n(x)

∂r
∂γe

− eikr

4πr4
(3− 3ikr− k2r2)nj(s)nj(x)

∂r
∂γe

+ eikr

4πr3
(3− 3ikr− k2r2)

[
∂

∂γe

(
∂r

∂n(s)

)
∂r

∂n(x)
+ ∂r

∂n(s)
∂

∂γe

(
∂r

∂n(x)

)]

+ eikr

4πr3
(1− ikr)

(
∂nj(s)
∂γe

nj(x)+ nj(s)
∂nj(x)

∂γe

)
. (28)

The sensitivity interpolation by NURBS basis functions are presented as

∂x(ξ , η)

∂γe
=

Ng∑
l=1

Rl(ξ , η)
∂Pl
∂γe

, (29)

∂p(ξ , η)

∂γe
=

Nd∑
l=1

Rdl (ξ , η)
∂pl
∂γe

, (30)

∂q(ξ , η)

∂γe
= ikβx

Nd∑
l=1

Rdl (ξ , η)
∂pl
∂γe

, (31)

where
∂pl
∂γe

denotes the sensitivity coefficient of the l-th control point. The other detailed sensitivity

terms are discussed in the work of Chen et al. [41].
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Similarly, using the same discretization as in Eq. (19), we can express Eqs. (23) and (24) as

c(s(ξc,i,ηc,j))
Nd∑
l=1

Rdl (ξc,i,ηc,j)
∂pl
∂γe

=
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

{∫ ξa+1

ξa

∫ ηb+1

ηb

[
ikβx

∂G(s(ξc,i,ηc,j),x(ξ ,η))

∂γe
− ∂F(s(ξc,i,ηc,j),x(ξ ,η))

∂γe

]
Rdl (ξ ,η)J(ξ ,η)dξdη

}
pl

+
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

{∫ ξa+1

ξa

∫ ηb+1

ηb

[
ikβxG(s(ξc,i,ηc,j),x(ξ ,η))−F(s(ξc,i,ηc,j),x(ξ ,η))

]
Rdl (ξ ,η)J(ξ ,η)dξdη

}
∂pl
∂γe

+
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

{∫ ξa+1

ξa

∫ ηb+1

ηb

[
ikβxG(s(ξc,i,ηc,j),x(ξ ,η))−F(s(ξc,i,ηc,j),x(ξ ,η))

]
Rdl (ξ ,η)

∂J(ξ ,η)

∂γe
dξdη

}
pl

+ ∂pin(s)
∂γe

, (32)

c(s(ξc,i,ηc,j))
Nd∑
l=1

ikβsRdl (ξc,i,ηc,j)
∂pl
∂γe

=
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

{∫ ξa+1

ξa

∫ ηb+1

ηb

[
ikβx

∂K(s(ξc,i,ηc,j),x(ξ ,η))

∂γe
− ∂H(s(ξc,i,ηc,j),x(ξ ,η))

∂γe

]
Rdl (ξ ,η)J(ξ ,η)dξdη

}
pl

+
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

{∫ ξa+1

ξa

∫ ηb+1

ηb

[
ikβxK(s(ξc,i,ηc,j),x(ξ ,η))−H(s(ξc,i,ηc,j),x(ξ ,η))

]
Rdl (ξ ,η)J(ξ ,η)dξdη

}
∂pl
∂γe

+
Ne1∑
a=1

Ne2∑
b=1

Nd∑
l=1

{∫ ξa+1

ξa

∫ ηb+1

ηb

[
ikβxK(s(ξc,i,ηc,j),x(ξ ,η))−H(s(ξc,i,ηc,j),x(ξ ,η))

]
Rdl (ξ ,η)

∂J(ξ ,η)

∂γe
dξdη

}
pl

+ ∂

∂γe

(
∂pin(s)
∂n(s)

)
. (33)

Subsequently, still based on the Burton–Miller formulation, Eqs. (32) and (33) can be com-
bined and expressed by matrix form as

(H−G)
∂p
∂γe

=
(

∂G
∂γe

− ∂H
∂γe

)
p+ ∂pin

∂γe
+α

∂qin
∂γe

, (34)

where matrices H and G have been computed by Eq. (21).
∂pin
∂γe

and
∂qin
∂γe

denote the vector of

∂pin
∂γe

and
∂

∂γe

(
∂pin
∂n

)
, respectively.

∂G
∂γe

and
∂H
∂γe

are the derivatives of G and H. The detailed

formulation of singular integrals in Eqs. (32) and (33) is presented in the work of Chen et al. [41].
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For sensitivity analysis via DDM, after Eq. (34) is solved, the source point s is placed at the
acoustic domain �, and their sensitivities can be calculated by

∂pf
∂γe

= (Gf −Hf )
∂p
∂γe

+
(

∂Gf

∂γe
− ∂Hf

∂γe

)
p, (35)

where the computation of
∂Gf

∂γe
and

∂Hf

∂γe
is similar to those in

∂G
∂γe

and
∂H
∂γe

by Eq. (34).

However, some engineering problems may require more design parameters to guarantee the
complexity of the structure, and the objective function in the optimization process may be merely
related to physical values at field points. Thus, the AVM is adopted for ordinary optimization
design. In accordance with Eqs. (34) and (35), the formulation can be rewritten as

∂pf
∂γe

= (Gf −Hf )(H−G)−1
[(

∂G
∂γe

− ∂H
∂γe

)
p+ ∂pin

∂γe
+α

∂qin
∂γe

]
+

(
∂Gf

∂γe
− ∂Hf

∂γe

)
p, (36)

where the calculation of (H − G)−1 usually requires extensive effort. To avoid this process, we
introduce the following adjoint equation:

(H−G)TU= (Gf −Hf )
T, (37)

and thus, the value of adjoint matrix U can be obtained by

UT = (Gf −Hf )(H−G)−1. (38)

Finally, by substituting Eq. (38) into Eq. (36), we can calculate the new formulation for the
shape sensitivities at field points as follows:

∂pf
∂γe

=UT
[(

∂G
∂γe

− ∂H
∂γe

)
p+ ∂pin

∂γe
+α

∂qin
∂γe

]
+

(
∂Gf

∂γe
− ∂Hf

∂γe

)T

p, (39)

Evidently, the adjoint matrix U is independent of all the design parameters, which means that
Eq. (37) needs be solved once even if a large number of design parameters exist. Thus, the AVM
can significantly improve the efficiency of shape sensitivity analysis.

3.2 Topology Sensitivity Analysis
In this study, we investigated the topology optimization of the distribution of SAM on

structural surface, which is a problem with discrete values of 0 or 1, so that the mathematical
computation in sensitivity analysis can be conducted. The SIMP method [46] is adopted to
transform the discrete values into continuous values. The artificial density ρe of the e-th element
is set as the design variable to conduct the topology optimization process. The formulation of
admittance can be expressed as

βe= β0ρe
μ, (40)

where μ denotes the penalization factor, and we define μ = 3 in the analysis. β0 represents the
normalized surface acoustic admittance. Here, we set its value as 0.1 for simplicity.

As the artificial density of the material of each element is set as a design variable, the AVM
is also implemented for higher efficiency in topology sensitivity analysis. Usually, the objective
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function is related to the sound pressure of the field points as �(pf ), and in accordance with
Eqs. (21) and (22), it can be rewritten as

�̃=�(pf )+�
{
λT
1 [(H−G)p− pin −αqin]+λT

2

[
pf − (Gf −Hf )p− pinf

]}
, (41)

where � represents the real part value of the complex vector. λT
1 and λT

2 are the adjoint vectors
of the structure and field points, respectively, and they can be set to arbitrary values. Similarly,
differentiating Eq. (41) with respect to the design variable ρe gives

∂�̃

∂ρe
= ∂�

∂ρe
+�

{
λT
1

[
− ∂G

∂ρe
p+ (H−G)

∂p
∂ρe

]
+λT

2

[
∂pf
∂ρe

− ∂Gf

∂ρe
p− (Gf −Hf )

∂p
∂ρe

]}
. (42)

The derivatives of objective function �(pf ) can also be expressed as

∂�

∂ρe
=�

{
uT1

∂p
∂ρe

+ uT2
∂pf
∂ρe

+ u3

}
, (43)

where the term u3 does not contain any term about
∂p
∂ρe

and
∂pf
∂ρe

.

Combining Eq. (42) with Eq. (43) yields

∂�̃

∂ρe
=�

{[
λT
1 (H−G)+λT

2 (Hf −Gf )+ uT1
] ∂p

∂ρe

}
+�

[
(λT

2 + uT2 )
∂pf
∂ρe

]
+�

[
−

(
λT
1

∂G
∂ρe

+λT
2

∂Gf

∂ρe

)
p+ u3

]
. (44)

As both λ1 and λ2 are arbitrary, they can satisfy the following adjoint equations⎧⎨⎩λT
1 (H−G)+λT

2 (Hf −Gf )+ uT1 = 0,

λT
2 + uT2 = 0,

(45)

and by solving Eq. (45), the derivative of objective function can be obtained by

∂�̃

∂ρe
=�

[
−

(
λT
1

∂G
∂ρe

+λT
2
∂Gf

∂ρe

)
p+ u3

]
. (46)

Evidently, both the adjoint operators λ1 and λ2 should be computed only once for all the
design variables. This feature significantly improves the efficiency of topology sensitivity analysis,
which plays a significant role in the subsequent topology optimization process. The values of uT1 ,

uT2 , and u3 are determined by objective function. The objective function � in optimization design
is usually defined as the sound pressure related to the local evaluation or sound power [61–63]
related to the global estimation. This topic is discussed in Section 4.
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4 Combined Shape and Topology Optimization

In this work, we present the combined shape and topology optimization to change the
geometric shape and distribution of SAM on structural surface simultaneously. IGA BEM is
applied to gradient-based optimization algorithm to construct a bridge between these two types
of optimization process. After obtaining the two types of sensitivities in Section 3, we select the
method of moving asymptotes (MMA) developed by Svanberg [52] as the optimization solver to
update the design variables in each iteration step.

4.1 Shape Optimization
The optimization model of shape optimization can be described as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : �(γe)= 20 log10

⎛⎝
√

(pHf pf )/nf

2.0× 10−5

⎞⎠ ;

Sen. :
∂�(γe)

∂γe
= 10

ln10
1

pHf pf

∂(pHf pf )

∂γe
;

s.t. : V(γe)≤V0;

Bound : γe
min ≤ γe ≤ γe

max, e= 1, . . . , ns,

Iter. :
∣∣∣∣�j+1−�j

�j

∣∣∣∣ < τ ,

(47)

where the objective function � is set as the average sound pressure level (SPL) of nf observed

points. pHf is the conjugate transpose of pf . The design parameter γe varies between the lower

bound γmin
e and the upper bound γmax

e , and ns is the number of design parameters.

V(γe) denotes the volume of the structure that should not be larger than the initial struc-
ture volume V0, where we called the maximum volume constraint. The formulations of volume
constraint and its sensitivity are expressed as

V = 1
3

Ne1∑
a=1

Ne2∑
b=1

∫ ξa+1

ξa

∫ ηb+1

ηb

x(ξ , η) · nJ(ξ , η)dξdη, (48)

∂V
∂γe

= 1
3

Ne1∑
a=1

Ne2∑
b=1

∫ ξa+1

ξa

∫ ηb+1

ηb

[
∂x(ξ , η)

∂γe
· nJ(ξ , η)+x(ξ , η) · ∂n

∂γe
J(ξ , η)+x(ξ , η) · n∂J(ξ , η)

∂γe

]
dξdη,

(49)

where x and n denote the point on NURBS surface and its external unit normal vector,
respectively.

In each iteration step, the design parameters are updated until the objective function � is
converged, where τ is the given value that determines whether the iteration has to be stopped.
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4.2 Topology Optimization
As mentioned in Section 3.2, we change the distribution of SAM to minimize the average

SPL of observed points. The optimization model is expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : �(ρe)= 20 log10

⎛⎝
√

(pHf pf )/nf

2.0× 10−5

⎞⎠ ;

s.t. :
∑Ne

e=1 ρevse−Vs
0 ≤ 0;

Bound : 0≤ ρmin ≤ ρe ≤ 1, e= 1, . . . , Ne,

Iter. :

∣∣∣∣�j+1 −�j

�j

∣∣∣∣ < τ ,

(50)

where vse denotes the volume of the e-th NURBS element. Vs
0 denotes the volume constraint of

the total materials, and we usually set it as half of the surface volume of the structure, which
means that the volume fraction should be less than 0.5. ρmin = 0.001 is the lower bound of the
design variable.

In the topology optimization, we select the same objective function and its sensitivity as those
in shape optimization, where the values of uT1 , u

T
2 , and u3 in Eq. (43) can be obtained as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uT1 = 0;

uT2 = 10
ln10

1

pHf pf
· 2pHf .

u3 = 0.

(51)

Then, we can compute
∂�(ρe)

∂ρe
with respect to all the design variables by using Eqs. (45)

and (46).

4.3 Combined Optimization
According to Chen et al. [33], both shape optimization and topology optimization exhibit

good acoustic performance. For single shape optimization or topology optimization, the main
process shown in Figs. 1a and 1b mainly includes the input of the NURBS model, initialization
of the optimization model, acoustic analysis based on IGA BEM, shape or topology sensitivity
analysis, and optimization solver through MMA to update the design parameters/variables.

In this study, the target is to combine the geometry shape change and distribution of SAM
simultaneously to achieve better acoustic performance than the single type of optimization. Thus,
the key is to select a suitable iteration scheme to combine these two types of optimization pro-
cess. Considering the computational efficiency and their features in the optimization process, the
presented scheme is shown in Fig. 1c, where each outer iteration step includes an inner iteration
process that consists of a converged topology optimization and a one-step shape optimization.
Although we have used the SIMP method, some elements may still exhibit intermediate densities
between 0 and 1, which are the so-called gray elements. Here, the density operator based on a
smoothed Heaviside function is adopted to eliminate these elements, and the detailed formulation
was discussed by Zhao et al. [30].
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(a) (b)

(c)

Figure 1: Flow chart of three optimization processes based on IGA BEM (a) Shape optimization
process (b) Topology optimization process (c) Combined optimization process

5 Numerical Examples

Several numerical examples are presented to validate the applicability of the proposed
approach and show its potential in engineering problems. Here, all the examples are exterior
acoustic problems, and the parameter τ for the optimization process is set to 10−4. The code is
parallelized by using the OpenMP tool in Fortran to improve the computational efficiency.
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5.1 Scattering Sphere
A scattering sphere model is considered to verify the shape sensitivity analysis and topology

sensitivity analysis of the present approach. The sphere center is located at point (0, 0, 0) with
a radius r0 = 1.0 m as shown in Fig. 2a, where an incident plane wave with a unit amplitude is
traveling along the z-axis as an excitation. The wave velocity is c= 340 m/s. Figs. 2b and 2c show
the 26 NURBS control points and their weights for the spherical surface, where the coordinates
are (1, 0, 0) for P14, (0, 1 ,0) for P22, and (0, 0, 1) for P11. Here, we consider that all the
discretized elements are covered with SAM, which means an initial artificial density of ρe = 1.0.
The observed point is set as (0, 2, 0).

Y

Z

X

r 0
Observed point

Incident wave

(0,2,0)

(a) (b)

(c)

Figure 2: Scattering sphere (a) Physical model (b) NURBS model with control points (c) Weights
for control points
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Fig. 3 shows the computation time of IGA BEM on acoustic analysis accelerated by OpenMP
tool, where the more threads used in computation, the less time is needed. As the figure shows,
the efficiency of OpenMP tool using 56 threads can be 20 times faster than the ordinary code.
Moreover, compared with the FMM [32], adopting OpenMP tool only needs to change a few for
the code, which becomes more convenient for the analysis.

Figure 3: Computing times of IGA BEM accelerated via OpenMP tool on acoustic analysis

For the computation of sound sensitivities with respect to shape parameters, the y-coordinate
of the control point P22 is selected as the design parameter, which varies from 0.5 m to 1.5 m. The
computation frequency is 100 Hz. To validate the AVM, we compare it with the DDM and FDM,
where the step size of the design parameter in FDM is set as 0.0001 to ensure sufficient accuracy.
As Fig. 4 shows, all results of the three methods are in good agreement in the real and imaginary
parts of the sensitivities, which validates the correctness of the DDM and AVM. Furthermore, the
time to obtain the observed point’s shape sensitivity through the DDM and AVM is illustrated
in Fig. 5. Obviously, with the increase of the number of design parameters, the AVM takes less
time than the DDM, which demonstrates its advantage in accelerating shape sensitivity analysis
with multiple design parameters.

(a) (b)

Figure 4: Sound pressure sensitivities at point (0, 2, 0) with respect to y-coordinate of control
point P22 (a) Real part (b) Imaginary part
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Figure 5: Computing times of DDM and AVM in obtaining sensitivities of the observed point

The verification of topology sensitivity analysis is also shown in Fig. 6, where we set the
objective function as the SPL at the observed point. The result of AVM is also compared with
those of DDM and FDM. As the figure shows, the three methods provide the same results in
sensitivities of the objective function, which validates the correctness of the analytical algorithms,
i.e., DDM and AVM. Fig. 7 reveals the efficiency of the DDM and AVM in topology sensitivity
analysis. When the number of design variables is less than 256, the DDM takes less time than
the AVM, while the AVM shows higher efficiency when the number of design variables is larger
than 256. Furthermore, the results of efficiency in Figs. 5 and 7 also demonstrate that topology
sensitivity analysis usually takes less time than shape sensitivity analysis, even if we set more
design variables for topology analysis. The reason is that the computation of shape sensitivity in
matrices H and G with respect to γe takes much time when the geometry shape changes, whereas
the geometry remains the same in topology optimization. Thus, topology optimization presents
higher computation efficiency than shape optimization.

Figure 6: Sensitivities of SPL at point (0, 2, 0) with respect to artificial density ρe
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Figure 7: Computing times of topology sensitivity evaluation via DDM and AVM

5.2 Sound Barrier
Although sound barriers have been simplified as 2D problems for optimization design by using

the IGA BEM in the work of Liu et al. [32] and Chen et al. [33], we conduct a more practical
3D model for �-shaped sound barrier in this study. Generally, the sound barrier is considered
as a half-space acoustic problem in engineering practice, and thus, the kernel function and its
sensitivities in Eqs. (10) and (25) need to be substituted by the following formulations:

G(s, x)= eikr

4πr
+ eikr

′

4πr′
, (52)

∂G(s, x)

∂γe
= eikr

4πr2
(ikr− 1)

∂r
∂γe

+ eikr
′

4πr′2
(ikr′ − 1)

∂r′

∂γe
, (53)

where r′ = ∣∣s′ −x
∣∣, s′ is the symmetric point of source point s. Here, we set s′ and s are symmetric

to the boundary plane of infinite space (xoy-plane). Then, the other kernel functions and their
sensitivities with respect to γe can be obtained in the same manner.

As shown in Fig. 8, a mono-pole source is located at point (0, 1, 1), and the initial state of
the barrier is that all the surfaces are covered with SAM. The NURBS model is discretized by
1156 integral elements. After the IGA discretization, the maximum element size is about 0.25 m.
The initial filter radius in topology optimization is set as 0.1 m. The design parameters for shape
optimization are the x-coordinates of the control points from points 1 to 12 on the left surface
as depicted in Fig. 8c. The initial values of shape design parameters are exhibited in Tab. 1, and
their lower and upper bounds are ±0.1 m based on the initial values. For the observed points,
we select 27 points that are evenly distributed in the reference domain within the coordinates
x ∈ [7, 9], y ∈ [−1.4, 1.4] and z∈ [0.2, 2.6].
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Figure 8: Initial sound barrier model (a) Physical model (b) NURBS model (c) Size of sound
barrier (d) Cross section

Table 1: Design parameters in sound barrier model for shape optimization

Design parameter Initial value Final value f = 200 Hz Final value f = 500 Hz

γ1 4.25769 4.15769 4.35769
γ2 4.25769 4.15769 4.35769
γ3 4.38141 4.28141 4.48141
γ4 4.38141 4.46237 4.48141
γ5 4.50513 4.40513 4.60513
γ6 4.50513 4.60513 4.40513
γ7 4.62885 4.52885 4.63175
γ8 4.62885 4.72885 4.62144
γ9 4.75256 4.84276 4.85256
γ10 4.75256 4.75652 4.85256
γ11 4.87628 4.97628 4.97628
γ12 4.87628 4.92489 4.97628
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Fig. 9 shows the iteration histories of the objective function by using the three optimization
methods. Compared with the other two methods, the shape optimization is only reduced slightly
for the average SPL at the lower frequency of 200 Hz. These results are contrary to those reported
by Liu et al. [32], where the sound barrier has been set as a rigid boundary condition and defined
as a 2D model. Thus, this finding also demonstrates that all the surfaces covered with SAM
may not be a good choice for the initial model state before shape optimization. For the shape
optimization, the purpose is usually to let the scatter waves and incident waves interfere with each
other more by shape change. However, most sound waves have been absorbed if all the surfaces
are covered with SAM. Nevertheless, the combined optimization in this example still obtains
a better noise reduction than a single type of optimization. Furthermore, as shown in Fig. 9,
the proposed method for combined optimization can achieve better results at higher frequency
of 500 Hz. Fig. 10 shows the iteration histories of the volume constraint for the two types of
optimization. As we can see, all the results satisfy the volume constraints in the optimization
models, which means that the optimization models are fit for this problem.
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Figure 9: Iteration histories of sound barrier’s objective function by using three optimization
methods (a) Frequency f = 200 Hz (b) Frequency f = 500 Hz
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Figure 10: Iteration histories of sound barrier’s volume constraint for shape optimization and
topology optimization (a) Shape optimization (b) Topology optimization
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Figs. 11 and 12 show the optimization results of the sound barrier by using the three opti-
mization methods. As Tab. 1 shows, the final optimized shape changes slightly compared with the
initial structure in the shape optimization process, which means that the range of shape design
parameters may not be large, while a larger range of lower and upper bounds usually offers more
values for design parameters to be chosen in each optimization iteration step. For the results
of topology optimization, the distribution layout of SAM tends to occupy many smaller areas
at a higher frequency of 500 Hz. The reason is that the higher the frequency, the shorter the
wavelength, the more sensitive the shape of the structure surface and the distribution of the
material to the wavelength. For the combined optimization, the results’ trend is consistent with
the single type of optimization in shape or topology, but some details have changed. Overall, the
results of the three optimizations are frequency dependent, which shows different surface shapes
and distributions of SAM with the increase in computation frequency.

(a) (b)

(c)

Figure 11: Optimization results of sound barrier by using three optimization methods at frequency
f = 200 Hz (a) Shape optimization (b) Topology optimization (c) Combined optimization



666 CMES, 2021, vol.127, no.2

(a) (b)

(c)

Figure 12: Optimization results of sound barrier by using three optimization methods at frequency
f = 500 Hz (a) Shape optimization (b) Topology optimization (c) Combined optimization

For the topology optimization at a higher frequency of f = 500 Hz, as shown in Fig. 12b,
the result encounters checker-board problem. This phenomenon is mainly caused by the setting of
small filter radius for rmin= 0.1 m in the sensitivity filter operator. By increasing the value of rmin,
as Fig. 13 shows, checker-board phenomenon will be weakened. However, for the noise reduction
by topology optimization, as Fig. 14 shows, the larger the value of rmin is, the less decreases the
objective function after optimization. Besides, the topology optimization model in this study is
based on the distribution of SAM on the structure surface, so the checker-board problem actually
have little influence on the physical meaning and application to engineering practice, where every
element of the structure surface can be covered with a piece of SAM flexibly. Overall, to achieve
better noise reduction, we still select 0.1 m as the filter radius.
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Figure 13: Optimization results of sound barrier with filter radius rmin = 0.6 m at frequency
f = 500 Hz
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Figure 14: The impact of filter radius on objective function for sound barrier’s topology optimiza-
tion at frequency f = 500 Hz

5.3 Simple Tank
The example of a underwater simple tank presented by Chen et al. [41] is analyzed in this

section. Fig. 15 shows the model in physics and geometry. Herein, the wave velocity is 1500 m/s.
An incident wave with a unit amplitude travels along the negative y-axis to the model. The model
is discretized by 1600 integral elements for IGA BEM. The maximum element size along the
direction that is parallel to z-axis is about 1.1 m, and the maximum size of circumferential element
is about 2 m. The initial filter radius is set as 0.1 m. The parameters for shape design are the
y-coordinates of control points from points 1 to 6 on the right surface, as shown in Fig. 15b.
The initial values and side constraints of design parameters for shape optimization are exhibited
in Tab. 2. We select the observed point as point (10, 10, 0). Furthermore, different from the
usual rigid boundary condition, all the surfaces of the structure are covered with SAM in this
simulation.
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Figure 15: Initial simple tank model (a) Physical model (b) NURBS model with control points
(c) Weights for control points

Table 2: Design parameters in simple tank model for shape optimization

Design
parameter

Initial value Lower bound Upper bound Final value
f = 200 Hz

Final value
f = 500 Hz

γ1 3.75000 0.75000 7.00000 7.00000 7.00000
γ2 3.75000 0.75000 7.00000 0.75000 0.84480
γ3 3.75000 0.75000 7.00000 7.00000 4.46602
γ4 3.75000 0.75000 7.00000 1.63348 4.39776
γ5 3.75000 0.75000 7.00000 7.00000 5.46867
γ6 3.75000 0.75000 7.00000 5.82688 1.25608

Fig. 16 shows the iteration histories of objective function for the three optimization methods
on the simple tank. We have expanded the range of parameters for shape design, as depicted in
Tab. 2; thus, this time the shape optimization achieves a good noise reduction, even better than
the topology optimization at 200 Hz. Again, the combined optimization achieves the best results
compared with the other two single optimization methods, with the trend of more reduction for
the objective function at higher frequency. The iteration histories of volume constraints are shown
in Fig. 17. The volumes of optimized structures are less than those of the initial structures, and
the final volume fractions of SAM are also less than 0.5.
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Figure 16: Iteration histories of objective function of simple tank using three optimization
methods (a) Frequency f = 200 Hz (b) Frequency f = 500 Hz
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Figure 17: Iteration histories of simple tank’s volume constraint for shape optimization and
topology optimization (a) Shape optimization (b) Topology optimization

Figs. 18 and 19 show the optimization results of simple tank by using the three optimization
methods. Compared with the initial structure, the optimized shapes have changed obviously after
shape optimization and combined optimization. This is mainly due to the expanded side range
of the shape design parameters. For topology optimization, the SAM tends to be more spread
at higher frequency. However, few gray elements still appear after the optimization, although we
have conducted a density filter operator. Finally, the combined optimization also shows a detailed
change in shape or distribution of material compared with the single type of optimization. These
figures also demonstrate that the phenomenon of frequency dependence for optimized shape and
distribution of material is clear.
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(a) (b) (c)

Figure 18: Optimization results of simple tank by using three optimization methods at frequency
f = 200 Hz (a) Shape optimization (b) Topology optimization (c) Combined optimization

(a) (b) (c)

Figure 19: Optimization results of simple tank by using three optimization methods at frequency
f = 500 Hz (a) Shape optimization (b) Topology optimization (c) Combined optimization

An obvious checker-board phenomenon is also indicated by Fig. 19b, and thus, we also
test the mesh-dependency problem. As exhibited in Fig. 20, the checker-board phenomenon still
appears if we only keep the filter radius rmin as a small value 0.1 m. By increasing the value of
rmin, this phenomenon will also be weakened, as shown in Fig. 21. Finally, to achieve better noise
reduction, we still adopt the initial filter radius rmin = 0.1 m.
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Figure 20: Topology optimization result of simple tank with 6400 NURBS elements and filter
radius rmin = 0.1 m at frequency f = 500 Hz

Figure 21: Topology optimization result of simple tank with filter radius rmin= 1.6 m at frequency
f = 500 Hz
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5.4 BeTSSi Submarine
To exhibit the capability of the proposed algorithm in optimization design of complicated

geometry, the BeTSSi submarine model described by Venås et al. [22] is considered in this section.
Now we adopt a half size scale of this model for analysis. Moreover, we have reconstructed the
submarine by NURBS, where the submarine consists of 7 NURBS patches; thus, the optimization
based on IGA BEM for 3D acoustics is extended to the problem of multi-patch structures [64].
The discontinuous element method [64,65] is also applied to IGA BEM for 3D acoustics. Figs. 22a
and 22b show the submarine’s NURBS model, control points, and weights. Shape design param-
eters are set as the z-coordinates of 8 control points depicted in Fig. 22c. The model is immersed
in water. A plane wave with a unit amplitude propagates along the negative z-axis direction. The
target of optimization is to minimize the SPL at an observed point (3, 0.3, 4). The initial values
and side constraints of shape design parameters are listed in Tab. 3. The number of NURBS
integral elements for computation is 2172.

(a) (b)

(c)

Figure 22: BeTSSi submarine via NURBS (a) NURBS model and control points (b) Weights for
control points (c) Shape design parameters
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Table 3: Design parameters in BeTSSi submarine for shape optimization

Design
parameter

Initial value Lower bound Upper bound Final value
f = 200 Hz

Final value
f = 500 Hz

γ1 2.00000 1.00000 3.00000 1.00000 1.00000
γ2 2.00000 1.00000 3.00000 1.00000 1.25217
γ3 1.73738 1.00000 3.00000 2.64019 3.00000
γ4 1.46476 1.00000 3.00000 3.00000 1.00000
γ5 2.00000 1.00000 3.00000 1.00000 1.00000
γ6 2.00000 1.00000 3.00000 1.00000 1.41316
γ7 1.73738 1.00000 3.00000 3.00000 3.00000
γ8 1.46476 1.00000 3.00000 3.00000 1.00000

The iteration histories of objective function through the three optimization methods at differ-
ent frequencies are shown in Fig. 23. Similar to the results of the simple tank model in Section
5.3, the combined optimization method achieves the best SPL reduction at the observed point,
and the value of the objective function decreases rapidly in the initial optimization steps. It finally
reduces even for 20 dB at a higher frequency of 500 Hz. For the volume constraint, as Fig. 24
shows, the volumes of geometry shape and SAM also satisfy the constraints in the two types of
optimization models.
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Figure 23: Iteration histories of objective function of BeTSSi submarine using three optimization
methods (a) Frequency f = 200 Hz (b) Frequency f = 500 Hz
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Figure 24: Iteration histories of BeTSSi submarine’s volume constraint for shape optimization and
topology optimization (a) Shape optimization (b) Topology optimization

Figs. 25–28 show the optimization results for the submarine through the three optimization
methods at frequency f = 200 Hz and f = 500 Hz. For shape optimization, the optimized shape
appears two peaks near the end of the design domain, which may result in a slight increase of
the surface area on the design domain. The two peaks tend to be smaller at a higher frequency
of 500 Hz. For topology optimization, a few intermediate density elements still exist in the final
results. The total distribution trend of SAM after optimization is similar to the propagation of
a water wave, and is also more spread at a higher frequency of 500 Hz. The final shape and
distribution of material for the combined optimization still shows detailed differences compared
with the single type of optimization. All the results have shown the valid application of the
proposed method on complex structures.

(a) (b)

(c)

Figure 25: Surface SPL of optimized structure via three optimization methods at frequency
f = 200 Hz (a) Shape optimization (b) Topology optimization (c) Combined optimization
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(a) (b)

Figure 26: Distribution of SAM after optimization at frequency f = 200 Hz (a) Topology opti-
mization (b) Combined optimization

(a) (b)

(c)

Figure 27: Surface SPL of optimized structure via three optimization methods at frequency
f = 500 Hz (a) Shape optimization (b) Topology optimization (c) Combined optimization

(a) (b)

Figure 28: Distribution of SAM after optimization at frequency f = 500 Hz (a) Topology opti-
mization (b) Combined optimization
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6 Conclusion

In this study, we developed a combined shape and topology optimization algorithm for 3D
structures based on IGA BEM. Different from the past shape optimization method on rigid
structures, the impedance boundary condition is applied to the optimization process, where the
structure surfaces are covered with SAM with artificial densities. The NURBS model constructs a
bridge between geometry and physics, when surface shapes and the distribution of material change
in each optimization iteration step. The control points are selected as the design parameters for
shape optimization on account of their convenience and flexibility in shape control. With the
application of SIMP method, the artificial densities of SAM located in integral elements are set
as the design variables for topology optimization. The AVM is applied to the sensitivity analysis
with respect to shape design parameters and topology design variables. Considering the computa-
tional efficiency and features of the two types of optimization, an iteration scheme for combined
optimization, including a convergent topology optimization and a one-step shape optimization, is
investigated in this study. Several numerical examples, including a complex submarine scattering
model, are performed to demonstrate the potential of the proposed combined optimization in
achieving improved noise reduction, compared with the single type of shape optimization or
topology optimization. All the optimization processes obtain frequency-dependent results, where
the optimized shape and distribution of material at higher frequency tend to show a better
noise reduction.

In the future, we aim to apply the fast multipole method to the acoustic analysis and
sensitivity analysis to expand the developed method to larger-scale engineering problems. The level
set method is also considered replacing the SIMP method in topology optimization to eliminate
the medium densities in the distribution of SAM.
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Appendix A

The reconstructed BeTSSi submarine model consists of 7 NURBS patches, which are shown
in Fig. 29.

(a) (b) (c)

(d) (e)

(f) (g)

Figure 29: 7 NURBS patches of submarine model. (a) Patch 1. (b) Patch 2. (c) Patch 3.
(d) Patch 4. (e) Patch 5. (f) Patch 6. (g) Patch 7


