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ABSTRACT

This study employs a semi-analytical approach, called Optimal Homotopy Asymptotic Method (OHAM), to
analyze a coronavirus (COVID-19) transmissionmodel of fractional order. The proposedmethod employsCaputo’s
fractional derivatives and Reimann-Liouville fractional integral sense to solve the underlying model. To the best
of our knowledge, this work presents the first application of an optimal homotopy asymptotic scheme for better
estimation of the future dynamics of the COVID-19 pandemic. Our proposed fractional-order scheme for the
parameterized model is based on the available number of infected cases from January 21 to January 28, 2020, in
Wuhan City of China. For the considered real-time data, the basic reproduction number is R0 ≈ 2.48293 that is
quite high. The proposed fractional-order scheme for solving the COVID-19 fractional-order model possesses
some salient features like producing closed-form semi-analytical solutions, fast convergence and non-dependence
on the discretization of the domain. Several graphical presentations have demonstrated the dynamical behaviors of
subpopulations involved in the underlying fractional COVID-19 model. The successful application of the scheme
presented in this work reveals new horizons of its application to several other fractional-order epidemiological
models.
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1 Introduction

Humans have invented many scientific methods so far and have set in motion several steps to
avoid, even to cure, some of the lethal diseases. Although they believed they had conquered nature,
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corona-virus appeared killing thousands of people in China. Coronavirus has also been spread
in many countries from Africa to Europe. Coronavirus 2019 (COVID-19) is a contagious virus
causing infection to the respiratory system and is widely spread from humans to humans. The first
infected case of this new COVID-19 disease was identified on December 31, 2019 in the city of
Wuhan, China, the capital of Hubei province [1]. Reportedly, main symptom was development of
the pneumonia without any diagnosable cause and the available therapies and vaccines were not
found effective [2]. It was also noticed that the transfer of the virus among human takes place due
to their mutual contact [3]. Following the spread of COVID-19 virus in Wuhan City of China,
the virus was also spread to other Chinese cities rapidly. In turn, the virus was proliferated to
other areas including Asia, Europe, and North America. It is known that it takes 2 to 10 days for
signs to emerge. The symptoms include troubled breathing, fever and coughing. A total number
of 4593 infected cases and 132 deaths were reported until January 28, 2020 and more details on
the latest infections and deaths due to the virus were yet to come.

Mathematical models play a vital role not only in understanding the dynamics of infection but
also in investigating the recommendable conditions under which the disease will persist or wiped
out. Presently, governments and researchers have shown great concerns to COVID-19 because
of high transmission rate and noteworthy disease induced death rate. The COVID-19 virus is
generally transferred when an infected person releases droplets generated by sneezing, coughing
or exhaling. The confirmed cases of COVID-19 have reached nearly fifty four million all around
the globe, and more than 1.3 million deaths have been caused by this virus. As of November 13,
2020, according to Worldometers [4] USA, Brazil and India are the top countries with maximum
death tolls amounting to 2.48, 1.64 and 1.28 million, respectively.

Keenly tracking the corona virus transmission, researchers have organized to speed up the
diagnostic processes, and several types of vaccines are under investigation against COVID-19. For
example, Cao et al. [5,6] studied and discussed the outcomes features of victims of COVID-19 in
ICUs. Nesteruk [7] proposed a susceptible-infected-recovered (SIR) epidemic model and extracted
some valuable guidelines through statistical analysis of the model parameters. An amended SIR
model of COVID-19 was proposed in another study [8] to predict the exact count of infections
and the additional burden on ICUs and isolation units. The count of coronavirus cases appeared
higher than the number of cases predicted by February 2020. It lead to exert more emphasize
on focusing the research on modernizing the corona virus predictions in the view of latest data
and considering more complex mathematical models. Presently, no patent therapeutic agents or
vaccines for treatment or prevention from coronavirus are available, however the research based
investigations into vaccine candidates and potential antivirals are ongoing in several countries.
Drug development is a comparatively shorter process as compared to development, testing and
distribution of vaccine and any cure for COVID-19 is not expected to be available before 2021.
The dense places are ideal environments where the virus can spread easily. It was agreed that
human close contact is one of the possible causes of COVID-19 outbreaks. Therefore, the quaran-
tine of the COVID-19 victims can lessen the threat of further disease proliferation. The important
measures taken to reduce the spread of virus include small contact rate and social distancing.
The impact of such measures was investigated by Zeb et al. [9] by proposing and analyzing a
SEIIR (susceptible-exposed-infected-isolated-recovered) model. They concluded that the individ-
uals infected from coronavirus infectious disease must be referred to isolated compartment at
various rates. A logistic growth model of COVID-19 was studied by Batista [10] and was employed
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to predict the ultimate volume of the epidemic. The dynamical behavior of coronavirus has been
studied by several researchers through various COVID-19 transmission models [7–11].

Over the last thirty years, fractional derivatives have captivated the numerous researchers after
recognition of the fact that in comparison to the classical derivatives, fractional derivatives are
more reliable operators to model the real world physical phenomenons. In dynamical problems,
fractional calculus (FC) based modeling is receiving a rapid popularity nowadays. The mathe-
matical modeling of many physical and engineering models based on the idea of FC exhibits
highly precise and accurate experimental results as compared to the models based on conventional
calculus. The non-integer differential operators such as Caputo, Caputo-Fabrizio and ABC are
fractional operators that transform the ordinary model to generalized model. In this article, we
present a novel research on a fractional order dynamical model that underpins the propagation
of coronavirus infectious disease and provide some forecasting with real world data. We extend
an integer-order model formulation to a fractional order model by adding the Caputo sense of
fractional derivative. The reason of using the Caputo fractional derivative is that it possesses
several basic characteristics of fractional calculus. Moreover, the transmission behavior described
in the model can be better defined by using Caputo operator. Research based on derivatives in
Caputo sense and its applications to different models emerging in various disciplines of engi-
neering and other sciences can be observed in several past studies [12–16]. Few additional linked
researches on Caputo and other fractional order derivative implementations can be found in
literature [17–32]. Since the number of infected cases reported from January 21 to January 28,
2020 is comparatively higher than those of on initial days, therefore we have considered this
period for the formulation of the mathematical model as a parameterized model. In Section 2,
transitory details of various mathematical models showing evolution of COVID-19 from bats to
humans have been provided. Section 3 presents basic properties of the fractional order COVID-19
model. The Section 4 consists of the development of a semi-analytical scheme for the solution of
the considered fractional order COVID-19 model. The simulation results of the proposed scheme
based upon model fitted data are presented in Section 5. In the end, some fruitful conclusions
have been presented.

2 Mathematical Modeling of COVID-19 Evolution

Presuming that the transmission occurs primarily within the population of bats and afterwards
the transmission occurs to wild animals usually termed as hosts. Hunting of these carriers and
then their transportation to the supply markets of seafood are considered as virus reservoirs. By
exposing to the market, people get the risk of infection. In the following subsections, we revisit
the evolution of the COVID-19 evolutionary tracks from bats to humans in the form of three
mathematical models.

2.1 Model 1: Transmission of Corona Virus-19 among Bats and Hosts Populations
From the mathematical modeling point of view, let us denote the size of entire population

of bats by Nb and further classify it as four subclasses, namely, the subpopulation of susceptible
bats denoted by Sb, the subpopulation of exposed bats denoted by Eb, the subpopulation of
bats infected by the virus symbolized as Ib and the subpopulation of removed/recovered bats
denoted by Rb. The size of unknown host population is denoted by Nh and is further categorized
into four subgroups Sh; Eh; Ih and Rh, respectively representing the susceptible subpopulation,
exposed subpopulation, infected subpopulation and the recovered or removed subpopulation of
hosts. Therefore, Nb = Sb + Eb+ Ib + Rb and Nh = Sh + Eh+ Ih + Rh.
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The susceptible bat population is hired via birth rate Πb where death rate is μb for all types
of bats. The exposed bats get infected at rates θb after having completed their incubation period
and therefore, get included in the infected subpopulation Ib. The rate of removal or recovery
of infected subpopulation of bats is denoted by τb at which the subclass Rb is populated. The
infection due to the contact of infected population with the susceptible population takes place at
a rate ηb and is denoted by the route ηb SbIb/Nb. We denote the birth rate of unknown hosts by
Πh and the natural mortality rate by Ih. The exposed members of host subpopulation get infection
at a rate θh and enter into the infected subpopulation (Ih), whereas τh denotes the infected host’s
rate of removal/recovery. The path ηbh Sh Ib/ Nh ion subpopulation Ih, models the interactions
taking place among the infected bats and susceptible hosts, with the assumption that ηbh is the
transmission coefficient of disease towards healthy hosts from infected population of bats. As
a result of infection caused by infected members of bats population, the virus is potentially
capable of dispersing inside the host’s population and is mathematically represented by the term
ηh Sh Ih/Nh, where ηh denotes the disease transmission coefficient between the subgroups Sh and
Ih of the host population.

dSb(t)
dt

=Πb− μb Sb(t)−
ηb Sb(t)(Ib(t))

Nb(t)
(1)

dEb(t)
dt

= ηb Sb(t)(Ib(t))
Nb(t)

− (μb+ θb)Eb(t) (2)

dIb(t)
dt

= (θb)Eb(t)− (τb+μb)Ib(t) (3)

dRb(t)
dt

= τbIb(t)−μbRb(t) (4)

dSh(t)
dt

=Πh− μh Sh(t)−
ηbh Sh(t)(Ib(t))

Nh(t)
− ηh Sh(t)(Ih(t))

Nh(t)
(5)

dEh(t)
dt

= ηbh Sh(t)(Ib(t))
Nh(t)

+ ηh Sh(t)(Ih(t))
Nh(t)

− (μh+ θh)Eh(t) (6)

dIh(t)
dt

= (θh)Eh(t)− (τh+μh)Ih(t) (7)

dRh(t)
dt

= τhIh(t)−μhRh(t) (8)

Eqs. (1)–(8) are subject to some non-negative initial conditions.

2.2 Model 2: Transmission of COVID-19 from Seafood Market to Human
Let Np(t) denote the total population of individuals, which is again categorized into five

subgroups such as Sp(t); Ep(t); Ip(t); Ap(t) and Rp(t) respectively representing the susceptible
subpopulation, exposed subpopulation, infected (symptomatic) subpopulation, asymptomatically
infected subpopulation, and the recovered or removed subpopulations of human. Simply, the
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following system of coupled system of nonlinear differential equations defines the evolutionary
track of COVID-19 from hosts to human via seafood market reservoir.

dSp(t)
dt

=Πp− μp Sp(t)−
ηp Sp(t)(Ip(t)+ψAp(t))

Np(t)
− ηωSp(t)M(t) (9)

dEp(t)
dt

= ηp Sp(t)(Ip(t)+ψ Ap(t))
Np(t)

+ ηωSp(t)M(t)− (1− θp)ωp Ep(t)− θp ρp Ep(t)− μpEp(t) (10)

dIp(t)
dt

= (1− θp)ωpEp(t)− ( τp+μp)Ip(t) (11)

dAp(t)
dt

= θp ρpEp(t)− ( τap+μp)Ap(t) (12)

dRp(t)
dt

= τpIp(t)+ τapAp(t)−μpRp(t) (13)

dM(t)
dt

= b
M(t)Ih(t)
Nh(t)

+Qp Ip(t)+ΩpAp(t)− πM(t) (14)

The governing Eqs. (9)–(14) are also subject to some initial conditions. The parameter τap
represents the removal or recovery rate of Ap, ηω is the coefficient of transmission of disease from
M to Sp and θp is the asymptomatic infection factor.

2.3 Model 3: Transmission of COVID-19 among Human with Reservoir
This model presents changing aspects of transmission of COVID-19 among human that are

due to the close contacts of human population with the contagious environment without direct
contact to virus hosts. Peoples’ birth and natural death rates are denoted by the parameters ρp and
Ip, respectively. The prone people Sp will be infected by ample encounters with the infected people
Ip through the definition provided by ηpSpIp where the ηp is coefficient of disease transmission.
Transmission amongst asymptomatically infected healthy individuals may occur in the form of
Ψ ηpSpAp, where Ψ numerous transmissibility of Ap to the Ip such that Ψ ∈ [0, 1]; if Ψ = 0,
there will be no numerous transmissibility, and if Ψ = 1, the same will occur as Ip infection.
The θp value is the asymptomatic infection factor. The ωp and ρp parameters respectively reflect
the rate of transmission after the completion of the time of incubation and becoming infected,
entering the classes Ip and Ap. The individuals in symptomatic class Ip and asymptomatic class
Ap join the group Rp with the rate of removal or recovery by τp and τap, respectively. Section
M is the reservoir or the marketplace location where the seafood is stored. The prone individuals
are affected by ηωMSp after contact with M, where ηω is the coefficient of transmission of
disease from M to Sp. The number of hosts who visit the seafood market for buying products
(retail purchase) is indicated by b and the corresponding infection is modeled through the relation
bMIh/Nh. In view of the fact that the COVID-19 can be introduced into the seafood market in
a short time with ample source of infection and hence, without lack of generality, the effect of
disease transmission due to bats’ contact to hosts can be ignored. Consequently, the following
model is achieved:

dSp(t)
dt

=Πp− μp Sp(t)−
ηp Sp(t)(Ip(t)+ψAp(t))

Np(t)
− ηω Sp(t)M(t) (15)
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dEp(t)
dt

= ηp Sp(t)(Ip(t)+ψ Ap(t))
Np(t)

+ ηωSp(t)M(t)−

(1− θp)ωp Ep(t)− θp ρp Ep(t)− μpEp(t) (16)

dIp(t)
dt

= (1− θp )ωpEp(t)− (τp+μp)Ip(t) (17)

dAp(t)
dt

= θp ρpEp(t)− ( τap+μp)Ap(t) (18)

dRp(t)
dt

= τpIp(t)+ τapAp(t)−μpRp(t) (19)

dM(t)
dt

=Qp Ip(t)+ΩpAp(t)− π M(t) (20)

There also exist some initial conditions of this model. Considering that the rates of symp-
tomatic and asymptomatic infections due to reservoir M are constant, we denote these constant
rates by parameters Qp and �p, respectively. The parameter π in Eq. (20) denotes the rate at
which the virus is removal from environment reservoir as a result of some treatment policies
implemented by policy makers.

3 Dynamical Fractional Order Model of COVID-19

To develop fractional order COVID-19 model, we describe some basic definitions from frac-
tional calculus, which play vital role in fractional calculus for solving fractional order system of
differential equations. These definitions consist of fractional integral operator of a function f (t)
in Riemann–Liouville sense and the fractional derivative of a function f (t) in Caputo sense.

The integral operator of fractional order in Riemann–Liouville sense with order α ≥ 0 of
f (t) ∈ Cμ is defined as beneath.

Iαc f (t)=
1

�(α)

t
∫
c
(t−μ)α−1 f (μ)dμ, α > 0, t> 0

where Cμ is said to be space and μ ∈ R, μ≥ −1. The following formula describes Caputo sense
based fractional order derivative operator.

Dαc f (t)=
1

�(1−α)
t
∫
c
(t− η)i−α−1f i(η)dη

For i− 1≤ α ≤ i, i ∈N, f (t) ∈Ci
−1

Replacing the time derivatives of state variables by Caputo sense fractional order derivatives
in Model 3, we obtain the following generalized COVID-19 model of fractional order in Caputo
sense fractional derivative operator.

dαSp(t)
dtα

=Πp− μp Sp(t)−
ηp Sp(t)(Ip(t)+ψAp(t))

Np(t)
− ηωSp(t)M(t) (21)
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dαEp(t)
dtα

= ηp Sp(t)(Ip(t)+ψ Ap(t))
Np(t)

+ ηωSp(t)M(t)− (1− θp)ωp Ep(t)− θp ρp Ep(t)− μpEp(t) (22)

dαIp(t)
dtα

= (1− θp)ωp Ep(t)− ( τp+μp)Ip(t) (23)

dαAp(t)
dtα

= θp ρpEp(t)− ( τap+μp)Ap(t) (24)

dαRp(t)
dtα

= τpIp(t)+ τapAp(t)−μpRp(t) (25)

dαM(t)
dtα

=Qp Ip(t)+ΩpAp(t)− π M(t) (26)

Initial conditions obeyed by the model are:

Sp(0)≥ 0, Ep(0)≥ 0, Ip(0)≥ 0, Ap(0)≥ 0, Rp(0)≥ 0, M(0)≥ 0,

By adding Eqs. (15)–(19), we obtain human population’s total dynamics as under.

dNp(t)
dt

=Πp−μpNp(t).

Integrating over [0, t] we get:

⇒Np(t)=
Πp

μp
(1− e−μpt)

⇒ lim
t→∞Np(t)=

Πp

μp

It implies that the total population has an upper bound of Πp
μp

at any time step. The positivity

of the state variables and the upper bound of the entire population constitute the following
feasible region for the model.

Ω =
{
(Sp(t),Ep(t), Ip(t),Ap(t),Rp(t)) ∈ R

5
+ :Np(t)≤

Πp

μp
, M ∈R+ :

Πp

μp

Qp+wp

π

}

The points of equilibrium of the above fractional order dynamical COVID-19 model are
calculated by solving the nonlinear algebraic equations obtained by equating the fractional time
derivatives in Eqs. (21)–(26) to zero. Disease free and endemic equilibrium points denoted by D0

and D∗ respectively are given below:

D0 =
(
Πp

μp
, 0, 0, 0, 0, 0

)

D∗ = (S∗p(t), E∗
p (t), I

∗
p (t),A

∗
p(t),R

∗
p(t),M

∗
p (t)),
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where, S∗p(t)= Πp
λ+μp ; E∗

p(t)=
λS∗p(t)

θpρp−θpωp+μp+ωp ; I
∗
p (t)=

E∗
p (t)(1−θp)ωp
μp+τp ; A∗

p(t)=
E∗
p (t)θpρp
μp+τap ;

R∗
p(t)=

A∗
p(t)τap+ I∗p (t)τp

μp
; M∗

p (t)=
A∗
p(t)wp+ I∗p (t)Qp

π

The solution of the polynomial equation P(λ∗)=m1(λ
∗)2+m2λ

∗ = 0 is given as:

λ∗ = ηp(ψA∗
p(t)+ I∗p (t))

S∗p(t)+ (t)+ I∗p (t)+A∗
p(t)+R∗

p(t)
+ ηwM∗

p (t),

where, m1 = π(μp+ τp)(μp+ τap)(θp(ρp−ωp)+μp+ωp),
m2 = πμp(μp+ τp)(μp+ τap)(θp(ρp−ωp)+μp+ωp)(1−R0).

Clearly m1 > 0 and m2 ≥ 0 whenever R0 < 1, so that λ∗ = −m2/m1 ≤ 0, thus, no endemic
equilibrium exists whenever R0< 1.

The essential reproduction quantity (R0) is usually defined as the number of supplementary
infections that a certain infectious person would create on the period of the infectious time period
provided that everybody else is susceptible. To compute the essential reproductive number (R0) of
the Model 4, we follow the work in [33].

A=

⎡
⎢⎢⎣
0 ηp ψηp

ηωΠp
μp

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

B=

⎡
⎢⎢⎣
θpρp+ (1− θp)ωp+μp 0 0 0

(θp− 1)ωp μp+ τp 0 0
−θpρp 0 μp+ τap 0

0 −Qp −�p π

⎤
⎥⎥⎦

The spectral radius γ (AB−1) gives the basic reproduction number of the Model 4.

R0 =
(μpηpψπ +Πp�pηω)θpρp

(θp(ρp−ωp)+μp+ωp)πμp(μp+ τap) +
(μpηpπ +ΠpQpηω)(1− θp)ωp

(θp(ρp−ωp)+μp+ωp)πμp(μp+ τap) (27)

The threshold value for R0 is 1. If R0 < 1, the size of secondary infections in human
population will not be large enough for persistence of disease and hence the infection will die out
over course of time. In the case when R0> 1, there will be a geometric increase in size of infected
population and therefore the infection will continue to spread. The fitted values of transmission
rates are presented in Tab. 1.
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Table 1: Values of the model parameters

Parameter Description Value

π Rate of removing virus from M 0.01
Qp Contribution rate by Ip of the virus to M 0.000398
τap Rate of recovery or removal from Ap 0.854302
τa Rate of recovery or removal from Ip 0.09871
ωp Period of incubation of Ip 0.00047876
ρp Period of incubation Ap 0.005
θp The proportion of asymptomatic infection 0.1234
ηω Disease transmission from M 0.000001231
ψ Transmissibility multiple 0.02
ηp Rate of contact of Sp with Ip and Ap 0.05

μp Rate of natural mortality
1

76.79× 365
Np Total initial population 8266000
Πp Birth rate μpNp

4 Optimal Homotopy Asymptotic Method (OHAM) Scheme for Fractional COVID-19 Model

Now we develop OHAM scheme for solving underlying fractional order COVID-19 model.
OHAM technique is known for its rapid convergence as compared to other techniques. It produces
an approximate closed form of the desired solutions and, hence, is known as semi-analytical
approach. Procedure of our approximate OHAM scheme has been derived by following the rele-
vant principles as described in literature [34,35]. The underlying COVID-19 fractional order model
consists of six governing equations. In the following steps we carry out complete calculations of
OHAM scheme for all equations of the model.

Step-1) Homotopies of the governing equations:

We construct the homotopy equations by defining the real valued functions ΦS(t,q),ΦE(t,q),
ΦI (t,q), ΦA(t,q), ΦR(t,q) and ΦM(t,q) on the domain Ω × [0, 1] representing the approximate
solutions of state variables Sp, Ep, Ip, Ap, Rp and M, respectively.

(1− q)
(
dα�S(t,q)

dtα

)
−H(q, c)

(
dα�S(t,q)

dtα
−Πp− μp �S(t,q)+

ηp �S(t,q)(Ip(t)+ψAp(t))
Np(t)

+ ηω �S(t,q)M(t)
)
= 0 (28)

(1− q)
(
dα�E(t,q)

dtα

)
−H(q, c)

(
dα�E(t,q)

dtα − ηp Sp(t)(Ip(t)+ψ Ap(t))
Np(t)

− ηωSp(t)M(t)+ (1− θp)ωp �E(t)
+θp ρp �E(t)+μp�E(t)

)
= 0 (29)

(1− q)
(
dα�I (t,q)

dtα

)
−H(q, c)

(
dα�I (t,q)

dtα
− (1− θp)ωp Ep(t)+ ( τp+μp)�I (t)

)
= 0 (30)



714 CMES, 2021, vol.129, no.2

(1− q)
(
dα�A(t,q)

dtα

)
−H(q, c)

(
dα�A(t,q)

dtα
− θp ρpEp(t)+ ( τap+μp)�A(t)

)
= 0 (31)

(1− q)
(
dα�R(t,q)

dtα

)
−H(q, c)

(
dα�R(t,q)

dtα
− τpIp(t)+ τapAp(t)+μp�R(t)

)
= 0 (32)

(1− q)
(
dα�M(t,q)

dtα

)
−H(q, c)

(
dα�M(t,q)

dtα
−Qp Ip(t)+�pAp(t)+π �M(t)

)
= 0 (33)

In the above relations Ω = [0, ∞), t ∈ Ω , q ∈ [0, 1] and H(q, c) is an auxiliary function that
is always nonzero for all q ∈ (0, 1], whereas H(0, c) is necessarily zero. Auxiliary function in the
above relation is defined as under:

H(q, c)= qC1+ q2C2+ . . . (34)

Step-2) The steps of OHAM scheme for finding the approximate solution have been carried
out in details for the first governing Eq. (28) only. The procedure for the remaining Eqs. (29)–(33)
is quite similar. We start by expanding Φs(t,q, Ci) as a Taylor’s series about q.

Φs(t,q, Ci)= Sp0(t)+
∞∑
k=1

Spk(t, Ci)q
k, i= 1, 2, . . . (35)

The convergence of above series depends upon auxiliary constants Ci, i= 1, 2, . . .

For q= 1 we have

Sp(t, Ci)= Sp0(t)+
∞∑
k=1

Spk(t, Ci), i= 1, 2, . . . (36)

Step-3) Comparing the coefficients of like powers of ‘q’ after using the Eq. (35) in Eq. (28)
we can obtain approximations of order from zero to onwards, if needed, as below:

q0 : Sp0(α)(t)= 0 (37)

q1 : C1
Np(t)(

(−(Np(t)μp+ ηpψAp0(t)+ ηpIp0(t)+Np(t)ηωM0(t))Sp0(t)+Np(Πp−S(α)po (t)))
++Np(−S(α)po (t)+S(α)p1 (t))

)
= 0

(38)

q2 :− 1
Np
(ηpψAp1(t) Sp0(t)C1+ ηp Ip1(t) Sp0(t)C1+NpηωM1(t) Sp0(t)C1

+NpμpSpt(t)C1 + ηpψApo(t)Sp1(t)C1 + ηpIpo(t)Sp1(t)C1

+NpηωMoSp1(t)C1−Np

∏
pC2+NpMpSpo(t)C2

+ηpψ Ap0(t) Sp0(t)C2 + ηp Ip0(t) Sp0(t)C2+
Np ηωM0(t) Sp0(t)C2 +Np C2S

(α)
p0 (t))−
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(1+C1)S
(α)
p1 (t)+S(α)p2 (t)= 0 (39)

And so on.

Step-4) Using Reimann-Liouville sense of integral on governing equation of susceptible
population and using the initial condition Sp(0), one can obtain following series solution.

Sp0(t)= Sp(0) (40)

Sp1(t)=
tα
(
8065518Np(t)(50000 ηω+μp)−Np(t) Πp

+16131036 ηp(141+ 100ψ)

)
C1

Np(t) αΓ (α)
(41)

Sp2(t)= 1
Np2(t)

tα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

tα
(
8065518Np(t)(50000 ηω +μp)−Np(t) Πp

+16131036 ηp(141+ 100ψ)

)

(Np(t)(50000 ηω+μp)+ ηp(282+ 200ψ))C2
1

Γ (1+ 2α)
−

16131036

Np(t)tα

⎡
⎢⎢⎢⎢⎣

Np(t)ηω(141Qp+ 100(−250π +Ω))−

ηp

(
141τp+μp (141+ 100ψ)+ 100

((−100θpρp+ τap)ψ + 1000(−1+ θp)ωp)

)
⎤
⎥⎥⎥⎥⎦C2

1

Γ (1+ 2α)

Np(t)

[
8065518Np(t) (50000 ηω +μp )−Np(t)Πp+

16131036 ηp (141+ 100ψ)

]
(C1+C2

1 +C2)

Γ (1+α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

(42)

where Γ (α) denotes the gamma function. We have the solution in the form:

Sp(t)= Sp0(t)+Sp1(t)+Sp2(t)+ . . . (43)

By substituting the values from Eqs. (40)–(42) in Eq. (43), we obtain second order approxi-
mate result of Eq. (21) as:

Sp = 8065518+ 496439.4332413166tαC1

αΓ (α)

+
tα
(
2.427851710500268× 1018tαC2

1

Γ (1+ 2α)
+ 3.392009602385773× 1019(C1+C2

1 +C2)

Γ (1+α)

)

68326756000000

(44)
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Adopting the same procedure presented in Steps 1–4, we find the following approximate
solutions for the state variables Ep(t), Ip(t),Ap(t),Rp(t) and M(t).

Ep= 200000+ tα

34163378000000

⎛
⎜⎜⎝
−1.231569373491795× 1018tαC2

1

Γ (1+ 2α)
−

1.695293749139955× 1019(C1(2+C1)+C2)

Γ (1+α)

⎞
⎟⎟⎠ (45)

Ip= 282+ 2tα
(
101.2574552024585tαC2

1

Γ (1+ 2α)
− 28.001872579217828(C1(2+C1)+C2)

Γ (1+α)

)
(46)

Ap= 4

(
50+ 87.0480383689366t2αC2

1

Γ (1+ 2α)
+ 11.641883908078782tα(C1(2+C1)+C2)

Γ (1+α)

)
(47)

Rp=−34.261698271281816t2αC2
1

Γ (1+ 2α)
− 198.69662tα(C1(2+C1)+C2)

Γ (1+α) (48)

M = 50000+ 4.972599594940743t2αC2
1

Γ (1+ 2α)
+ 499.687764tα(C1(2+C1)+C2)

Γ (1+α) (49)

Step-5) In this step, the values of auxiliary constants C1 and C2, present in Eqs. (44)–(49),
are found by using the method of least squares [33,36,37] by minimizing the total error function
of all the governing equations. Let χ = {Sp, Ep, Ip, Ap, Rp, M} be the set consisting of all state
variables and k be any member of this set. The corresponding residual of each governing equation
is denoted by �k : k ∈ χ and total error function is denoted by Jk and is defined as under:

Jk =
1
∫
0
�2
kdt : k ∈ χ

The minimization process of each Jk is explained in following subsections of results and
discussions.

5 Results and Discussion

This section is dedicated for presentation of the closed form semi-analytical solutions for all
of the state variables and demonstration of their dynamics through graphical exhibition of related
simulation results. Model 4 has total six equations. That means COVID-19 fractional model is
to analyzed by observing the behaviors of six subpopulations Sp, Ep, Ip, Ap, Rp and M for the
various values of α.

The considered values for model parameters are presented by Tab. 1. All figures in the
following cases describe the individual behavior of model subpopulations for various values of α.
The evolution time t is taken in days by setting a scale of 10 to 1 along horizontal axes.
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5.1 Dynamics of Susceptible Human Population
For the fractional analysis of human susceptible population we calculate the auxiliary con-

stants (C1, C2) which describe the order of the solution. We will find these auxiliary constants
so that the series solution defined by Eq. (44) satisfies the related governing equation COVID-19
Model 4. The corresponding error function is:

JSp =
1
∫
0
�2
spdt

where, the residual, of susceptible population, denoted by �Sp , is defined as under:

�Sp =
dαSp(t)
dtα

− Πp+μp Sp(t)+
ηpSp(t)(Ip(t)+ψ Ap(t))

Np(t)
+ ηω Sp(t)M(t)

Imposing the necessary conditions for minimum residual, we can find C1 and C2, by solving
the equations:

∂JSp
∂C1

= 0 and
∂JSp
∂C2

= 0

Tab. 2 presents the optimized values of auxiliary constants of the second order approxi-
mate solution for susceptible population considering various orders of fractional derivative. The
corresponding second order approximate solution for Sp has been exhibited in Tab. 3. Fig. 1
demonstrates a clear impact of varying values of the order of the fractional derivative on the
dynamics of the susceptible population.

5.2 Dynamics of Exposed Population
The auxiliary constants (C1, C2) describing the order of the solution for exposed population

have been calculated first by enforcing the series solution given by Eq. (45) to satisfy the second
governing equation of the fractional order COVID-19 model. The total error function is given as:

JEp =
1
∫
0
�2
Epdt

where, the residual of exposed population, denoted by �Ep , is defined as under:

�Ep =
dαEp(t)
dtα

− ηp Sp(t)(Ip(t)+ψ Ap(t))
Np(t)

− ηω Sp(t)M(t)+

(1− θp)ωp Ep(t)+ θp ρpEp(t)+ μpEp(t)

Imposing the necessary conditions for minimum residual, we can find C1 and C2 by solving
the equations:

∂JEp
∂C1

= 0 and
∂JEp
∂C2

= 0

Considering various orders of the fractional derivative, above necessary conditions provide the
relevant optimum values of auxiliary constants for the exposed population and are presented in
Tab. 4.
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Table 2: The optimum values of C1 and C2 for Sp with varying α

α C1 C2

0.6 −0.9662294677574799 0.00004856367888787204
0.7 −0.9702222249607546 0.00006218333186110182
0.8 −0.9738809701770866 0.00006998244716249824
0.9 −0.9772051867629874 0.0000725442101786326
1 −0.9801995362251829 0.00007092169346223056

Table 3: Second order approximate results for Sp with various α

Sp α

8065518.0− 554941.9614690116t0.6+ 30108.433618137875t1.2 0.6
8065517.999999999− 545836.6942974408t0.7+ 26927.310970660645t1.4 0.7
065517.999999999− 532611.8339438752t0.8+ 23573.339701348385t1.6 0.8
8065518.0− 515869.3013438624t0.9+ 20239.590008764546t1.8 0.9
8065518.0+ t(−496209.5916831451+ 17069.87516270542t) 1

Figure 1: Susceptible population vs. time t

Table 4: The optimum values of C1 and C2 for Ep with varying α

α C1 C2

0.6 −0.9662359499482023 0.0000663128258591807
0.7 −0.9702342806848678 0.00007653652531257912
0.8 −0.973897708611409 0.00008150221503914954
0.9 −0.9772257049792678 0.0000817157653032844
1 −0.9802229572403771 0.00007816362929452853

The OHAM scheme based second order solution for the exposed population Ep has been
shown in Tab. 5 for various values of α. Fig. 2 describes the evolution of exposed population
with respect to time.
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Table 5: Second order approximate results for Ep with various α

Ep α

200000. + 554699.6871720453t0.6− 30546.447378473764t1.2 0.6
200000. + 545600.404984771t0.7− 27319.358517033466t1.4 0.7
200000. + 532382.8638956696t0.8− 23916.78294309141t1.6 0.8
200000.00000000003 + 515648.7727961143t0.9 − 20534.619839850122t1.8 0.9
200000. + (495998.4215190455 − 17318.800831816t)t 1

Figure 2: Exposed population vs. time t

5.3 Dynamics of Infected (Symptomatic) Population
The values of auxiliary constant C1 and C2, present in Eq. (46), have been calculated by

minimizing the total residual functional given by:

JIp =
1
∫
0
�2
Ipdt

where, the residual of infected (symptomatic) population, denoted by �Ip , is defined as under:

�Ip =
dαIp
dtα

− (1− θp)ωp Ep(t)+ ( τp+μp)Ip(t)

Solving the following equations for C1 and C2 we get their optimum values that are pre-
sented in Tab. 6 for various values of α. The corresponding OHAM scheme based second order
approximate solution for infected population is shown in Tab. 7. The graphical view of evolution
of infected population under the influence of various values of order of the fractional derivative
has been exhibited in Fig. 3.

∂JIp
∂C1

= 0 and
∂JIp
∂C2

= 0
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Table 6: The optimum values of C1 and C2 for Ip with varying α

α C1 C2

0.6 −0.87672258136981 0.0007457147781854219
0.7 −0.8649887979646904 0.0013384323626326204
0.8 −0.8528239427616315 0.002192589553459439
0.9 −0.9829967606064786 −0.06467702677610104
1 −0.982810322702191 −0.04956686329344128

Table 7: Second order approximate results for Ip with various α

Ip α

200000. + 546515.3642361652t0.6− 25148.88352998721t1.2 0.6
200000. + 535440.3179179677t0.7− 21713.919998889953t1.4 0.7
200000. + 520080.4663385056t0.8− 18339.810466336967t1.6 0.8
282+ 61.97944203760566t0.9+ 116.72395812995485t1.8 0.9
282+ t(58.76312687167264 + 97.80620930432111t) 1

Figure 3: Infected population vs. time t

5.4 Dynamics of Asymptotically Infected Population
The values of auxiliary constant C1 and C2 involved in Eq. (47) of asymptotically infected

population have been calculated as follows:

JAp =
1
∫
0
�2
Apdt

where, the residual of asymptotically infected population, denoted by �Ap , is defined as under:

�Ap =
dαAp(t)
dtα

− θp ρpEp(t)+ ( τap+μp)Ap(t)
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The values of C1 and C2 presented in Tab. 8 have been obtained by solving following
equations:

∂JAp
∂C1

= 0 and
∂JAp
∂C2

= 0

Tab. 9 displays the second order solution for Ap. Fig. 4 demonstrates the evolutionary
behavior of asymptomatically infected population over time.

Table 8: The optimum values of C1 and C2 for Ap with varying α

α C1 C2

0.6 −0.5059822847414825 0.2659088815381745
0.7 −0.5440129297507621 0.26118415612256957
0.8 −0.5847226353934709 0.2521544207274168
0.9 −0.6274577402256217 0.23829851823910544
1 −0.6712350073776453 0.21961679925703448

Table 9: Second order approximate results for Ap with various α

Ap α

200− 25.539397994545997t0.6+ 80.90695448658305t1.2 0.6
200− 27.208079807547318t0.7+ 82.9576835575629t1.4 0.7
200− 28.768493346982847t0.8+ 83.27157759151157t1.6 0.8
200− 30.16072844448997t0.9+ 81.76863930862919t1.8 0.9
200+ t(−31.307204275323613+ 78.44010770500755t) 1

Figure 4: Asymptomatically infected population vs. time t



722 CMES, 2021, vol.129, no.2

5.5 Dynamics of the Recovered or the Removed Population
The following total error function corresponding to recovered population is obtained from

Eq. (48):

JRp =
1
∫
0
�2
Rpdt

The residual �Rp , for the recovered or the removed population, is defined given as:

�Rp =
dαRp(t)
dtα

− τpIp(t)− τapAp(t)+μpRp(t)

Solving the following necessary conditions we obtain the values of C1 and C2 presented in
Tab. 10.

∂JRp
∂C1

= 0 and
∂JRp
∂C2

= 0

The closed form solution for recovered population is presented in Tab. 11 using different
values of α and the relevant graphs are exhibited in Fig. 5.

Table 10: The optimum values of auxiliary coefficients for with varying α

α C1 C2

0.6 −0.3099057083392829 −0.4353520031058032
0.7 −0.33061331430545765 −0.4112462116939445
0.8 −0.35350828143124485 −0.3849576981133188
0.9 −0.37869710003368257 −0.3566641566751082
1 −0.40624545855517 −0.32663489808400564

Table 11: Approximate solution for Rp with various values of α

Rp α

213.2859544398185t0.6− 2.986512163858753t1.2 0.6
210.62073950373346t0.7− 3.0148711616410497t1.4 0.7
206.29611626292777t0.8− 2.9949258229334106t1.6 0.8
200.53140226733026t0.9− 2.9308370539963566t1.8 0.9
(193.54847851845614 − 2.82719606999836t)t 1
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Figure 5: Recovered population vs. time t

5.6 Dynamics of the Reservoir Compartment
Applying the least square approach for the auxiliary constant of Eq. (49) we get following

total error function:

JM =
1
∫
0
�2
Mdt

The residual �M of the class M is defined below:

�M = dαM(t)
dtα

−Qp Ip(t)−ΩpAp(t)+π M(t)

The solutions of following equations give the values of C1 and C2 shown in Tab. 12:

∂JM
∂C1

= 0 and
∂JM
∂C2

= 0

The approximate solutions for M have been presented in Tab. 13 whereas the impact of
variation in order of the fractional derivative has been shown in Fig. 6.

Table 12: Auxiliary coefficients for M with varying α

α C1 C2

0.6 −1.037268722466186 −0.0015794190433222372
0.7 −1.0320151933588906 −0.001172114803981095
0.8 −1.0273418629893258 −0.0008605347090522104
0.9 −1.0232155164778571 −0.0006250823810979231
1 −1.0196000968650596 −0.0004493592096013719
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Table 13: Approximate solution for M with varying α

M α

50000. − 559.3445435649885t0.6+ 4.855816934590584t1.2 0.6
50000. − 550.0109901617935t0.7+ 4.263584407225392t1.4 0.7
50000. − 536.5609997943025t0.8+ 3.6710598174173956t1.6 0.8
50000. − 519.597163486631t0.9+ 3.1053928848902546t1.8 0.9
50000. + t(−499.72034134988604+ 2.58471837757334t) 1

Figure 6: Reservoir saturation vs. time t

6 Conclusion

In this study, closed form semi-analytical approximate solution has been presented for frac-
tional order COVID-19 model in Caputo sense of derivative operator. The underlying model
involves parameters that were extracted by fitting real data into the dynamical model. The fitted
parameters are responsible for a high reproduction number R0 ≈ 2.48293 that indicates the fact
that the infection will persist. The sensitivity of R0 reveals that the infection can be controlled
by reducing the contact rates ηp and ψ of susceptible population to symptomatically and asymp-
tomatically infections, the contribution rates Ωp and Qp of infected populations to environment
and the reservoir’s disease transmissibility rate ηω. Such reductions can be directly achieved
by implementing more quarantining, hospitalization and lockdown strategies by policymakers.
Moreover, the availability of a healthy environment to increase population immunity and effective
remedies will increase the recovery rates τap and τa which will result in a reduced reproductive
number. Taking into account of available data and the fitted parameters, the dynamics of human
subpopulations have been efficiently examined by considering various values of order of fraction
derivatives. Analytical and graphical results demonstrate that an increase in the order α of
fractional derivative shows increase in the exposed, symptomatically infected, asymptomatically
infected and recovered subpopulations sizes whereas the number of susceptible individuals and
environmental saturation decrease. The results obtained are promising providing us great inspira-
tion to use our proposed methodology further to explore more advanced models of COVID-19
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disease, especially, delayed and stochastic models. It is expected that this latitude study would
provide researchers a good viewpoint of more advanced research that could be put forward on
closed form solutions of epidemiological models.
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